Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics

Size: px
Start display at page:

Download "Interval Graphs. Joyce C. Yang. Nicholas Pippenger, Advisor. Arthur T. Benjamin, Reader. Department of Mathematics"

Transcription

1 Interval Graphs Joyce C. Yang Nicholas Pippenger, Advisor Arthur T. Benjamin, Reader Department of Mathematics May, 2016

2 Copyright c 2016 Joyce C. Yang. The author grants Harvey Mudd College and the Claremont Colleges Library the nonexclusive right to make this work available for noncommercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of the author. To disseminate otherwise or to republish requires written permission from the author.

3 Abstract We examine the problem of counting interval graphs. We answer the question posed by Hanlon, of whether the generating function of i n, the number of interval graphs on n vertices, has a positive radius of convergence. We have found that it is zero. We have also found that the exponential generating function of i n has a radius of convergence greater than or equal to one half. We have obtained a lower bound and an upper bound on i n. We also study the application of interval graphs to the dynamic storage allocation problem. Dynamic storage allocation has been shown to be NP-complete by Stockmeyer. Coloring interval graphs on-line has applications to dynamic storage allocation. The most colors used by Kierstead s algorithm is 3ω 2, where ω is the size of the largest clique in the graph. We determine a lower bound on the colors used. One such lower bound is 2ω 1.

4

5 Contents Abstract Acknowledgments iii ix 1 Introduction Definition Two problems Counting Interval Graphs Background Results Coloring Interval Graphs Background Results Future Work 15 Bibliography 17

6

7 List of Figures 1.1 Interval graph with n = Permutation interval graph for n = Interval graph labeled from left to right Interval graph labeled from outside to inside Interval graph labeled outside to inside Interval graph labeled outside to inside

8

9 Acknowledgments We thank Nicholas Pippenger for answering many of our questions and patiently helping us. We also thank Arthur Benjamin for providing feedback in the writing process.

10

11 Chapter 1 Introduction 1.1 Definition An undirected graph G is an interval graph if there is a one-to-one correspondence between the vertices of G and a set of intervals of real numbers such that the intervals corresponding to x and y overlap if and only if x y. Hajos (1957) defined interval graphs as a study of intersection graphs. Benzer (1959) independently defined interval graphs. Interval graphs are precisely the graphs that have no induced cycle of size larger than 3 and that have no asteroidal induced subgraph. (Lekkerkerker and Boland, 1962)

12 2 Introduction [1,4] [7,10] [2,3] [5,6] [8,9] [11,12] Figure 1.1 Interval graph with n = 6

13 Two problems Two problems In the field of graph theory the question of counting interval graphs is an interesting combinatorial topic. Hanlon describes the generating function of i n, the number of interval graphs on n vertices, as an implicit function (Hanlon, 1982). Hanlon posed the question of whether the generating function I(x) = i n x n n 1 of the interval graphs has a positive radius of convergence; that is, whether i n C n for some constant C. We shall show that the radius of convergence is zero. We also study the application of interval graphs to the dynamic storage allocation problem. Dynamic storage allocation has been shown to be NPcomplete by Stockmeyer. Coloring interval graphs on-line has applications to dynamic storage allocation. Kierstead (1991) presented a polynomialtime algorithm for on-line coloring of interval graphs. The most colors used by Kierstead s algorithm is 3ω 2, where ω is the size of the largest clique in the graph. We shall show that in some cases Kierstead s algorithm uses at least 2ω 1 colors.

14

15 Chapter 2 Counting Interval Graphs 2.1 Background Define the generating function Its first 11 coefficients are I(x) = i n x n. n 1 n i n ,807 10, , ,347 3, 894,446 (Hanlon, 1982) 2.2 Results Theorem 1. i n (2n 1)!! Proof. Let the endpoints of the interval representation of a graph be the integers 1, 2..., 2n. Because intervals cannot share the same endpoints,there are 2n 1, then 2n 3, then 2n 5, and so on, choices for the next interval s endpoints. Thus i n satisfies i n (2n 1)!! where (2n 1)!! denotes the product (2n 1)(2n 3)(2n 5)... (3)(1).

