Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU

Size: px
Start display at page:

Download "Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU"

Transcription

1 Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU Lifan Xu Wei Wang Marco A. Alvarez John Cavazos Dongping Zhang Department of Computer and Information Science University of Delaware

2 Outline Introduction Graph Graph kernel Shortest Path Graph Kernel (SPGK) Fast Computation of Shortest Path graph kernel (FCSP) Parallelization of FCSP on CPU and GPU Two OpenMP implementations Four GPU implementations Hybrid method Experiments results Synthetic datasets Scientific datasets Conclusion and Future Work 1

3 Graph A graph G is a set of vertices V and edges E, where E V 2 A graph G may have labels on vertices and/or edges The adjacency matrix A of G is defined as A ij = 1 if v i, v j E 0 otherwise 2

4 Graph Kernel Kernels (from machine learning) between pairs of graphs (roughly speaking -> graph similarities) Examples: Random Walk Kernel Comparing walks Shortest Path Kernel Comparing shortest paths Subtree Kernel Comparing subtree-like patterns Cyclic Pattern Kernel Comparing simple cycles Graphlet Kernel Counting subgraphs of limited size 3

5 Shortest-Path Graph Kernel (SPGK) Convert graph to all pair shortest path graph Can use Floyd-Warshall Algorithm 4

6 Floyd-Warshall Original Graph Shortest Path Graph 5

7 Floyd-Warshall Original Graph Shortest Path Graph 6

8 Shortest Path Graph Kernel Apply shortest path kernel K sp G, G = e E e E K walk (e, e ) 7

9 Shortest Path Graph Kernel Apply shortest path kernel K sp G, G = e E e E K walk (e, e ) K walk (e, e ) = K node (u, u ) K edge (e, e ) K node (v, v ) 8

10 Shortest Path Graph Kernel Apply shortest path kernel K sp G, G = e E e E K walk (e, e ) K walk (e, e ) = K node (u, u ) K edge (e, e ) K node (v, v ) K node is a valid kernel function for comparing two vertices K edge is a valid kernel function for comparing two edges 9

11 Shortest Path Graph Kernel Lines 2-4 loop through all paths in G1 10

12 Shortest Path Graph Kernel Lines 2-4 loop through all paths in G1 Lines 5-7 loop through all paths in G2 11

13 Shortest Path Graph Kernel Lines 2-4 loop through all paths in G1 Lines 5-7 loop through all paths in G2 Line 8 calculates K edge (e, e ) 12

14 Shortest Path Graph Kernel Lines 2-4 loop through all paths in G1 Lines 5-7 loop through all paths in G2 Line 8 calculates K edge (e, e ) Lines calculate K node (v, v ) 13

15 Shortest Path Graph Kernel Lines 2-4 loop through all paths in G1 Lines 5-7 loop through all paths in G2 Line 8 calculates K edge (e, e ) Lines calculate K node (v, v ) Line 12 calculates K walk (e, e ) 14

16 Drawbacks of SPGK Four for loops and two if statements Redundant computation of K node (v, v ) Random memory access 15

17 Fast Computation of Shortest Path Graph Kernel (FCSP) Compute all K node (v, v ) before K walk (e, e ) Convert shortest path adjacency matrix to coordinate lists (sparse matrix representation) One array for value One array for row One array for column 16

18 Lines 1-7 compute all K node (v, v ) 17

19 Lines 1-7 compute all K node (v, v ) Lines loop all paths in G1 18

20 Lines 1-7 compute all K node (v, v ) Lines loop all paths in G1 Lines loop all paths in G2 19

21 Lines 1-7 compute all K node (v, v ) Lines loop all paths in G1 Lines loop all paths in G2 Line 19 computes K edge (e, e ) 20

22 Lines 1-7 compute all K node (v, v ) Lines loop all paths in G1 Lines loop all paths in G2 Line 19 computes K edge (e, e ) Lines fetch K node (v, v ) 21

23 Lines 1-7 compute all K node (v, v ) Lines loop all paths in G1 Lines loop all paths in G2 Line 19 computes K edge (e, e ) Lines fetch K node (v, v ) Line 23 computes K walk (e, e ) 22

24 Calculating a Kernel Matrix Given a set of graphs {g 1, g 2,,g n } Calculate the kernel matrix K nxn K (i,j) is the similarity between g i and g j 23

