David Penneys. Temperley Lieb Diagrams and 2-Categories 4/14/08

Size: px
Start display at page:

Download "David Penneys. Temperley Lieb Diagrams and 2-Categories 4/14/08"

Transcription

1 Temperley Lieb iagrams and 2-ategories avid Penneys 4/14/08 (1) Simplicial Resolutions. Let : be a left adjoint to U :, and denote by σ (respectively δ) the unit (respectively counit) of the adjunction. So σ(d) (d, U (d)) corresponds to id (d) and δ(c) ((c), c) to id U(c). (a) or any object c, show that the following formulas define a simplicial object (c) in : Let n (c) = () n (c) and let d i = () i δ(() n i (c)): () n+1 (c) () n (c) s i = () i σ(u() n i (c)): () n+2 (c) () n+1 (c). (b) Show that δ(c) induces a simplicial map ɛ(c): (c) c, where the right hand side denotes the constant simplicial -object. (c) ssume that there is a functor K : Set such that KU( (c)) is Kan. Show that the augmentation ɛ(c) gives a weak equivalence KU(ɛ(c)), i.e. it induces an isomorphism on all homotopy groups (that vanish above dimension zero for the constant functor). (d) pply this to your favorite pair of adjoint functors and see what you get. or example, you could use = R Mod or Ring and = b or Set. If happens to be an abelian category, one can apply the (normalized) chain complex to ɛ(c) and get all resolutions we have studied in class so far! Solution. (a) We will prove a more general result which will imply the desired result. Our proof will rely on the following facts: acts: (i) If X,, and Z are categories, we have an equivalence un(x, un(, Z)) = un(x, Z) = un(, un(x, Z)). (ii) There is a 2-category at whose objects are small categories, 1-morphisms are functors, and 2-morphisms are natural transformations. Recall that there are two compositions and of 2-morphisms in at, given respectively by: B X θ η Z and X ζ ξ for natural transformations θ : B, η :, etc. urthermore, is strict in the sense that we have equality X X θ ζ η Z θ = X ζ Z ξ η Z. ξ We will construct a simplicial functor un(s, un(, )) = un(, un(s, )), i.e., (c) will be a simplicial object in. To define this simplicial functor, we will look at a 2-subcategory of 1

2 at whose objects are the categories and ; 1-morphisms are composites of, U,, and id ; and 2-morphisms are composites of identity natural transformations, σ : id U, and δ :. We will use the following suggestive notation: to say a 1-morphism is in, we will write, and to say there is a natural transformation η : B for, B, we will write η (, B). Using the definitions of composition of 2-morphisms in, one can easily prove the following lemma: Lemma 1: (i) onsider () n. Then () n () n δ id () n = δ() n, () n () n+1 i.e. δ id () n = δ() n. Similarly, id () n δ = () n δ, σ id (U ) n = σ(u ) n, and id (U ) n σ = (U ) n σ. (ii) onsider. Then id = δ, i.e. δ id = δ. Similarly, σ id U = σ. (iii) id id B = id B and id id = id for composable, B. lso, since we have an adjunction, we have the following lemma: Lemma 2: We have the following relations among, U, σ, δ, id, id U : (i) δ σ = id : σ = id, (ii) Uδ σu = id U. The diagram is similar. We now introduce a powerful tool: a graphical calculus for working in. Usually, is written as an arrow from its source to its target. One could instead write as a point and its source and target as arrows going in and out of. This diagram is the dual diagram: X X = X = where one often supresses the directions on the arrows when the convention is understood (all arrows will point left in these dual diagrams). One usually writes natural transformations as 2-cells. ually, we can write them as pictures from dual diagrams to dual diagrams. This gives the added benefit that we can denote an identity 2

3 2-morphisms as a string going from the bottom to the top: X id = X X id and we can denote the unit or counit by a cap, once more reading bottom to top: U σ = U id id δ = U Now -composition of 2-morphisms corresonds in the dual diagram language to splicing pictures together sideways, and -composition corresponds to stacking. Often we do not label the categories and 1-morphisms as the 2-morphisms encode this data. B X id id idb Z B = id id B When a cap appears, we sometimes do not label the 2-morphisms as they are completely determined. urthermore, we omit the bullet representing the identity functor: id = Using the convention of shading the regions of the diagram which have along the outer boundary, we get string diagrams in which the lemmas above correspond exactly to isotopy of the strings. In the following diagrams, shaded regions have a in them: 3