16 6 Counting Interval Graphs Theorem 2. i n ( n 3 )! 3 n for n = 3m, where m 1 is an integer. Proof. To obtain the lower bound, we counted colored graphs of the following type. For every value of m, we can construct the graph that is associated with a permutation of [1, 2,... m], and that has n = 3m intervals total. Let n = 3m, where m 1. Let π be a permutation of [1, 2,... m]for each 0 i m, consider the intervals r i = (3i 1, 3i), and b i = (2n 3i + 1, 2n 3i + 2), w i = (3i 2, 2n + 3 3π(i)) Construct a graph G π from the w i, r i, and b i for i m, and color the w i white, the r i red, and the b i blue. Then there are m! colored graphs, one for each permutation. There are m red indicator intervals on the left which correspond to the things being permuted, and m blue indicator intervals on the right which are the permutations. There are m white intervals which all overlap with different numbers of blue intervals. We can determine the permutation π from the graph G π. Call the number of red adjacent intervals the red degree. Call the number of blue adjacent intervals the blue degree. Then π(i) is the blue degree of the white interval of red degree i. There are at most 3 n colorings, so the i n satisfies ( n 3 )! 3 n i n The number of interval graphs on n vertices satisfies ( n 3 )! 3 n i n (2n 1)!! This means that the number of interval graphs grows faster than any power of e n for n large enough. Thus, we have shown that the radius of convergence is zero. Define the exponential generating function J(x) = n 1 i n x n. n! Our upper bound shows that J(x) has radius of convergence at least 1 2. It is an open question whether this radius of convergence is infinite.

17 Results 7 [1,15] [2,3] [13,14] [4,21] [5,6] [19,20] [7,18] [8,9] [16,17] [10,24] [11,12] [22,23] Figure 2.1 Permutation interval graph for n = 12

18

19 Chapter 3 Coloring Interval Graphs 3.1 Background We have made some explorations of coloring interval graphs on-line. In particular, we have found a worst case scenario for the minimum number of colors used by Kierstead s algorithm for on-line coloring. As a review, the following definitions will be useful. A graph coloring is a way of attaching colors to the vertices of a graph such that no two adjacent vertices share a color. An on-line algorithm is one which does not know its input in advance an example is a greedy algorithm. The chromatic number χ of a graph is the smallest number of colors needed to color a graph. Because it is used to find the minimum number of colors, vertex coloring has use in network-related problems and resource allocation problems. A perfect graph is a graph for which for every induced subgraph χ = ω where ω is the size of the largest clique. An example of a perfect graph is a bipartite graph on 2n vertices. The clique number will be 2. The chromatic number will be 2. The strong perfect graph theorem states that a graph is perfect if and only if neither it nor its complement has an induced cycle of size 2n + 1 where n 2. (Chudnovsky et al., 2006) Next, we will cover an application of on-line graph coloring in computer science, dynamic storage allocation. On a machine, it is often important to store hundreds of thousands of variables in linear programming, in applications to physics and chemistry, for example. This idea is important in Dynamic Storage Allocation. Stockmeyer formulated dynamic storage allocation and showed that it is NP-complete (Garey and Johnson, 1979). The question then arises, are there ways to approximate the minimum

20 10 Coloring Interval Graphs storage space in Dynamic Storage Allocation? To answer this question we consider on-line coloring of interval graphs. It can be shown that interval graphs are perfect, by greedy coloring according to order of left end-points. We have been studying an algorithm by Kierstead. This algorithm is for coloring interval graphs on-line, though the process can possibly label vertices that are adjacent with the same label (Kierstead, 1991). The algorithm by Kierstead uses at most 3ω 2 colors (Kierstead, 1991). In the algorithm by Kierstead, the method used is to conduct a preliminary and a final examination of all of the vertices. Each vertex is examined for overlaps with previous vertices. This algorithm will not yield the clique number in general. One may wonder, what on-line colorings are produced for various graphs? We consider some examples Figure 3.1 Interval graph labeled from left to right The graph is labeled from left to right and uses Kierstead s algorithm with 2 colors.

21 Background Figure 3.2 Interval graph labeled from outside to inside The graph is labeled from outside to inside. The graph uses 3 colors.

22 12 Coloring Interval Graphs 1... ω 2ω... ω + 1 Figure 3.3 Interval graph labeled outside to inside This graph is labeled with the ωth and 2ωth lines overlapping. Kierstead s algorithm uses ω + 1 colors. Note that the number of colors used is larger than the clique size, ω.