25 FCSP on Multi-Core CPU using OpenMP OpenMP_In Parallelize computation of a pair of graphs Dynamic parallel for pragma Vertex Kernel Walk kernel OpenMP_Out Parallelize computation of the whole kernel matrix Each OpenMP thread fetches a pair of graphs until all computation are finished 24

26 FCSP on GPU using OpenCL Three OpenCL kernels Vertex kernel Walk kernel Reduction kernel Four implementations GPU_1D GPU_2D GPU_1D_overlap GPU_2D_overlap 25

27 GPU_1D 2D domain decomposition for Vertex Kernel 1D domain decomposition for Walk Kernel 26

28 GPU_1D Input graphs 27

29 GPU_1D Input graphs Adjacency matrix 28

30 GPU_1D Input graphs Adjacency matrix Shortest Path Adjacency matrix 29

31 GPU_1D Input graphs Vertex Kernel Adjacency matrix Shortest Path Adjacency matrix 30

32 GPU_1D Input graphs Vertex Kernel Adjacency matrix Shortest Path Adjacency matrix Walk Kernel 31

33 GPU_2D 2D domain decomposition for Vertex Kernel 2D domain decomposition for Walk Kernel 32

34 GPU_2D Input graphs Vertex Kernel Adjacency matrix Shortest Path Adjacency matrix Edge Kernel 33

35 GPU_1D_overlap 2D domain decomposition for Vertex Kernel 1D domain decomposition for Walk Kernel Computation and Communication overlap Issue non-blocking memory transfer after Reduction Kernel Assign next pair of graphs to non-blocking Vertex Kernel and Walk Kernel CPU accumulates results from Reduction kernel meanwhile 34

36 GPU_2D_overlap 2D domain decomposition for Vertex Kernel 2D domain decomposition for Walk Kernel Computation and Communication overlap Issue non-blocking memory transfer after Reduction Kernel Assign next pair of graphs to non-blocking Vertex Kernel and Walk Kernel CPU accumulates results from Reduction kernel meanwhile 35

37 CPU and GPU Hybrid Implementation Combine OpenMP_In and GPU_1D_overlap Set a threshold T for number of shortest paths Both input graphs smaller than T OpenMP_In Otherwise GPU_1D_overlap 36

38 Execution Environment CPU Two Intel 5530 Quad 2.4 GHz with 8MB cache (16 OpenMP threads) GPU - One NVIDIA C2050 ( GHz) with 3GB GDDR5 1.5 GHZ ECC RAM 37

39 Homogeneous Synthetic Datasets Nine homogeneous datasets 256 graphs per dataset Each dataset contains graphs of same sizes 38

40 Homogeneous Datasets Statistics 39

41 Speedup of sequential FCSP over sequential SPGK on CPU 40

42 Speedup of Parallel FCSP over Sequential FCSP 41

43 Mixed Synthetic Dataset nodes graph nodes graphs Different Implementation Running Time(seconds) on the Mixed Dataset 42

44 Scientific Datasets 43

45 Speedup over OpenMP_In on Scientic Datasets 44

46 Conclusion and Future Work We introduce Fast Computation of shortest Path graph kernel Sequential FCSP is able to achieve 76x speedup over sequential SPGK Two CPU parallelizations Four GPU implementations One Hybrid method We are going to accelerate other graph kernels in the future 45

47 Thanks! Questions? 46

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

Modern GPUs (Graphics Processing Units)

Modern GPUs (Graphics Processing Units) Modern GPUs (Graphics Processing Units) Powerful data parallel computation platform. High computation density, high memory bandwidth. Relatively low cost. NVIDIA GTX 580 512 cores 1.6 Tera FLOPs 1.5 GB

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Roshan Dathathri Thejas Ramashekar Chandan Reddy Uday Bondhugula Department of Computer Science and Automation

More information

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute

Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication. Steve Rennich Nvidia Developer Technology - Compute Leveraging Matrix Block Structure In Sparse Matrix-Vector Multiplication Steve Rennich Nvidia Developer Technology - Compute Block Sparse Matrix Vector Multiplication Sparse Matrix-Vector Multiplication

More information

CUDA. Matthew Joyner, Jeremy Williams

CUDA. Matthew Joyner, Jeremy Williams CUDA Matthew Joyner, Jeremy Williams Agenda What is CUDA? CUDA GPU Architecture CPU/GPU Communication Coding in CUDA Use cases of CUDA Comparison to OpenCL What is CUDA? What is CUDA? CUDA is a parallel