4 = igure 1: Lemma 1.ii, δ id = δ. = igure 2: Lemma 1.ii, σ id U = σ. = igure 3: Lemma 2.i, δ σ = id. = igure 4: Lemma 2.ii, Uδ σu = id U. Now that we have this graphical calculus at our disposal, we can build our simplicial functor. Set n = () n+1 and d i = () i δ() n i : () n+1 () n s i = () i σu() n i : () n+2 () n+1. We can represent these natural transformations diagramatically: igure 5: d 0, d 1 (() 2, ). 4

5 igure 6:s 0 (, () 2 ). To prove that this defines a simplicial functor, we must show the following relations: d i d j = d j 1 d i for i < j s i s j = s j+1 s i for i j s j d i 1 if i < j d i s j = id if i = j, j + 1 s j 1 d i if i > j + 1. However, these are straightforward from the earlier lemmas by drawing the appropriate diagrams. We will prove d 0 d 1 = d 0 d 0 : () 3 () 1 first using the usual diagrams in, and secondly using the graphical calculus, i.e. the dual diagrams. d 0 d 1 = = id id id id id = δ δ id id id = id id id = = d 0 d 0 () 2 = 5

6 igure 7: d 0 d 1 = d 0 d 0 (() 3, ). The only non-obvious relation is d i s i = id = d i+1 s i, but these follow directly from Lemma 2. We will prove d 1 s 1 = id = d 2 s 1 (() 2, () 2 ) using the dual diagrams. = = igure 8: d 0 s 0 = id = d 1 s 0 (, ). Thus, is a simplicial functor in un(, ), and evaluation at c gives a simplicial object (c) in. (b) efine 1 = and ɛ: () n by capping everything off, i.e. δ(d 0 ) n 1. Note that this is equivalent to δd i1 d in 1 by the dual diagrams. Next, define id as the constant simplicial functor, i.e. id n = and d i, s j are all id id. It is obvious that ɛ induces a simplicial map from id, i.e. d i ɛ = ɛd i, and s j ɛ = ɛs j, since ɛ is capping everything off. Once more, evaluation at c gives the simplicial map c. (c) omposition with U gives a simplicial functor U in un(, ). The dual diagrams (for the d i s and s j s) are altered by adding one more string to the left. One immediately observes the existence of an extra degeneracy s 1 : U() n U() n+1 by ual diagramatically, we have: s 1 = σu() n+1 (U() n+1, U() n+1 ). igure 9: s 1 (U, U() 2 ). Now when we apply the functor K, we have a simplicial functor KU in un(, Set) with an extra degeneracy. t this point, we must evaluate KU at an object c to get a simplicial set for which we can describe the homotopy groups. We show ɛ(c): KU (c) KU id (c) = KUc is a weak equivalence, i.e. all homotopy groups π n (KU (c), ) = 0 for n > 0 and π 0 (KU (c), ) = KU(c) for a basepoint KU(c). Suppose x, x Z n (KU (c), ) for n > 0. Recall that a horn h is given by (n + 1) n-simplices y 1,..., y i 1, ŷ i, y i+1,..., y n+2 such that d i y j = d j 1 y i if i < j. Note that we have a horn if n > 0 since for all i > 0, h = (ŷ 0, y 1 = s 1 (x), y 2 = s 1 (x ),,,..., ) KU n+1 (c) d i s 1 (x) = s 1 d i 1 (x) = = s 1 d i 1 (x ) = d i s 1 (x ). 6

7 Since KU (c) is Kan, we can fill this horn, so there is a y 0 KU n+1 (c) such that d i y 0 = for i > 1, d 0 y 0 = d 0 y 1 = d 0 s 1 (x) = x and d 1 y 0 = d 0 y 2 = d 0 s 1 (x ) = x. Hence y 0 is a homotopy x x, and π n (KU (c), ) = 0 for all n > 0. We show π = π 0 (KU (c), ) = KU(c). We have an extra degeneracy s 1 : KU(c) KU 0 (c) which satisfies ɛs 1 = id KU(c) : = igure 10: ɛs 1 = id U (U, U). Hence s 1 is injective and ɛ is surjective. Now Z = Z 0 (KU (c), ) = KU (c) and ɛ(z) = KU(c). Note that if x x for x, x Z, then there is a y KU 1 (c) such that d 0 (y) = x and d 1 (y) = x. Then ɛ(x) = ɛ(x ) as ɛd 1 = ɛd 0 (this is the capping off trick discussed in (b)). Thus, ɛ induces a map ɛ: π KU(c) which must be surjective as ɛ = ɛq where q : Z π is the canonical epimorphism. Z ɛ s 1 q eɛ KU() π Moreover ɛqs 1 = ɛs 1 = id, so qs 1 is injective. Let x Z and y = s 1 (x). Then d 0 (y) = d 0 s 1 (x) = x and d 1 (y) = d 1 s 1 (x) = s 1 ɛ(x). = igure 11: d 1 s 1 = s 1 ɛ (U, U). Hence x s 1 ɛ(x). Thus, qs 1 is bijective with inverse ɛ, so ɛ induces a bijection π = KU(c), and we are finished. 7