23 Results Results There is a way of enumerating a graph of clique size ω that uses 2ω 1 colors. The staircases get progressively smaller until they reach 4 lines, so the total number of colors that Kierstead s algorithm uses is 2ω n 3 ω n 2 2ω n... n 1 ω + 1 Figure 3.4 Interval graph labeled outside to inside

24

25 Chapter 4 Future Work First, it is an open question whether ( n 3 )! can be improved to ( n 2 )! or (n)! Second, we found that the exponential generating function i n x J(x) = n n! n 1 has radius of convergence 1 2. It is an open question whether this radius of convergence is infinite. It is an open question whether the bound can be improved from 2ω 1 to 3ω 2.

26

27 Bibliography Benzer, Seymour On the topology of the genetic fine structure. Proceedings of the National Academy of Sciences of the United States of America 45: Booth, Kellogg S., and George S. Lueker Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13: Chudnovsky, Maria, Neil Robertson, Paul Seymour, and Robin Thomas The strong perfect graph theorem. Annals of Mathematics 164: Garey, Michael R., and David S. Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman. Golumbic, Martin Charles Graphs. Elsevier. Algorithmic Graph Theory and Perfect Hajos, G Über eine Art von Graphen. Internationale Mathematische Nachrichten 11:65. Hanlon, Phil Counting interval graphs. Transactions of the American Mathematical Society 272: Kierstead, H.A A polynomial time approximation algorithm for dynamic storage allocation. Discrete Mathematics 88: Lekkerkerker, C.C., and J.Ch. Boland Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae 51:45 64.

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Counting Vertices in Isohedral Tilings

Counting Vertices in Isohedral Tilings Counting Vertices in Isohedral Tilings John Choi Nicholas Pippenger, Advisor Arthur Benjamin, Reader May, 01 Department of Mathematics Copyright c 01 John Choi. The author grants Harvey Mudd College and

More information

Lecture outline. Graph coloring Examples Applications Algorithms

Lecture outline. Graph coloring Examples Applications Algorithms Lecture outline Graph coloring Examples Applications Algorithms Graph coloring Adjacent nodes must have different colors. How many colors do we need? Graph coloring Neighbors must have different colors

More information

DSATUR. Tsai-Chen Du. December 2, 2013

DSATUR. Tsai-Chen Du. December 2, 2013 DSATUR Tsai-Chen Du December 2, 2013 Abstract The Graph Coloring Problem (GCP) is a well-known NP-complete problem that has been studied extensively. Heuristics have been widely used for the GCP. The well-known

More information

Set Cover with Almost Consecutive Ones Property

Set Cover with Almost Consecutive Ones Property Set Cover with Almost Consecutive Ones Property 2004; Mecke, Wagner Entry author: Michael Dom INDEX TERMS: Covering Set problem, data reduction rules, enumerative algorithm. SYNONYMS: Hitting Set PROBLEM

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras What is it to be Perfect? Introduced by Claude Berge in early 1960s Coloring number and clique number are one and the same for all induced

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Math 3012 Applied Combinatorics Lecture 12

Math 3012 Applied Combinatorics Lecture 12 September 29, 2015 Math 3012 Applied Combinatorics Lecture 12 William T. Trotter trotter@math.gatech.edu Planar Graphs Definition A graph G is planar if it can be drawn in the plane with no edge crossings.

More information

Coloring Fuzzy Circular Interval Graphs

Coloring Fuzzy Circular Interval Graphs Coloring Fuzzy Circular Interval Graphs Friedrich Eisenbrand 1 Martin Niemeier 2 SB IMA DISOPT EPFL Lausanne, Switzerland Abstract Computing the weighted coloring number of graphs is a classical topic

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Linear Extensions of Directed Acyclic Graphs Kyle Gettig Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Motivation Individuals can be modeled as vertices of a graph, with edges

More information

Colouring graphs with no odd holes

Colouring graphs with no odd holes Colouring graphs with no odd holes Paul Seymour (Princeton) joint with Alex Scott (Oxford) 1 / 17 Chromatic number χ(g): minimum number of colours needed to colour G. 2 / 17 Chromatic number χ(g): minimum

More information

Graph Coloring Algorithms

Graph Coloring Algorithms Graph Coloring Algorithms Course Notes Extension COMP5408 Advanced Algorithms Lucas Rioux-Maldague November 10 th 2014 1 Introduction Note: in this text, unless otherwise noted, a graph is always simple.

