Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Size: px
Start display at page:

Download "Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles"

Transcription

1 Mesh Simplification

2 Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2

3 Applications Overtessellation: E.g. iso-surface extraction 3

4 Applications Multi-resolution hierarchies for efficient geometry processing level-of-detail (LOD) rendering 4

5 Applications Adaptation to hardware capabilities

6 Size-Quality Tradeoff error size 6

7 Problem Statement Given: Find: such that 1. and is minimal, or 2. and is minimal Respect additional fairness criteria normal deviation, triangle shape, scalar attributes, etc. 7

8 Mesh Decimation Methods Vertex clustering Incremental decimation Resampling Mesh approximation 8

9 Vertex Clustering Cluster Generation Computing a representative Mesh generation Topology changes 9

10 Vertex Clustering Cluster Generation Uniform 3D grid Map vertices to cluster cells Computing a representative Mesh generation Topology changes 10

11 Vertex Clustering Cluster Generation Computing a representative Average/median vertex position Error quadrics Mesh generation Topology changes 12

12 Computing a Representative Average vertex position 13

13 Computing a Representative Median vertex position 14

14 Computing a Representative Error quadrics 15

15 Error Quadrics Patch is expected to be piecewise flat Minimize distance to neighboring triangles planes 16

16 Error Quadrics Squared distance of point p to plane q: 17

17 Error Quadrics Sum distances to planes q i of vertex neighboring triangles: Point p* that minimizes the error satisfies: 18

18 Comparison average median error quadric 19

19 Vertex Clustering Cluster Generation Computing a representative Mesh generation Clusters p {p 0,...,p n }, q {q 0,...,q m } Topology changes 20

20 Vertex Clustering Cluster Generation Computing a representative Mesh generation Clusters p {p 0,...,p n }, q {q 0,...,q m } Connect (p,q) if there was an edge (p i,q j ) Topology changes 21

21 Vertex Clustering Cluster Generation Computing a representative Mesh generation Topology changes If different sheets pass through one cell Can be non-manifold 22

22 Outline Applications Problem Statement Mesh Decimation Methods Vertex Clustering Incremental Decimation Extensions 23

23 Incremental Decimation 500K 50K 5K 0.5K 24

24 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes 25

25 General Setup Repeat: pick mesh region apply decimation operator Until no further reduction possible 26

26 Greedy Optimization For each region evaluate quality after decimation enqeue(quality, region) Repeat: get best mesh region from queue apply decimation operator update queue Until no further reduction possible 27

27 Global Error Control For each region evaluate quality after decimation enqeue(quality, region) Repeat: get best mesh region from queue if error < ε apply decimation operator update queue Until no further reduction possible 28

28 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes 29

29 Decimation Operators What is a "region"? What are the DOF for re-triangulation? Classification Topology-changing vs. topology-preserving Subsampling vs. filtering Inverse operation progressive meshes 30

30 Vertex Removal Select a vertex to be eliminated 31

31 Vertex Removal Select all triangles sharing this vertex 32

32 Vertex Removal Remove the selected triangles, creating the hole 33

33 Vertex Removal Fill the hole with new triangles 34

34 Decimation Operators Vertex Removal Vertex Insertion Remove vertex Re-triangulate hole Combinatorial degrees of freedom 35

35 Decimation Operators Edge Collapse Vertex Split Merge two adjacent vertices Define new vertex position Continuous degrees of freedom Filter along the way 36

36 Decimation Operators Half-Edge Collapse Restricted Vertex Split Collapse edge into one end point Special case of vertex removal Special case of edge collapse No degrees of freedom Separates global optimization from local optimization 37