8 (d) We will illustrate two examples. irst, consider the example = ree: Set b and U = orget: b Set. Then δ(c): Z is evaluation of a formal finite linear combination of elements of b. We have a simplicial group Z s 0 d 0,d 1 Z Z The maps d i are evaluation of a formal linear combination done at the i th step. or example, if x Z Z, then we have N 1 N 2 x = n i m j a j, i=1 where n i, m j Z and a j, and we may not distribute the n i s into the sum over j. Then we have N 1 N 2 N 1 N 2 d 0 (x) = n i m j a j and d 1 (x) = n i b i where b j = m j a j. i=1 j=1 urthermore, σ(s): d U(Z S ) is inclusion by s 1 s, so if y Z, then we have y = j=1 i=1 N 3 N 3 ki a i and s 0 (y) = ki (1 a i ) where 1 a Z. It is clear that d 0 s 0 = d 1 s 0 = id in this case. onsider = Z : Group Ring, i.e. taking the group ring, and U = : Ring Group, i.e. taking the group of units. Then δ(r): Z(R ) R is once again evaluation and σ(g): G (ZG) is inclusion. We have a simplicial ring Z(R ) s 0 d 0,d 1 and maps d i and s j are defined similarly as before. Z(Z(R )) j=1 8

THE DOLD-KAN CORRESPONDENCE

THE DOLD-KAN CORRESPONDENCE THE DOLD-KAN CORRESPONDENCE 1. Simplicial sets We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable category. It turns out that simplicial sets provide a (purely

More information

Lecture 18: Groupoids and spaces

Lecture 18: Groupoids and spaces Lecture 18: Groupoids and spaces The simplest algebraic invariant of a topological space T is the set π 0 T of path components. The next simplest invariant, which encodes more of the topology, is the fundamental

More information

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules.

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. Lecture 009 (November 25, 2009) 20 Homotopy colimits Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. The objects of this category are the functors

More information

Lecture 008 (November 13, 2009)

Lecture 008 (November 13, 2009) Lecture 008 (November 13, 2009) 17 The Dold-Kan correspondence Suppose that A : op R Mod is a simplicial R-module. Examples to keep in mind are the free simplicial objects R(X) associated to simplicial

More information

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T Monads Definition A monad T is a category C is a monoid in the category of endofunctors C C. More explicitly, a monad in C is a triple T, η, µ, where T : C C is a functor and η : I C T, µ : T T T are natural

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Quasi-categories vs Simplicial categories

Quasi-categories vs Simplicial categories Quasi-categories vs Simplicial categories André Joyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence

More information

Homotopy theory of higher categorical structures

Homotopy theory of higher categorical structures University of California, Riverside August 8, 2013 Higher categories In a category, we have morphisms, or functions, between objects. But what if you have functions between functions? This gives the idea

More information

Cell-Like Maps (Lecture 5)

Cell-Like Maps (Lecture 5) Cell-Like Maps (Lecture 5) September 15, 2014 In the last two lectures, we discussed the notion of a simple homotopy equivalences between finite CW complexes. A priori, the question of whether or not a

More information

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES

A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES A MODEL CATEGORY STRUCTURE ON THE CATEGORY OF SIMPLICIAL CATEGORIES JULIA E. BERGNER Abstract. In this paper we put a cofibrantly generated model category structure on the category of small simplicial

More information

Combinatorics I (Lecture 36)

Combinatorics I (Lecture 36) Combinatorics I (Lecture 36) February 18, 2015 Our goal in this lecture (and the next) is to carry out the combinatorial steps in the proof of the main theorem of Part III. We begin by recalling some notation

More information

An introduction to simplicial sets

An introduction to simplicial sets An introduction to simplicial sets 25 Apr 2010 1 Introduction This is an elementary introduction to simplicial sets, which are generalizations of -complexes from algebraic topology. The theory of simplicial

More information

Classifying Spaces and Spectral Sequences

Classifying Spaces and Spectral Sequences Classifying Spaces and Spectral Sequences Introduction Christian Carrick December 2, 2016 These are a set of expository notes I wrote in preparation for a talk given in the MIT Kan Seminar on December