More information

arxiv: v2 [cs.dm] 3 Dec 2014

arxiv: v2 [cs.dm] 3 Dec 2014 The Student/Project Allocation problem with group projects Aswhin Arulselvan, Ágnes Cseh, and Jannik Matuschke arxiv:4.035v [cs.dm] 3 Dec 04 Department of Management Science, University of Strathclyde,

More information

Some Open Problems in Graph T

Some Open Problems in Graph T Some Open Problems in Graph T February 11, 2004 0-0 Sources Graph Theory Open Problems - Six problems suitable f uate research projects http://dimacs.rutgers.edu/ hochberg/undopen/graphth Douglas West

More information

Fast Skew Partition Recognition

Fast Skew Partition Recognition Fast Skew Partition Recognition William S. Kennedy 1, and Bruce Reed 2, 1 Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A2K6 kennedy@math.mcgill.ca 2 School of Computer

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Math 575 Exam 3. (t). What is the chromatic number of G?

Math 575 Exam 3. (t). What is the chromatic number of G? Math 575 Exam 3 Name 1 (a) Draw the Grötsch graph See your notes (b) Suppose that G is a graph having 6 vertices and 9 edges and that the chromatic polynomial of G is given below Fill in the missing coefficients

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

On some subclasses of circular-arc graphs

On some subclasses of circular-arc graphs On some subclasses of circular-arc graphs Guillermo Durán - Min Chih Lin Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires e-mail: {willy,oscarlin}@dc.uba.ar

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators An Effective Upperbound on Treewidth Using Partial Fill-in of Separators Boi Faltings Martin Charles Golumbic June 28, 2009 Abstract Partitioning a graph using graph separators, and particularly clique

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Stephan Dominique Andres: Game-perfect digraphs paths and cycles Technical Report feu-dmo015.09 Contact: dominique.andres@fernuni-hagen.de FernUniversität in Hagen Fakultät

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Stephan Dominique Andres Winfried Hochstättler: A strong perfect digraph theorem Technical Report feu-dmo026.11 Contact: dominique.andres@fernuni-hagen.de, winfried.hochstaettler@fernuni-hagen.de

More information

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT A graph G is self complementary if it is isomorphic to its complement G.

More information

The k-in-a-path problem for claw-free graphs

The k-in-a-path problem for claw-free graphs The k-in-a-path problem for claw-free graphs Jiří Fiala Univerzita Karlova v Praze Bernard Lidický Univerzita Karlova v Praze Marcin Kamiński Université Libre de Bruxelles Daniël Paulusma University of

More information

arxiv: v1 [math.co] 4 Apr 2011

arxiv: v1 [math.co] 4 Apr 2011 arxiv:1104.0510v1 [math.co] 4 Apr 2011 Minimal non-extensible precolorings and implicit-relations José Antonio Martín H. Abstract. In this paper I study a variant of the general vertex coloring problem

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

Complementary Graph Coloring

Complementary Graph Coloring International Journal of Computer (IJC) ISSN 2307-4523 (Print & Online) Global Society of Scientific Research and Researchers http://ijcjournal.org/ Complementary Graph Coloring Mohamed Al-Ibrahim a*,

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

An upper bound for the chromatic number of line graphs

An upper bound for the chromatic number of line graphs EuroComb 005 DMTCS proc AE, 005, 151 156 An upper bound for the chromatic number of line graphs A D King, B A Reed and A Vetta School of Computer Science, McGill University, 3480 University Ave, Montréal,

More information

Some new results on circle graphs. Guillermo Durán 1

Some new results on circle graphs. Guillermo Durán 1 Some new results on circle graphs Guillermo Durán 1 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile gduran@dii.uchile.cl Departamento

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 70010, India. Organization Introduction

More information

Some results on Interval probe graphs

Some results on Interval probe graphs Some results on Interval probe graphs In-Jen Lin and C H Wu Department of Computer science Science National Taiwan Ocean University, Keelung, Taiwan ijlin@mail.ntou.edu.tw Abstract Interval Probe Graphs

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

Grundy chromatic number of the complement of bipartite graphs

Grundy chromatic number of the complement of bipartite graphs Grundy chromatic number of the complement of bipartite graphs Manouchehr Zaker Institute for Advanced Studies in Basic Sciences P. O. BOX 45195-159 Zanjan, Iran E-mail: mzaker@iasbs.ac.ir Abstract A Grundy