37 Half-Edge Collapse 38

38 Half-Edge Collapse 39

39 Half-Edge Collapse 40

40 Half-Edge Collapse 41

41 Half-Edge Collapse 42

42 Half-Edge Collapse 43

43 Half-Edge Collapse 44

44 Half-Edge Collapse 45

45 Half-Edge Collapse 46

46 Half-Edge Collapse flip! 47

47 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes 48

48 Local Error Metrics Local distance to mesh Compute average plane No comparison to original geometry 49

49 Global Error Metrics Error quadrics Squared distance to planes at vertex No bound on true error Q 1 p it Q i p i = 0, i={1,2} p 1 p 2 Q 2 solve v 3T Q 3 v 3 = min < ε? ok Q 3 = Q 1 +Q 2 v 3 50

50 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes 51

51 Fairness Criteria Rate quality of decimation operation Approximation error Triangle shape Dihedral angles Valence balance... 52

52 Fairness Criteria Rate quality after decimation Approximation error Triangle shape r 1 Dihedral angles Valence balance... r 2 53

53 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance... 54

54 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... 55

55 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... 56

56 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... 57

57 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... 58

58 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes 59

59 Topology Changes? Merge vertices across non-edges Changes mesh topology Need spatial neighborhood information Generates non-manifold meshes Vertex Contraction Vertex Separation 60

60 Topology Changes? Merge vertices across non-edges Changes mesh topology Need spatial neighborhood information Generates non-manifold meshes manifold non-manifold 61

61 Comparison Vertex clustering fast, but difficult to control simplified mesh topology changes, non-manifold meshes global error bound, but often not close to optimum Incremental decimation with quadric error metrics good trade-off between mesh quality and speed explicit control over mesh topology restricting normal deviation improves mesh quality 62

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Mesh and Mesh Simplification

Mesh and Mesh Simplification Slide Credit: Mirela Ben-Chen Mesh and Mesh Simplification Qixing Huang Mar. 21 st 2018 Mesh DataStructures Data Structures What should bestored? Geometry: 3D coordinates Attributes e.g. normal, color,

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Authors: Michael Garland & Paul Heckbert Presented by: Niu Xiaozhen Disclaimer: Some slides are modified from original slides, which were designed by

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein)

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein) CGAL Mesh Simplification (Slides from Tom Funkhouser, Adam Finkelstein) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 In a nutshell Problem: Meshes have too many polygons for storage, rendering,

More information

Appearance Preservation

Appearance Preservation CS 283 Advanced Computer Graphics Mesh Simplification James F. O Brien Professor U.C. Berkeley Based on slides by Ravi Ramamoorthi 1 Appearance Preservation Caltech & Stanford Graphics Labs and Jonathan

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

A Comparison of Mesh Simplification Algorithms

A Comparison of Mesh Simplification Algorithms A Comparison of Mesh Simplification Algorithms Nicole Ortega Project Summary, Group 16 Browser Based Constructive Solid Geometry for Anatomical Models - Orthotics for cerebral palsy patients - Fusiform

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis Overview Efficient Simplification of Pointsampled Surfaces Introduction Local surface analysis Simplification methods Error measurement Comparison PointBased Computer Graphics Mark Pauly PointBased Computer

More information

Final Project, Digital Geometry Processing

Final Project, Digital Geometry Processing Final Project, Digital Geometry Processing Shayan Hoshyari Student #: 81382153 December 2016 Introduction In this project an adaptive surface remesher has been developed based on the paper [1]. An algorithm

More information

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment 3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment Özgür ULUCAY Sarp ERTÜRK University of Kocaeli Electronics & Communication Engineering Department 41040 Izmit, Kocaeli

More information

Digital Geometry Processing. Computer Graphics CMU /15-662

Digital Geometry Processing. Computer Graphics CMU /15-662 Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans, not fins

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

Isotopic Approximation within a Tolerance Volume

Isotopic Approximation within a Tolerance Volume Isotopic Approximation within a Tolerance Volume Manish Mandad David Cohen-Steiner Pierre Alliez Inria Sophia Antipolis - 1 Goals and Motivation - 2 Goals and Motivation Input: Tolerance volume of a surface