More information

Sheaves and Stacks. November 5, Sheaves and Stacks

Sheaves and Stacks. November 5, Sheaves and Stacks November 5, 2014 Grothendieck topologies Grothendieck topologies are an extra datum on a category. They allow us to make sense of something being locally defined. Give a formal framework for glueing problems

More information

THE Q-CONSTRUCTION FOR STABLE -CATEGORIES

THE Q-CONSTRUCTION FOR STABLE -CATEGORIES THE Q-CONSTRUCTION FOR STABLE -CATEGORIES RUNE HAUGSENG The aim of these notes is to define the Q-construction for a stable -category C, and sketch the proof that it is equivalent to the (Waldhausen) K-theory

More information

Simplicial Objects and Homotopy Groups

Simplicial Objects and Homotopy Groups Simplicial Objects and Homotopy Groups Jie Wu Department of Mathematics National University of Singapore July 8, 2007 Simplicial Objects and Homotopy Groups -Objects and Homology Simplicial Sets and Homotopy

More information

SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY. Contents

SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY. Contents SIMPLICIAL METHODS IN ALGEBRA AND ALGEBRAIC GEOMETRY W. D. GILLAM Abstract. This is an introduction to / survey of simplicial techniques in algebra and algebraic geometry. We begin with the basic notions

More information

ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES

ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1 26 ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES JULIA E. BERGNER (communicated by Name of Editor) Abstract We modify a previous

More information

CODESCENT THEORY II : COFIBRANT APPROXIMATIONS

CODESCENT THEORY II : COFIBRANT APPROXIMATIONS OESENT THEORY II : OFIBRNT PPROXIMTIONS PUL BLMER N MIHEL MTTHEY bstract. We establish a general method to produce cofibrant approximations in the model category U S, ) of S-valued -indexed diagrams with

More information

The formal theory of homotopy coherent monads

The formal theory of homotopy coherent monads The formal theory of homotopy coherent monads Emily Riehl Harvard University http://www.math.harvard.edu/~eriehl 23 July, 2013 Samuel Eilenberg Centenary Conference Warsaw, Poland Joint with Dominic Verity.

More information

NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS

NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS NERVES OF BICATEGORIES AS STRATIFIED SIMPLICIAL SETS NICK GURSKI Abstract. In this paper, we aim to move towards a definition of weak n- category akin to Street s definition of weak ω-category. This will

More information

A Subfactor Planar Algebra Everyone Will Understand

A Subfactor Planar Algebra Everyone Will Understand A Subfactor Planar Algebra Everyone Will Understand David Penneys January 13, 2009 1 Introduction Planar algebras were first defined by Jones in [Jon99] to capture the structure of the standard invariant

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Quasi-category theory you can use

Quasi-category theory you can use Quasi-category theory you can use Emily Riehl Harvard University http://www.math.harvard.edu/ eriehl Graduate Student Topology & Geometry Conference UT Austin Sunday, April 6th, 2014 Plan Part I. Introduction

More information

Spaces with algebraic structure

Spaces with algebraic structure University of California, Riverside January 6, 2009 What is a space with algebraic structure? A topological space has algebraic structure if, in addition to being a topological space, it is also an algebraic

More information

in simplicial sets, or equivalently a functor

in simplicial sets, or equivalently a functor Contents 21 Bisimplicial sets 1 22 Homotopy colimits and limits (revisited) 10 23 Applications, Quillen s Theorem B 23 21 Bisimplicial sets A bisimplicial set X is a simplicial object X : op sset in simplicial

More information

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield Draft: 8th November 2007

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield   Draft: 8th November 2007 Category Theory 3 Eugenia Cheng Department of Mathematics, University of Sheffield E-mail: e.cheng@sheffield.ac.uk Draft: 8th November 2007 Contents 3 Functors: definition and examples 1 3.1 The definition.............................