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS Ferdinando Alessi Annalisa Massini Roberto Basili INGV Introduction The simulation of wave propagation

More information

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC

GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC GPU ACCELERATED SELF-JOIN FOR THE DISTANCE SIMILARITY METRIC MIKE GOWANLOCK NORTHERN ARIZONA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING & CYBER SYSTEMS BEN KARSIN UNIVERSITY OF HAWAII AT MANOA DEPARTMENT

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

Performance impact of dynamic parallelism on different clustering algorithms

Performance impact of dynamic parallelism on different clustering algorithms Performance impact of dynamic parallelism on different clustering algorithms Jeffrey DiMarco and Michela Taufer Computer and Information Sciences, University of Delaware E-mail: jdimarco@udel.edu, taufer@udel.edu

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA

GPU-Accelerated Algebraic Multigrid for Commercial Applications. Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA GPU-Accelerated Algebraic Multigrid for Commercial Applications Joe Eaton, Ph.D. Manager, NVAMG CUDA Library NVIDIA ANSYS Fluent 2 Fluent control flow Accelerate this first Non-linear iterations Assemble

More information

Mosaic: Processing a Trillion-Edge Graph on a Single Machine

Mosaic: Processing a Trillion-Edge Graph on a Single Machine Mosaic: Processing a Trillion-Edge Graph on a Single Machine Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, Taesoo Kim Georgia Institute of Technology Best Student Paper @ EuroSys

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve

Administrative Issues. L11: Sparse Linear Algebra on GPUs. Triangular Solve (STRSM) A Few Details 2/25/11. Next assignment, triangular solve Administrative Issues L11: Sparse Linear Algebra on GPUs Next assignment, triangular solve Due 5PM, Tuesday, March 15 handin cs6963 lab 3 Project proposals Due 5PM, Wednesday, March 7 (hard

More information

OpenMPSuperscalar: Task-Parallel Simulation and Visualization of Crowds with Several CPUs and GPUs

OpenMPSuperscalar: Task-Parallel Simulation and Visualization of Crowds with Several CPUs and GPUs www.bsc.es OpenMPSuperscalar: Task-Parallel Simulation and Visualization of Crowds with Several CPUs and GPUs Hugo Pérez UPC-BSC Benjamin Hernandez Oak Ridge National Lab Isaac Rudomin BSC March 2015 OUTLINE

More information

Evaluating the Potential of Graphics Processors for High Performance Embedded Computing

Evaluating the Potential of Graphics Processors for High Performance Embedded Computing Evaluating the Potential of Graphics Processors for High Performance Embedded Computing Shuai Mu, Chenxi Wang, Ming Liu, Yangdong Deng Department of Micro-/Nano-electronics Tsinghua University Outline

More information

Coordinating More Than 3 Million CUDA Threads for Social Network Analysis. Adam McLaughlin

Coordinating More Than 3 Million CUDA Threads for Social Network Analysis. Adam McLaughlin Coordinating More Than 3 Million CUDA Threads for Social Network Analysis Adam McLaughlin Applications of interest Computational biology Social network analysis Urban planning Epidemiology Hardware verification

More information

Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and

Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and Optimizing Energy Consumption and Parallel Performance for Static and Dynamic Betweenness Centrality using GPUs Adam McLaughlin, Jason Riedy, and David A. Bader Motivation Real world graphs are challenging

More information

Introduction II. Overview

Introduction II. Overview Introduction II Overview Today we will introduce multicore hardware (we will introduce many-core hardware prior to learning OpenCL) We will also consider the relationship between computer hardware and

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Parallel LZ77 Decoding with a GPU. Emmanuel Morfiadakis Supervisor: Dr Eric McCreath College of Engineering and Computer Science, ANU

Parallel LZ77 Decoding with a GPU. Emmanuel Morfiadakis Supervisor: Dr Eric McCreath College of Engineering and Computer Science, ANU Parallel LZ77 Decoding with a GPU Emmanuel Morfiadakis Supervisor: Dr Eric McCreath College of Engineering and Computer Science, ANU Outline Background (What?) Problem definition and motivation (Why?)