More information

Combinatorial Interpretations of Spanning Tree Identities

Combinatorial Interpretations of Spanning Tree Identities Combinatorial Interpretations of Spanning Tree Identities Arthur T. Benjamin and Carl R. Yerger November 14, 2004 Abstract We present a combinatorial proof that the wheel graph W n has L 2n 2 spanning

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Constructions of k-critical P 5 -free graphs

Constructions of k-critical P 5 -free graphs 1 2 Constructions of k-critical P 5 -free graphs Chính T. Hoàng Brian Moore Daniel Recoskie Joe Sawada Martin Vatshelle 3 January 2, 2013 4 5 6 7 8 Abstract With respect to a class C of graphs, a graph

More information

Key words. graph algorithms, chromatic number, circular arc graphs, induced cycles

Key words. graph algorithms, chromatic number, circular arc graphs, induced cycles SIAM J. COMPUT. Vol. 0, No. 0, pp. 000 000 c XXXX Society for Industrial and Applied Mathematics REVISITING TUCKER S ALGORITHM TO COLOR CIRCULAR ARC GRAPHS MARIO VALENCIA-PABON Abstract. The circular arc

More information

Induced minors and well-quasi-ordering

Induced minors and well-quasi-ordering Induced minors and well-quasi-ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck To cite this version: Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile

More information

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

Approximation Algorithms for Multicoloring Planar Graphs and Powers of Square and Triangular Meshes

Approximation Algorithms for Multicoloring Planar Graphs and Powers of Square and Triangular Meshes Discrete Mathematics and Theoretical Computer Science DMTCS vol. 8, 2006, 159 172 Approximation Algorithms for Multicoloring Planar Graphs and Powers of Square and Triangular Meshes Mustapha Kchikech 1

More information

ON SOME CONJECTURES OF GRIGGS AND GRAFFITI

ON SOME CONJECTURES OF GRIGGS AND GRAFFITI ON SOME CONJECTURES OF GRIGGS AND GRAFFITI ERMELINDA DELAVINA, SIEMION FAJTLOWICZ, BILL WALLER Abstract. We discuss a conjecture of J. R. Griggs relating the maximum number of leaves in a spanning tree

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

REDUCING GRAPH COLORING TO CLIQUE SEARCH

REDUCING GRAPH COLORING TO CLIQUE SEARCH Asia Pacific Journal of Mathematics, Vol. 3, No. 1 (2016), 64-85 ISSN 2357-2205 REDUCING GRAPH COLORING TO CLIQUE SEARCH SÁNDOR SZABÓ AND BOGDÁN ZAVÁLNIJ Institute of Mathematics and Informatics, University

More information

Edge intersection graphs. of systems of grid paths. with bounded number of bends

Edge intersection graphs. of systems of grid paths. with bounded number of bends Edge intersection graphs of systems of grid paths with bounded number of bends Andrei Asinowski a, Andrew Suk b a Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel. b Courant Institute,

More information

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay.

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Extremal Graph Theory Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Email: aad@cse.iitb.ac.in Basic Question Let H be a fixed graph. What is the maximum number of edges

More information

Acyclic Subgraphs of Planar Digraphs

Acyclic Subgraphs of Planar Digraphs Acyclic Subgraphs of Planar Digraphs Noah Golowich Research Science Institute Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts, U.S.A. ngolowich@college.harvard.edu

More information

On the L(h, k)-labeling of Co-Comparability Graphs

On the L(h, k)-labeling of Co-Comparability Graphs On the L(h, k)-labeling of Co-Comparability Graphs Tiziana Calamoneri 1, Saverio Caminiti 1, Stephan Olariu 2, and Rossella Petreschi 1 1 Dipartimento di Informatica, Università degli Studi di Roma La

More information

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1 International Mathematical Forum, Vol. 11, 016, no. 14, 679-686 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.016.667 A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1 Haihui

More information

Realizing the 2-Associahedron

Realizing the 2-Associahedron Realizing the 2-Associahedron Patrick Tierney Satyan L. Devadoss, Advisor Dagan Karp, Reader Department of Mathematics May, 2016 Copyright 2016 Patrick Tierney. The author grants Harvey Mudd College and

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

On optimal strategies for a hat game on graphs

On optimal strategies for a hat game on graphs On optimal strategies for a hat game on graphs Uriel Feige April 12, 2010 Abstract The following problem was introduced by Marcin Krzywkowski as a generalization of a problem of Todd Ebert. After initially