More information

Homotopical algebra and higher categories

Homotopical algebra and higher categories Homotopical algebra and higher categories Winter term 2016/17 Christoph Schweigert Hamburg University Department of Mathematics Section Algebra and Number Theory and Center for Mathematical Physics (as

More information

Small CW -models for Eilenberg-Mac Lane spaces

Small CW -models for Eilenberg-Mac Lane spaces Small CW -models for Eilenberg-Mac Lane spaces in honour of Prof. Dr. Hans-Joachim Baues Bonn, March 2008 Clemens Berger (Nice) 1 Part 1. Simplicial sets. The simplex category is the category of finite

More information

GABRIEL C. DRUMMOND-COLE

GABRIEL C. DRUMMOND-COLE MILY RIHL: -CTGORIS FROM SCRTCH (TH SIC TWO-CTGORY THORY) GRIL C. DRUMMOND-COL I m trying to be really gentle on the category theory, within reason. So in particular, I m expecting a lot o people won t

More information

DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS

DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS DERIVED DEFORMATION RINGS FOR GROUP REPRESENTATIONS LECTURES BY SOREN GALATIUS, NOTES BY TONY FENG Contents 1. Homotopy theory of representations 1 2. The classical theory 2 3. The derived theory 3 References

More information

A NOTE ON MORPHISMS DETERMINED BY OBJECTS

A NOTE ON MORPHISMS DETERMINED BY OBJECTS A NOTE ON MORPHISMS DETERMINED BY OBJECTS XIAO-WU CHEN, JUE LE Abstract. We prove that a Hom-finite additive category having determined morphisms on both sides is a dualizing variety. This complements

More information

The language of categories

The language of categories The language of categories Mariusz Wodzicki March 15, 2011 1 Universal constructions 1.1 Initial and inal objects 1.1.1 Initial objects An object i of a category C is said to be initial if for any object

More information

Rigidification of quasi-categories

Rigidification of quasi-categories Rigidification of quasi-categories DANIEL DUGGER DAVID I. SPIVAK We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Categorical models of type theory

Categorical models of type theory 1 / 59 Categorical models of type theory Michael Shulman February 28, 2012 2 / 59 Outline 1 Type theory and category theory 2 Categorical type constructors 3 Dependent types and display maps 4 Fibrations

More information

A MODEL STRUCTURE FOR QUASI-CATEGORIES

A MODEL STRUCTURE FOR QUASI-CATEGORIES A MODEL STRUCTURE FOR QUASI-CATEGORIES EMILY RIEHL DISCUSSED WITH J. P. MAY 1. Introduction Quasi-categories live at the intersection of homotopy theory with category theory. In particular, they serve

More information

Notes on categories, the subspace topology and the product topology

Notes on categories, the subspace topology and the product topology Notes on categories, the subspace topology and the product topology John Terilla Fall 2014 Contents 1 Introduction 1 2 A little category theory 1 3 The subspace topology 3 3.1 First characterization of

More information

arxiv:math/ v2 [math.at] 28 Nov 2006

arxiv:math/ v2 [math.at] 28 Nov 2006 Contemporary Mathematics arxiv:math/0609537v2 [math.at] 28 Nov 2006 Model Categories and Simplicial Methods Paul Goerss and Kristen Schemmerhorn Abstract. There are many ways to present model categories,

More information

1.1 Topological Representatives for Automorphisms

1.1 Topological Representatives for Automorphisms Chapter 1 Out(F n ) and Aut(F n ) 1.1 Topological Representatives for Automorphisms Definition 1.1.1. Let X be a topological space with base point P. A self-homotopy equivalence is a base point preserving

More information

GALOIS THEORY OF SIMPLICIAL COMPLEXES

GALOIS THEORY OF SIMPLICIAL COMPLEXES GALOIS THEORY OF SIMPLICIAL COMPLEXES Marco Grandis 1,* and George Janelidze 2, 1 Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy email: grandis@dima.unige.it 2

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES

COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES COALGEBRAIC MODELS FOR COMBINATORIAL MODEL CATEGORIES MICHAEL CHING AND EMILY RIEHL Abstract. We show that the category of algebraically cofibrant objects in a combinatorial and simplicial model category

More information

Homework 6: Excision for homotopy groups

Homework 6: Excision for homotopy groups Homework 6: Excision for homotopy groups Due date: Friday, October 18th. 0. Goals and Assumptions: The homotopy excision theorem Definition 5. Let A X. Thepair(X, A) is said to be n-connected if π i (X,

More information

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY 1. Geometric and abstract simplicial complexes Let v 0, v 1,..., v k be points in R n. These points determine a hyperplane in R n, consisting of linear combinations

More information

EG and BG. Leo Herr CU Boulder PhD Program

EG and BG. Leo Herr CU Boulder PhD Program EG and BG Leo Herr CU Boulder PhD Program Simplicial sets are supposedly useful, and we will now see an application. Let π be an abelian group. View it as a discrete topological group whenever necessary