More information

GeoImaging Accelerator Pansharpen Test Results. Executive Summary

GeoImaging Accelerator Pansharpen Test Results. Executive Summary Executive Summary After demonstrating the exceptional performance improvement in the orthorectification module (approximately fourteen-fold see GXL Ortho Performance Whitepaper), the same approach has

More information

Optimizing Data Locality for Iterative Matrix Solvers on CUDA

Optimizing Data Locality for Iterative Matrix Solvers on CUDA Optimizing Data Locality for Iterative Matrix Solvers on CUDA Raymond Flagg, Jason Monk, Yifeng Zhu PhD., Bruce Segee PhD. Department of Electrical and Computer Engineering, University of Maine, Orono,

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS John R Appleyard Jeremy D Appleyard Polyhedron Software with acknowledgements to Mark A Wakefield Garf Bowen Schlumberger Outline of Talk Reservoir

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

Using GPUs for unstructured grid CFD

Using GPUs for unstructured grid CFD Using GPUs for unstructured grid CFD Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Schlumberger Abingdon Technology Centre, February 17th, 2011

More information

Efficient Subgraph Matching by Postponing Cartesian Products

Efficient Subgraph Matching by Postponing Cartesian Products Efficient Subgraph Matching by Postponing Cartesian Products Computer Science and Engineering Lijun Chang Lijun.Chang@unsw.edu.au The University of New South Wales, Australia Joint work with Fei Bi, Xuemin

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Parallelization of Shortest Path Finder on GPU: Floyd-Warshall

Parallelization of Shortest Path Finder on GPU: Floyd-Warshall Parallelization of Shortest Path Finder on GPU: Floyd-Warshall Dhananjay Kulkarni Neha Sharma Vaishali Varma Prithviraj Shinde ABSTRACT The project deals with implementation of Floyd Warshall Algorithm

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron University of Virginia IPDPS 2009 Outline Leukocyte

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013

GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS. Kyle Spagnoli. Research EM Photonics 3/20/2013 GTC 2013: DEVELOPMENTS IN GPU-ACCELERATED SPARSE LINEAR ALGEBRA ALGORITHMS Kyle Spagnoli Research Engineer @ EM Photonics 3/20/2013 INTRODUCTION» Sparse systems» Iterative solvers» High level benchmarks»

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst Ali Khajeh-Saeed Software Engineer CD-adapco J. Blair Perot Mechanical Engineering UMASS, Amherst Supercomputers Optimization Stream Benchmark Stag++ (3D Incompressible Flow Code) Matrix Multiply Function

More information

Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache

Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache Leveraging Hybrid Hardware in New Ways: The GPU Paging Cache Frank Feinbube, Peter Tröger, Johannes Henning, Andreas Polze Hasso Plattner Institute Operating Systems and Middleware Prof. Dr. Andreas Polze

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Parallel Systems. Project topics

Parallel Systems. Project topics Parallel Systems Project topics 2016-2017 1. Scheduling Scheduling is a common problem which however is NP-complete, so that we are never sure about the optimality of the solution. Parallelisation is a

More information

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures Procedia Computer Science Volume 51, 2015, Pages 2774 2778 ICCS 2015 International Conference On Computational Science Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid

More information

Parsing in Parallel on Multiple Cores and GPUs

Parsing in Parallel on Multiple Cores and GPUs 1/28 Parsing in Parallel on Multiple Cores and GPUs Mark Johnson Centre for Language Sciences and Department of Computing Macquarie University ALTA workshop December 2011 Why parse in parallel? 2/28 The

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

A General Discussion on! Parallelism!

A General Discussion on! Parallelism! Lecture 2! A General Discussion on! Parallelism! John Cavazos! Dept of Computer & Information Sciences! University of Delaware! www.cis.udel.edu/~cavazos/cisc879! Lecture 2: Overview Flynn s Taxonomy of

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Scalable GPU Graph Traversal!

Scalable GPU Graph Traversal! Scalable GPU Graph Traversal Duane Merrill, Michael Garland, and Andrew Grimshaw PPoPP '12 Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming Benwen Zhang

More information

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016 OpenACC. Part I Ned Nedialkov McMaster University Canada October 2016 Outline Introduction Execution model Memory model Compiling pgaccelinfo Example Speedups Profiling c 2016 Ned Nedialkov 2/23 Why accelerators

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Optimisation Myths and Facts as Seen in Statistical Physics

Optimisation Myths and Facts as Seen in Statistical Physics Optimisation Myths and Facts as Seen in Statistical Physics Massimo Bernaschi Institute for Applied Computing National Research Council & Computer Science Department University La Sapienza Rome - ITALY

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Simultaneous Solving of Linear Programming Problems in GPU