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Multiresolution structures for interactive visualization of very large 3D datasets

Multiresolution structures for interactive visualization of very large 3D datasets Multiresolution structures for interactive visualization of very large 3D datasets Doctoral Thesis (Dissertation) to be awarded the degree of Doctor rerum naturalium (Dr.rer.nat.) submitted by Federico

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

Fast Stellar Mesh Simplification

Fast Stellar Mesh Simplification Fast Stellar Mesh Simplification ANTÔNIO W. VIEIRA 1,2, LUIZ VELHO 3, HÉLIO LOPES 1, GEOVAN TAVARES 1 AND THOMAS LEWINER 1,4 1 PUC Rio Laboratório Matmídia Rio de Janeiro 2 UNIMONTES CCET Montes Claros

More information

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland)

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland) Advanced omputer Graphics (Spring 213) S 283, Lecture 6: Quadric Error Metrics Ravi Ramamoorthi To Do Assignment 1, Due Feb 22. Should have made some serious progress by end of week This lecture reviews

More information

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows:

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows: Handles A handle in a 3d mesh is a through hole. The number of handles can be extracted of the genus of the 3d mesh. Genus is the number of times we can cut 2k edges without disconnecting the 3d mesh.

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

All the Polygons You Can Eat. Doug Rogers Developer Relations

All the Polygons You Can Eat. Doug Rogers Developer Relations All the Polygons You Can Eat Doug Rogers Developer Relations doug@nvidia.com Future of Games Very high resolution models 20,000 triangles per model Lots of them Complex Lighting Equations Floating point

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

A Short Survey of Mesh Simplification Algorithms

A Short Survey of Mesh Simplification Algorithms A Short Survey of Mesh Simplification Algorithms Jerry O. Talton III University of Illinois at Urbana-Champaign 1. INTRODUCTION The problem of approximating a given input mesh with a less complex but geometrically

More information

Simplification. Stolen from various places

Simplification. Stolen from various places Simplification Stolen from various places The Problem of Detail Graphics systems are awash in model data: highly detailed CAD models high-precision surface scans surface reconstruction algorithms Available

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Interactive Computer Graphics Lecture 36: Polygonal mesh simplification The Modeling-Rendering Paradigm Modeler: Modeling complex shapes no equation for a chair, face, etc. instead, achieve complexity

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Illumination and Geometry Techniques. Karljohan Lundin Palmerius

Illumination and Geometry Techniques. Karljohan Lundin Palmerius Illumination and Geometry Techniques Karljohan Lundin Palmerius Objectives Complex geometries Translucency Huge areas Really nice graphics! Shadows Graceful degradation Acceleration Optimization Straightforward

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

5.2 Surface Registration

5.2 Surface Registration Spring 2018 CSCI 621: Digital Geometry Processing 5.2 Surface Registration Hao Li http://cs621.hao-li.com 1 Acknowledgement Images and Slides are courtesy of Prof. Szymon Rusinkiewicz, Princeton University

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

Moving Least Squares Multiresolution Surface Approximation

Moving Least Squares Multiresolution Surface Approximation Moving Least Squares Multiresolution Surface Approximation BORIS MEDEROS LUIZ VELHO LUIZ HENRIQUE DE FIGUEIREDO IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio de

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

A General Framework for Mesh Decimation

A General Framework for Mesh Decimation A General Framework for Mesh Decimation Leif Kobbelt Swen Campagna Hans-Peter Seidel Computer Sciences Department, University of Erlangen-Nürnberg Am Weichselgarten 9, 91058 Erlangen, Germany kobbelt@informatik.uni-erlangen.de

More information

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Thesis for Master s Degree A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Sung-Yeol Kim Department of Information and Communications Kwangju Institute of Science

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Alexander Greß and Reinhard Klein University of Bonn Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

Subdivision Surfaces. Homework 1: Questions/Comments?