More information

Mapping spaces in quasi-categories

Mapping spaces in quasi-categories Mapping spaces in quasi-categories DANIEL DUGGER DAVID I. SPIVAK We apply the Dwyer-Kan theory of homotopy function complexes in model categories to the study of mapping spaces in quasi-categories. Using

More information

SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS

SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS SIMPLICIAL STRUCTURES ON MODEL CATEGORIES AND FUNCTORS CHARLES REZK, STEFAN SCHWEDE, AND BROOKE SHIPLEY Abstract. We produce a highly structured way of associating a simplicial category to a model category

More information

THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY

THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY THE REALIZATION SPACE OF A Π-ALGEBRA: A MODULI PROBLEM IN ALGEBRAIC TOPOLOGY D. BLANC, W. G. DWYER, AND P. G. GOERSS Contents 1. Introduction 1 2. Moduli spaces 7 3. Postnikov systems for spaces 10 4.

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R).

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R). 2. Functions, sets, countability and uncountability I. Functions Let A, B be sets (often, in this module, subsets of R). A function f : A B is some rule that assigns to each element of A a unique element

More information

or else take their intersection. Now define

or else take their intersection. Now define Samuel Lee Algebraic Topology Homework #5 May 10, 2016 Problem 1: ( 1.3: #3). Let p : X X be a covering space with p 1 (x) finite and nonempty for all x X. Show that X is compact Hausdorff if and only

More information

1 Lecture 2: Overview of higher category theory

1 Lecture 2: Overview of higher category theory Jacob Lurie Workshop on TFT s at Northwestern Notes, errors, and incompleteness by Alex Hoffnung May 19, 2009 DRAFT VERSION ONLY 1 Lecture 2: Overview of higher category theory Definition 1. A category

More information

Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces. J.P. May

Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces. J.P. May Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces J.P. May November 10, 2008 K(,1) Groups i Cats π 1 N Spaces S Simp. Sets Sd Reg. Simp. Sets Sd 2 τ Sd 1 i Simp.

More information

The generalized Schoenflies theorem

The generalized Schoenflies theorem The generalized Schoenflies theorem Andrew Putman Abstract The generalized Schoenflies theorem asserts that if ϕ S n 1 S n is a topological embedding and A is the closure of a component of S n ϕ(s n 1

More information

arxiv: v2 [math.gt] 15 Jan 2014

arxiv: v2 [math.gt] 15 Jan 2014 Finite rigid sets and homologically non-trivial spheres in the curve complex of a surface Joan Birman, Nathan Broaddus and William Menasco arxiv:1311.7646v2 [math.gt] 15 Jan 2014 January 15, 2014 Abstract

More information

Using context and model categories to define directed homotopies

Using context and model categories to define directed homotopies Using context and model categories to define directed homotopies p. 1/57 Using context and model categories to define directed homotopies Peter Bubenik Ecole Polytechnique Fédérale de Lausanne (EPFL) peter.bubenik@epfl.ch

More information

AUTOMORPHISMS OF THE GRAPH OF FREE SPLITTINGS

AUTOMORPHISMS OF THE GRAPH OF FREE SPLITTINGS AUTOMORPHISMS OF THE GRAPH OF FREE SPLITTINGS JAVIER ARAMAYONA & JUAN SOUTO Abstract. We prove that every simplicial automorphism of the free splitting graph of a free group F n is induced by an outer

More information

2 J.E. BERGNER is the discrete simplicial set X 0. Also, given a simplicial space W, we denote by sk n W the n-skeleton of W, or the simplicial space

2 J.E. BERGNER is the discrete simplicial set X 0. Also, given a simplicial space W, we denote by sk n W the n-skeleton of W, or the simplicial space A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES JULIA E. BERGNER Abstract. In this note we prove that Reedy fibrant Segal categories are fibrant objects in the model category structure SeCatc. Combining

More information

DUALITY, TRACE, AND TRANSFER

DUALITY, TRACE, AND TRANSFER DUALITY, TRACE, AND TRANSFER RUNE HAUGSENG ABSTRACT. For any fibration of spaces whose fibres are finite complexes there exists a stable map going the wrong way, called a transfer map. A nice way to construct

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Algebraic Topology: A brief introduction

Algebraic Topology: A brief introduction Algebraic Topology: A brief introduction Harish Chintakunta This chapter is intended to serve as a brief, and far from comprehensive, introduction to Algebraic Topology to help the reading flow of this