Simultaneous Solving of Linear Programming Problems in GPU Simultaneous Solving of Linear Programming Problems in GPU Amit Gurung* amitgurung@nitm.ac.in Binayak Das* binayak89cse@gmail.com Rajarshi Ray* raj.ray84@gmail.com * National Institute of Technology Meghalaya

More information

Facial Recognition Using Neural Networks over GPGPU

Facial Recognition Using Neural Networks over GPGPU Facial Recognition Using Neural Networks over GPGPU V Latin American Symposium on High Performance Computing Juan Pablo Balarini, Martín Rodríguez and Sergio Nesmachnow Centro de Cálculo, Facultad de Ingeniería

More information

Accelerating String Matching Using Multi-threaded Algorithm

Accelerating String Matching Using Multi-threaded Algorithm Accelerating String Matching Using Multi-threaded Algorithm on GPU Cheng-Hung Lin*, Sheng-Yu Tsai**, Chen-Hsiung Liu**, Shih-Chieh Chang**, Jyuo-Min Shyu** *National Taiwan Normal University, Taiwan **National

More information

International Conference on Computational Science (ICCS 2017)

International Conference on Computational Science (ICCS 2017) International Conference on Computational Science (ICCS 2017) Exploiting Hybrid Parallelism in the Kinematic Analysis of Multibody Systems Based on Group Equations G. Bernabé, J. C. Cano, J. Cuenca, A.

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Prefix Scan and Minimum Spanning Tree with OpenCL

Prefix Scan and Minimum Spanning Tree with OpenCL Prefix Scan and Minimum Spanning Tree with OpenCL U. VIRGINIA DEPT. OF COMP. SCI TECH. REPORT CS-2013-02 Yixin Sun and Kevin Skadron Dept. of Computer Science, University of Virginia ys3kz@virginia.edu,

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

Cluster-based 3D Reconstruction of Aerial Video

Cluster-based 3D Reconstruction of Aerial Video Cluster-based 3D Reconstruction of Aerial Video Scott Sawyer (scott.sawyer@ll.mit.edu) MIT Lincoln Laboratory HPEC 12 12 September 2012 This work is sponsored by the Assistant Secretary of Defense for

More information

Automated Finite Element Computations in the FEniCS Framework using GPUs

Automated Finite Element Computations in the FEniCS Framework using GPUs Automated Finite Element Computations in the FEniCS Framework using GPUs Florian Rathgeber (f.rathgeber10@imperial.ac.uk) Advanced Modelling and Computation Group (AMCG) Department of Earth Science & Engineering

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Asynchronous OpenCL/MPI numerical simulations of conservation laws

Asynchronous OpenCL/MPI numerical simulations of conservation laws Asynchronous OpenCL/MPI numerical simulations of conservation laws Philippe HELLUY 1,3, Thomas STRUB 2. 1 IRMA, Université de Strasbourg, 2 AxesSim, 3 Inria Tonus, France IWOCL 2015, Stanford Conservation

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards By Allan P. Engsig-Karup, Morten Gorm Madsen and Stefan L. Glimberg DTU Informatics Workshop

More information

NVIDIA Fermi Architecture

NVIDIA Fermi Architecture Administrivia NVIDIA Fermi Architecture Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 4 grades returned Project checkpoint on Monday Post an update on your blog beforehand Poster

More information

A Comparative Study on Exact Triangle Counting Algorithms on the GPU

A Comparative Study on Exact Triangle Counting Algorithms on the GPU A Comparative Study on Exact Triangle Counting Algorithms on the GPU Leyuan Wang, Yangzihao Wang, Carl Yang, John D. Owens University of California, Davis, CA, USA 31 st May 2016 L. Wang, Y. Wang, C. Yang,

More information

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer William Killian Tom Scogland, Adam Kunen John Cavazos Millersville University of Pennsylvania

More information

SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores

SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores SRM-Buffer: An OS Buffer Management SRM-Buffer: An OS Buffer Management Technique toprevent Last Level Cache from Thrashing in Multicores Xiaoning Ding The Ohio State University dingxn@cse.ohiostate.edu

More information

Parallelization of Tau-Leap Coarse-Grained Monte Carlo Simulations on GPUs

Parallelization of Tau-Leap Coarse-Grained Monte Carlo Simulations on GPUs Parallelization of Tau-Leap Coarse-Grained Monte Carlo Simulations on GPUs Lifan Xu, Michela Taufer, Stuart Collins, Dionisios G. Vlachos Global Computing Lab University of Delaware Multiscale Modeling:

More information

Introduction to Multicore Programming

Introduction to Multicore Programming Introduction to Multicore Programming Minsoo Ryu Department of Computer Science and Engineering 2 1 Multithreaded Programming 2 Automatic Parallelization and OpenMP 3 GPGPU 2 Multithreaded Programming

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi

Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi Evaluation and Exploration of Next Generation Systems for Applicability and Performance Volodymyr Kindratenko Guochun Shi National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES. Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015

MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES. Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015 MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015 Video Codecs 70% of internet traffic will be video in 2018 [CISCO] Video

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Survey on Heterogeneous Computing Paradigms

Survey on Heterogeneous Computing Paradigms Survey on Heterogeneous Computing Paradigms Rohit R. Khamitkar PG Student, Dept. of Computer Science and Engineering R.V. College of Engineering Bangalore, India rohitrk.10@gmail.com Abstract Nowadays

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

An Evaluation of Unified Memory Technology on NVIDIA GPUs

An Evaluation of Unified Memory Technology on NVIDIA GPUs An Evaluation of Unified Memory Technology on NVIDIA GPUs Wenqiang Li 1, Guanghao Jin 2, Xuewen Cui 1, Simon See 1,3 Center for High Performance Computing, Shanghai Jiao Tong University, China 1 Tokyo

More information

Determinant Computation on the GPU using the Condensation AMMCS Method / 1

Determinant Computation on the GPU using the Condensation AMMCS Method / 1 Determinant Computation on the GPU using the Condensation Method Sardar Anisul Haque Marc Moreno Maza Ontario Research Centre for Computer Algebra University of Western Ontario, London, Ontario AMMCS 20,

More information

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine

Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Improving performances of an embedded RDBMS with a hybrid CPU/GPU processing engine Samuel Cremer 1,2, Michel Bagein 1, Saïd Mahmoudi 1, Pierre Manneback 1 1 UMONS, University of Mons Computer Science

More information

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra)

CS 470 Spring Other Architectures. Mike Lam, Professor. (with an aside on linear algebra) CS 470 Spring 2016 Mike Lam, Professor Other Architectures (with an aside on linear algebra) Parallel Systems Shared memory (uniform global address space) Primary story: make faster computers Programming

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

Trends and Challenges in Multicore Programming

Trends and Challenges in Multicore Programming Trends and Challenges in Multicore Programming Eva Burrows Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen Bergen, March 17, 2010 Outline The Roadmap of Multicores

More information

General introduction: GPUs and the realm of parallel architectures

General introduction: GPUs and the realm of parallel architectures General introduction: GPUs and the realm of parallel architectures GPU Computing Training August 17-19 th 2015 Jan Lemeire (jan.lemeire@vub.ac.be) Graduated as Engineer in 1994 at VUB Worked for 4 years

More information

Fast Tridiagonal Solvers on GPU

Fast Tridiagonal Solvers on GPU Fast Tridiagonal Solvers on GPU Yao Zhang John Owens UC Davis Jonathan Cohen NVIDIA GPU Technology Conference 2009 Outline Introduction Algorithms Design algorithms for GPU architecture Performance Bottleneck-based

More information

Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming

Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming Fast Knowledge Discovery in Time Series with GPGPU on Genetic Programming Sungjoo Ha, Byung-Ro Moon Optimization Lab Seoul National University Computer Science GECCO 2015 July 13th, 2015 Sungjoo Ha, Byung-Ro

More information

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT

EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT EFFICIENT SPARSE MATRIX-VECTOR MULTIPLICATION ON GPUS USING THE CSR STORAGE FORMAT JOSEPH L. GREATHOUSE, MAYANK DAGA AMD RESEARCH 11/20/2014 THIS TALK IN ONE SLIDE Demonstrate how to save space and time

More information

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU 1 1 Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086 Abstract.

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

AN OPTIMIZED PARALLEL ALGORITHM FOR LONGEST COMMON SUBSEQUENCE USING OPENMP

AN OPTIMIZED PARALLEL ALGORITHM FOR LONGEST COMMON SUBSEQUENCE USING OPENMP AN OPTIMIZED PARALLEL ALGORITHM FOR LONGEST COMMON SUBSEQUENCE USING OPENMP 1 HanokPalaskar, 2 Prof.TausifDiwan 1 M.Tech Student, CSE Department, Shri Ramdeobaba College of Engineering and Management,

More information