More information

arxiv: v1 [cs.dm] 14 Jan 2019

arxiv: v1 [cs.dm] 14 Jan 2019 A lower bound on the tree-width of graphs with irrelevant vertices Isolde Adler a, Philipp Klaus Krause b arxiv:1901.04325v1 [cs.dm] 14 Jan 2019 Abstract a School of Computing, University of Leeds b Albert-Ludwigs-Universität

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Approximating Node-Weighted Multicast Trees in Wireless Ad-Hoc Networks

Approximating Node-Weighted Multicast Trees in Wireless Ad-Hoc Networks Approximating Node-Weighted Multicast Trees in Wireless Ad-Hoc Networks Thomas Erlebach Department of Computer Science University of Leicester, UK te17@mcs.le.ac.uk Ambreen Shahnaz Department of Computer

More information

On Structural Parameterizations of the Matching Cut Problem

On Structural Parameterizations of the Matching Cut Problem On Structural Parameterizations of the Matching Cut Problem N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad,

More information

A Note on Online Colouring Problems in Overlap Graphs and Their Complements Author(s): Demange M., Olsen M. Journal:

A Note on Online Colouring Problems in Overlap Graphs and Their Complements Author(s): Demange M., Olsen M. Journal: Coversheet This is the accepted manuscript (post-print version) of the article. Contentwise, the post-print version is identical to the final published version, but there may be differences in typography

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX

A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX A TIGHT BOUND ON THE LENGTH OF ODD CYCLES IN THE INCOMPATIBILITY GRAPH OF A NON-C1P MATRIX MEHRNOUSH MALEKESMAEILI, CEDRIC CHAUVE, AND TAMON STEPHEN Abstract. A binary matrix has the consecutive ones property

More information

arxiv: v1 [math.ho] 7 Nov 2017

arxiv: v1 [math.ho] 7 Nov 2017 An Introduction to the Discharging Method HAOZE WU Davidson College 1 Introduction arxiv:1711.03004v1 [math.ho] 7 Nov 017 The discharging method is an important proof technique in structural graph theory.

More information

An Investigation of the Planarity Condition of Grötzsch s Theorem

An Investigation of the Planarity Condition of Grötzsch s Theorem Le Chen An Investigation of the Planarity Condition of Grötzsch s Theorem The University of Chicago: VIGRE REU 2007 July 16, 2007 Abstract The idea for this paper originated from Professor László Babai

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Class Six: Coloring Planar Graphs

Class Six: Coloring Planar Graphs Class Six: Coloring Planar Graphs A coloring of a graph is obtained by assigning every vertex a color such that if two vertices are adjacent, then they receive different colors. Drawn below are three different

More information

The Full Survey on The Euclidean Steiner Tree Problem

The Full Survey on The Euclidean Steiner Tree Problem The Full Survey on The Euclidean Steiner Tree Problem Shikun Liu Abstract The Steiner Tree Problem is a famous and long-studied problem in combinatorial optimization. However, the best heuristics algorithm

More information

Exponential time algorithms for the minimum dominating set problem on some graph classes

Exponential time algorithms for the minimum dominating set problem on some graph classes Exponential time algorithms for the minimum dominating set problem on some graph classes Serge Gaspers University of Bergen Department of Informatics N-500 Bergen, Norway. gaspers@ii.uib.no Dieter Kratsch

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Stephan Dominique Andres: On Characterizing Game-Perfect Graphs by Forbidden Induced Subgraphs Technical Report feu-dmo021.10 Contact: dominique.andres@fernuni-hagen.de

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow Graph Theory Connectivity, Coloring, Matching Arjun Suresh 1 1 GATE Overflow GO Classroom, August 2018 Thanks to Subarna/Sukanya Das for wonderful figures Arjun, Suresh (GO) Graph Theory GATE 2019 1 /

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Block Duplicate Graphs and a Hierarchy of Chordal Graphs

Block Duplicate Graphs and a Hierarchy of Chordal Graphs Block Duplicate Graphs and a Hierarchy of Chordal Graphs Martin Charles Golumbic Uri N. Peled August 18, 1998 Revised October 24, 2000 and March 15, 2001 Abstract A block graph is a graph whose blocks