More information

arxiv: v4 [math.ct] 3 Jun 2017

arxiv: v4 [math.ct] 3 Jun 2017 FUNCTORS (BETWEEN -CATEGORIES) THAT AREN T STRICTLY UNITAL arxiv:1606.05669v4 [math.ct] 3 Jun 2017 HIRO LEE TANAKA Abstract. Let C and D be quasi-categories (a.k.a. -categories). Suppose also that one

More information

Lecture 7: the quotient topology

Lecture 7: the quotient topology Lecture 7: the quotient topology Saul Glasman September 21, 2016 Why couldn t we say that a homeomorphism was just a continuous bijection? Why did we have to explicitly require the inverse to be continuous

More information

Homotopy theories of dynamical systems

Homotopy theories of dynamical systems University of Western Ontario July 15, 2013 Dynamical systems A dynamical system (or S-dynamical system, or S-space) is a map of simplicial sets φ : X S X, giving an action of a parameter space S on a

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

MATH 215B MIDTERM SOLUTIONS

MATH 215B MIDTERM SOLUTIONS MATH 215B MIDTERM SOLUTIONS 1. (a) (6 marks) Show that a finitely generated group has only a finite number of subgroups of a given finite index. (Hint: Do it for a free group first.) (b) (6 marks) Show

More information

On the reflection and the coreflection of categories over a base in discrete fibrations

On the reflection and the coreflection of categories over a base in discrete fibrations On the reflection and the coreflection of categories over a base in discrete fibrations Claudio Pisani Various aspects of two dual formulas We begin by illustrating the formulas in the two-valued context.

More information

Green s relations on the partition monoid and several related monoids

Green s relations on the partition monoid and several related monoids Green s relations on the partition monoid and several related monoids D. G. FitzGerald 1 and Kwok Wai Lau 2 1 School of Mathematics and Physics, University of Tasmania (address for correspondence) 2 Sydney

More information

Simplicial Objects and Homotopy Groups. J. Wu

Simplicial Objects and Homotopy Groups. J. Wu Simplicial Objects and Homotopy Groups J. Wu Department of Mathematics, National University of Singapore, Singapore E-mail address: matwuj@nus.edu.sg URL: www.math.nus.edu.sg/~matwujie Partially supported

More information

References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds.

References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds. Lecture on CW-complexes References: Hatcher is our text. Lee1 means Lee s Intro to Topological Manifolds. Lee2 means Lee s Intro to Smooth Manifolds. 1 Discs and spheres Disks and spheres are the basic

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

A LEISURELY INTRODUCTION TO SIMPLICIAL SETS

A LEISURELY INTRODUCTION TO SIMPLICIAL SETS A LEISURELY INTRODUCTION TO SIMPLICIAL SETS EMILY RIEHL Abstract. Simplicial sets are introduced in a way that should be pleasing to the formally-inclined. Care is taken to provide both the geometric intuition

More information

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions 13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 011 Automata Theory EUR solutions Problem 1 (5 points). Prove that any surjective map between finite sets of the same cardinality is a

More information

Orientation of manifolds - definition*

Orientation of manifolds - definition* Bulletin of the Manifold Atlas - definition (2013) Orientation of manifolds - definition* MATTHIAS KRECK 1. Zero dimensional manifolds For zero dimensional manifolds an orientation is a map from the manifold

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

INTRODUCTION TO PART II: IND-COHERENT SHEAVES

INTRODUCTION TO PART II: IND-COHERENT SHEAVES INTRODUCTION TO PART II: IND-COHERENT SHEAVES 1. Ind-coherent sheaves vs quasi-coherent sheaves One of the primary goals of this book is to construct the theory of ind-coherent sheaves as a theory of O-modules

More information

SUMMER 2016 HOMOTOPY THEORY SEMINAR

SUMMER 2016 HOMOTOPY THEORY SEMINAR SUMMER 2016 HOMOTOPY THEORY SEMINAR ARUN DEBRAY AUGUST 1, 2016 Contents 1. Simplicial Localizations and Homotopy Theory: 5/24/16 1 2. Simplicial Sets: 5/31/16 3 3. Model Categories: 6/7/16 8 4. Localization:

More information

SPECTRAL SEQUENCES FROM CO/SIMPLICIAL OBJECTS

SPECTRAL SEQUENCES FROM CO/SIMPLICIAL OBJECTS SPECTRAL SEQUENCES FROM CO/SIMPLICIAL OBJECTS ERIC PETERSON Abstract. Simplicial complexes are much more useful and versatile than mere combinatorial models for topological spaces, the first context they