Subdivision Surfaces. Homework 1: Questions/Comments? Subdivision Surfaces Homework 1: Questions/Comments? 1 Questions on Homework? What s an illegal edge collapse? 1 2 3 a b 4 7 To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe Progressive Meshes Progressive Meshes and Recent Extensions Hugues Hoppe Microsoft Research SIGGRAPH 97 Course SIGGRAPH 97 Course Multiresolution Surface Modeling Multiresolution Surface Modeling Meshes

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Deformation Sensitive Decimation

Deformation Sensitive Decimation Deformation Sensitive Decimation Alex Mohr Michael Gleicher University of Wisconsin, Madison Abstract In computer graphics, many automatic methods for simplifying polygonal meshes have been developed.

More information

Finding Shortest Path on Land Surface

Finding Shortest Path on Land Surface Finding Shortest Path on Land Surface Lian Liu, Raymond Chi-Wing Wong Hong Kong University of Science and Technology June 14th, 211 Introduction Land Surface Land surfaces are modeled as terrains A terrain

More information

CS 532: 3D Computer Vision 12 th Set of Notes

CS 532: 3D Computer Vision 12 th Set of Notes 1 CS 532: 3D Computer Vision 12 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Meshes Slides

More information

Meshes and Manifolds. Computer Graphics CMU /15-662

Meshes and Manifolds. Computer Graphics CMU /15-662 Meshes and Manifolds Computer Graphics CMU 15-462/15-662 Fractal Quiz Last time: overview of geometry Many types of geometry in nature Geometry Demand sophisticated representations Two major categories:

More information

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity Mesh Data Structures res Data Structures What should be stored? Geometry: 3D coordinates Attributes eg normal, color, texture coordinate Per vertex, per face, per edge Connectivity Adjacency relationships

More information

Point-based Simplification Algorithm

Point-based Simplification Algorithm Point-based Simplification Algorithm Pai-Feng Lee 1, Bin-Shyan Jong 2 Department of Information Management, Hsing Wu College 1 Dept. of Information and Computer Engineering Engineering, Chung Yuan Christian

More information

Mesh Generation. Quadtrees. Geometric Algorithms. Lecture 9: Quadtrees

Mesh Generation. Quadtrees. Geometric Algorithms. Lecture 9: Quadtrees Lecture 9: Lecture 9: VLSI Design To Lecture 9: Finite Element Method To http://www.antics1.demon.co.uk/finelms.html Lecture 9: To Lecture 9: To component not conforming doesn t respect input not well-shaped

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

Progressive Mesh. Reddy Sambavaram Insomniac Games

Progressive Mesh. Reddy Sambavaram Insomniac Games Progressive Mesh Reddy Sambavaram Insomniac Games LOD Schemes Artist made LODs (time consuming, old but effective way) ViewDependentMesh (usually used for very large complicated meshes. CAD apps. Probably

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

Simple Silhouettes for Complex Surfaces

Simple Silhouettes for Complex Surfaces Eurographics Symposium on Geometry Processing(2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Simple Silhouettes for Complex Surfaces D. Kirsanov, P. V. Sander, and S. J. Gortler Harvard University Abstract

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

Geometric Features for Non-photorealistiic Rendering

Geometric Features for Non-photorealistiic Rendering CS348a: Computer Graphics Handout # 6 Geometric Modeling and Processing Stanford University Monday, 27 February 2017 Homework #4: Due Date: Mesh simplification and expressive rendering [95 points] Wednesday,

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Appearance-Preserving Simplification

Appearance-Preserving Simplification Appearance-Preserving Simplification 7809 tris 975 tris 488 tris 1951 tris 3905 tris model courtesy of Stanford and Caltech Simplification Create representation for faster rendering Measure representation

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations Analytical and Computer Cartography Winter 2017 Lecture 9: Geometric Map Transformations Cartographic Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics

More information

Lesson 01 Polygon Basics 17. Lesson 02 Modeling a Body 27. Lesson 03 Modeling a Head 63. Lesson 04 Polygon Texturing 87. Lesson 05 NURBS Basics 117

Lesson 01 Polygon Basics 17. Lesson 02 Modeling a Body 27. Lesson 03 Modeling a Head 63. Lesson 04 Polygon Texturing 87. Lesson 05 NURBS Basics 117 Table of Contents Project 01 Lesson 01 Polygon Basics 17 Lesson 02 Modeling a Body 27 Lesson 03 Modeling a Head 63 Lesson 04 Polygon Texturing 87 Project 02 Lesson 05 NURBS Basics 117 Lesson 06 Modeling

More information

: Mesh Processing. Chapter 2

: Mesh Processing. Chapter 2 600.657: Mesh Processing Chapter 2 Data Structures Polygon/Triangle Soup Indexed Polygon/Triangle Set Winged-Edge Half-Edge Directed-Edge List of faces Polygon Soup Each face represented independently

More information

opology Based Feature Extraction from 3D Scalar Fields

opology Based Feature Extraction from 3D Scalar Fields opology Based Feature Extraction from 3D Scalar Fields Attila Gyulassy Vijay Natarajan, Peer-Timo Bremer, Bernd Hamann, Valerio Pascucci Institute for Data Analysis and Visualization, UC Davis Lawrence

More information

Simplification and Streaming of GIS Terrain for Web Client

Simplification and Streaming of GIS Terrain for Web Client Simplification and Streaming of GIS Terrain for Web Client Web3D 2012 Geomod Liris : Pierre-Marie Gandoin Geomod Liris : Raphaëlle Chaine Atos Wordline : Aurélien Barbier-Accary Fabien CELLIER Université

More information

Surface Topology ReebGraph

Surface Topology ReebGraph Sub-Topics Compute bounding box Compute Euler Characteristic Estimate surface curvature Line description for conveying surface shape Extract skeletal representation of shapes Morse function and surface

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications

Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Progressive Compression for Lossless Transmission of Triangle Meshes in Network Applications Timotej Globačnik * Institute of Computer Graphics Laboratory for Geometric Modelling and Multimedia Algorithms

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science Feature-Based Mesh Simplification With Quadric Error Metric Using A Line Simplification Algorithm by Rafael Jose Falcon Lins Submitted in partial fulfillment of the requirements for the degree of Master

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Auckland University 15th September 2004; Version 1.1 Design Intent

More information

Efficient Minimization of New Quadric Metric for Simplifying Meshes with Appearance Attributes

Efficient Minimization of New Quadric Metric for Simplifying Meshes with Appearance Attributes Efficient Minimization of New Quadric Metric for Simplifying Meshes with Appearance Attributes (Addendum to IEEE Visualization 1999 paper) Hugues Hoppe Steve Marschner June 2000 Technical Report MSR-TR-2000-64

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approimating Implicit Surfaces from Polygon Soup Chen Shen, James F. O Brien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 Fall 2005 Overview

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline

An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline 3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) An Algorithm of 3D Mesh Reconstructing Based on the Rendering Pipeline Zhengjie Deng1, a, Shuqian He1,b, Chun Shi1,c,

More information

Half-edge Collapse Simplification Algorithm Based on Angle Feature

Half-edge Collapse Simplification Algorithm Based on Angle Feature International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) Half-edge Collapse Simplification Algorithm Based on Angle Feature 1,2 JunFeng Li, 2 YongBo Chen, 3

More information

Section 8.3: Examining and Repairing the Input Geometry. Section 8.5: Examining the Cartesian Grid for Leakages

Section 8.3: Examining and Repairing the Input Geometry. Section 8.5: Examining the Cartesian Grid for Leakages Chapter 8. Wrapping Boundaries TGrid allows you to create a good quality boundary mesh using a bad quality surface mesh as input. This can be done using the wrapper utility in TGrid. The following sections

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information