More information

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching On Approximating Minimum Vertex Cover for Graphs with Perfect Matching Jianer Chen and Iyad A. Kanj Abstract It has been a challenging open problem whether there is a polynomial time approximation algorithm

More information

Graph Classes: from Practice to Theory

Graph Classes: from Practice to Theory Graph Classes: from Practice to Theory Martin Milanič University of Primorska, Koper, Slovenia Fifth Workshop on Graph Theory and its Applications İstanbul Center for Mathematical Sciences 28 November

More information

Contracting a chordal graph to a split graph or a tree

Contracting a chordal graph to a split graph or a tree Contracting a chordal graph to a split graph or a tree Petr A. Golovach 1, Marcin Kamiński 2, and Daniël Paulusma 1 1 School of Engineering and Computing Sciences, Durham University, Science Laboratories,

More information

On 3-colourable K 4. -free graphs. M. A. Shalu Department of Mathematics Indian Institute of Technology, Madras

On 3-colourable K 4. -free graphs. M. A. Shalu Department of Mathematics Indian Institute of Technology, Madras On 3-colourable K 4 -free graphs M. A. Shalu Department of Mathematics Indian Institute of Technology, Madras 1 ORGANISATION PRELIMINARIES LITERATURE SURVEY WORK DONE WORK IN PROGRESS REFERENCES VISIBLE

More information

3-colouring AT-free graphs in polynomial time

3-colouring AT-free graphs in polynomial time 3-colouring AT-free graphs in polynomial time Juraj Stacho Wilfrid Laurier University, Department of Physics and Computer Science, 75 University Ave W, Waterloo, ON N2L 3C5, Canada stacho@cs.toronto.edu

More information

An Introduction to Chromatic Polynomials

An Introduction to Chromatic Polynomials An Introduction to Chromatic Polynomials Julie Zhang May 17, 2018 Abstract This paper will provide an introduction to chromatic polynomials. We will first define chromatic polynomials and related terms,

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

Bar k-visibility Graphs

Bar k-visibility Graphs Bar k-visibility Graphs Alice M. Dean Department of Mathematics Skidmore College adean@skidmore.edu William Evans Department of Computer Science University of British Columbia will@cs.ubc.ca Ellen Gethner

More information

1 Introduction and Results

1 Introduction and Results On the Structure of Graphs with Large Minimum Bisection Cristina G. Fernandes 1,, Tina Janne Schmidt,, and Anusch Taraz, 1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, cris@ime.usp.br

More information

Traveling in Networks with Blinking Nodes

Traveling in Networks with Blinking Nodes Theory and Applications of Graphs Volume 5 Issue 1 Article 2 January 2018 Traveling in Networks with Blinking Nodes Braxton Carrigan Southern CT State University, carriganb1@southernct.edu James Hammer

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Computational Discrete Mathematics

Computational Discrete Mathematics Computational Discrete Mathematics Combinatorics and Graph Theory with Mathematica SRIRAM PEMMARAJU The University of Iowa STEVEN SKIENA SUNY at Stony Brook CAMBRIDGE UNIVERSITY PRESS Table of Contents

More information

Approximation of satisfactory bisection problems

Approximation of satisfactory bisection problems Approximation of satisfactory bisection problems Cristina Bazgan a,, Zsolt Tuza b, Daniel Vanderpooten a a LAMSADE, Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex

More information

Optimization Problems in Dotted Interval Graphs

Optimization Problems in Dotted Interval Graphs Optimization Problems in Dotted Interval Graphs Danny Hermelin hermelin@mpi-inf.mpg.de Julián Mestre mestre@it.usyd.edu.au March 1, 2012 Dror Rawitz rawitz@eng.tau.ac.il Abstract The class of D-dotted

More information

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Cemil Dibek Tınaz Ekim Pinar Heggernes Abstract We determine the maximum number of edges that a claw-free

More information

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University Graphs: Introduction Ali Shokoufandeh, Department of Computer Science, Drexel University Overview of this talk Introduction: Notations and Definitions Graphs and Modeling Algorithmic Graph Theory and Combinatorial

More information

Chordal probe graphs

Chordal probe graphs Discrete Applied Mathematics 143 (2004) 221 237 www.elsevier.com/locate/dam Chordal probe graphs Martin Charles Golumbic, Marina Lipshteyn Department of Computer Science, Caesarea Rothschild Institute,

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information