More information

CUBICAL SIMPLICIAL VOLUME OF SURFACES

CUBICAL SIMPLICIAL VOLUME OF SURFACES CUBICAL SIMPLICIAL VOLUME OF SURFACES CLARA LÖH AND CHRISTIAN PLANKL ABSTRACT. Cubical simplicial volume is a variation on simplicial volume, based on cubes instead of simplices. Both invariants are homotopy

More information

Discrete Morse Theory on Simplicial Complexes

Discrete Morse Theory on Simplicial Complexes Discrete Morse Theory on Simplicial Complexes August 27, 2009 ALEX ZORN ABSTRACT: Following [2] and [3], we introduce a combinatorial analog of topological Morse theory, and show how the introduction of

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

EQUIVARIANT COMPLETE SEGAL SPACES

EQUIVARIANT COMPLETE SEGAL SPACES EQUIVARIANT COMPLETE SEGAL SPACES JULIA E. BERGNER AND STEVEN GREG CHADWICK Abstract. In this paper we give a model for equivariant (, 1)-categories. We modify an approach of Shimakawa for equivariant

More information

ON THE UBIQUITY OF SIMPLICIAL OBJECTS

ON THE UBIQUITY OF SIMPLICIAL OBJECTS ERASMUS MUNDUS MASTER ALGANT UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN MATEMATICA ELABORATO FINALE ON THE UBIQUITY OF SIMPLICIAL OBJECTS RELATORE: PROF. B. CHIARELLOTTO

More information

Web Formalism and the IR limit of 1+1 N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten

Web Formalism and the IR limit of 1+1 N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten Web Formalism and the IR limit of 1+1 N=(2,2) QFT -or - A short ride with a big machine String-Math, Edmonton, June 12, 2014 Gregory Moore, Rutgers University collaboration with Davide Gaiotto & Edward

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

Persistent Topology of Syntax

Persistent Topology of Syntax Matilde Marcolli MAT1509HS: Mathematical and Computational Linguistics University of Toronto, Winter 2019, T 4-6 and W 4, BA6180 This lecture based on: Alexander Port, Iulia Gheorghita, Daniel Guth, John

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES

ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1?? ADDING INVERSES TO DIAGRAMS II: INVERTIBLE HOMOTOPY THEORIES ARE SPACES JULIA E. BERGNER (communicated by Name of Editor) Abstract In previous

More information

The Borsuk-Ulam theorem- A Combinatorial Proof

The Borsuk-Ulam theorem- A Combinatorial Proof The Borsuk-Ulam theorem- A Combinatorial Proof Shreejit Bandyopadhyay April 14, 2015 1 Introduction The Borsuk-Ulam theorem is perhaps among the results in algebraic topology having the greatest number

More information

Math 6510 Homework 3

Math 6510 Homework 3 Notational Note: In any presentation of a group G, I will explicitly set the relation equal to e as opposed to simply writing a presentation like G = a, b, c, d abcd 1. This is a bit untraditional, but

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

A Randomized Algorithm for Minimum Cuts

A Randomized Algorithm for Minimum Cuts Randomized lgorithm for Minimum uts ndreas Klappenecker randomized algorithm is an algorithm that receives, in addition to its input, a stream of random bits which is used to make random choices. The random

More information

Introduction to -categories

Introduction to -categories Introduction to -categories Paul VanKoughnett October 4, 2016 1 Introduction Good evening. We ve got a spectacular show for you tonight full of scares, spooks, and maybe a few laughs too. The standard

More information

The Cyclic Cycle Complex of a Surface

The Cyclic Cycle Complex of a Surface The Cyclic Cycle Complex of a Surface Allen Hatcher A recent paper [BBM] by Bestvina, Bux, and Margalit contains a construction of a cell complex that gives a combinatorial model for the collection of

More information

Non-Standard Models of Arithmetic

Non-Standard Models of Arithmetic Non-Standard Models of Arithmetic Asher M. Kach 1 May 2004 Abstract Almost everyone, mathematician or not, is comfortable with the standard model (N : +, ) of arithmetic. Less familiar, even among logicians,

More information

Introduction to the h-principle

Introduction to the h-principle Introduction to the h-principle Kyler Siegel May 15, 2014 Contents 1 Introduction 1 2 Jet bundles and holonomic sections 2 3 Holonomic approximation 3 4 Applications 4 1 Introduction The goal of this talk

More information

TORIC VARIETIES JOAQUÍN MORAGA

TORIC VARIETIES JOAQUÍN MORAGA TORIC VARIETIES Abstract. This is a very short introduction to some concepts around toric varieties, some of the subsections are intended for more experienced algebraic geometers. To see a lot of exercises

More information