Recursive Function Theory

Size: px
Start display at page:

Download "Recursive Function Theory"

Transcription

1 Recursive Function Theory Abhishek Kr Singh TFR Mumbai. 21 August 2014

2 Primitive Recursive Functions nitial Functions. s(x) =x + 1 n(x) =0 u n i (x 1,...,x n )=x i,where1apple i apple n. Composition: Let h(x 1,...,x n )=f(g 1 (x 1,...,x n ),...,g k (x 1,...,x n )). Then h is said to be obtained from f and g 1,...,g k by composition. Primitive Recursion: Let h(x1,...x n, 0) =f (x 1,...x n ),and h(x 1,...x n, t + 1) =g(t, h(x 1,...x n, t), x 1,...x n ). Then h is said to be obtained from f and g by primitive recursion, or simply recursion. Definition: A function is called primitive recursive if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

3 Bounded Quantifiers: f the predicate P(t, x1,...,x n ) is primitive recursive then so are the predicates (8t) appley P(t, x 1,...,x n ) and (9t) appley P(t, x 1,...,x n ). Bounded Minimalization: min tappley P(t, x 1,...,x n ) is the least value of t apple y for which P(t, x 1,...,x n ) is true, if such exists; otherwise it assumes the default value 0. mint P(t, x 1,...,x n ) is the unbounded version. However in this case if there is no value of t for which P is true, then min t P(t, x 1,...,x n ) is undefined. f the predicate P(t, x 1,...,x n ) is primitive recursive then so is the predicate min tappley P(t, x 1,...,x n ).

4 Some Primitive Recursive Functions 1. x + y 2. x.y 3. x! 4. x y 5. p(x) the predecessor function 6. x. y 7. x y 8. (x) the szero predicate 9. x = y 10. x apple y 11. x < y 12. y x y divides x 13. Prime(x) 14. bx/y c 15. R(x, y) 16. p n the nth prime number 17. < x, y > the pairing function 18. [a 1,...,a n ] the Godel number 19. Lt(x) where x =[a 1,...,a n ] 20. ([a 1,...,a n ]) i

5 Programs and Computable Functions Programming language S. Our concept of computable function will be based on programming language S which has following instruction types. 1. V V 2. V V V V 1 4. F V 6= 0 GOTO L AprograminS is a sequence of labeled or unlabeled instructions of above type. Syntax of the language S Conventions: nput variables X 1, X 2, X 3,.... Output variable Y and Local Variables Z 1, Z 2, Z 3,... State and snapshot s =(i, ) of program P. A Computation of a program P is defined to be a sequence s 1, s 2, s 3,...s k of snapshots of P such that s i+1 is the successor of s i for each i and s k is the terminal snapshot.

6 Computable Functions For any program P and any positive integer m, m P (x 1,...,x m ) represents the value of function computed by program P on input x 1,...,x m. A given partial function g is said to be partially computable if it is computed by some program. A function g is called computable if it is both total and partially computable. Primitive recursive Vs computable functions. Every primitive recursive function is computable. Coding program by numbers #( )=< a,<b, c >> #(P) =[#(1 ), #( 2 ),...,#( k )] 1.

7 Theorem-1 Universality Theorem: Let n (x 1,...,x n, y) = P n (x 1,...,x n ),where #(P) =y. Then for each n > 0,thefunction n (x 1,...,x n, y) is partially computable. Proof. Existence of a program U n,calledtheuniversal progmam, such that n+1 U n (x 1,...,x n, x n+1 )= n (x 1,...,x n, x n+1 )= n P (x 1,...,x n ),where x n+1 =#(P).

8 Theorem-2 Step-Counter Theorem: Let STP n (x 1,...,x n, y, t) () Program number y halts after t or fewer steps on inputs x 1,...,x n. Then for each n > 0, the predicate STP n (x 1,...,x n, y, t) is primitive recursive. Proof STP n (x 1,...,x n, y, t) () Term(Snap n (x 1,...,x n, y, t), y) where Snap n (x 1,...,x n, y, 0) =nit n (x 1,...,x n ) and Snap n (x 1,...,x n, y, i + 1) = Succ(Snap n (x 1,...,x n, y, i), y).

9 Theorem-3 Normal Form Theorem: Letf (x 1,...,x n ) be a partially computable function. Then there is a primitive recursive predicate R(x 1,...,x n, y) such that f (x 1,...,x n )=l(min z R(x 1,...,x n, z)). Proof. Let y 0 =#(P) where P is the program that computes f. Consider the following predicate, call it R(x 1,...,x n, z), STP n (x 1,...,x n, y 0, r(z)) &(r(snap n (x 1,...,x n, y 0, r(z)))) 1 = l(z) Then we have f (x 1,...,x n )=l(min z R(x 1,...,x n, z)) Note that if there is no value of z for which min z R(x 1,...,x n, z) is true, then according to the definition of minimalization min z R(x 1,...,x n, z) is undefined.

10 Corollary-3.1 A function is partially computable if and only if it can be obtained from the initial functions by a finite number of applications of composition, recursion, and minimalization. Corollary-3.2 A function is computable if and only if it can be obtained from the initial functions by a finite number of applications of composition, recursion, and proper minimalization. When min z R(x 1,...,x n, z) is a total function, we say that we are applying proper minimalization to R.

11 Recursively Enumerable Sets Definition The set B N is called recursively enumerable if there is a partially computable function g(x) such that B = {x 2 N g(x) #}. Definition We write W n = {x 2 N (x, n) #}. We define K = {n 2 N n 2 W n }. Therefore, n 2 W n () (n, n) #() HALT (n, n). Since we have Godel numbering functions [x 1,...,x m ] and (x) i,we can restrict to the subsets of N in our discussion of Computabilty theory. Therefore, we have, Theorem-4 Let C be a PRC class, and let B be a subset of N m, m 1. Then B belongs to C if and only if B 0 = {[x 1,...,x m ] 2 N (x 1,...,x m ) 2 B} belongs to C. Proof. P B 0 (x) () (Lt(x) =m)&p B ((x) 1,...,(x) m ) P B (x 1,...,x m ) () P B 0([x 1,...,x m ])

12 Theorem-5 Enumeration Theorem: AsetB is r.e if and only if there is an n for which B = W n. Theorem-6 The set B is recursive if and only if B and B are both r.e. Proof. Let P and Q be the programs coresponding to B and B. Considerthefollowingprogramwhere p =#(P) and q =#(Q) [A] f STP(X, p, T ) Goto C f STP(X, q, T ) Goto E T T + 1 Goto A [C] Y 1 Theorem-7 Let B be an r.e. set. Then there is a primitive recursive predicate R(x, t) such that B = {x 2 N (9t)R(x, t)}. Proof. Let B = W n.thenb = {x 2 N (9t) STP(x, n, t)}. Theorem-8 f B and C are r.e sets so are B [ C and B \ C.

13 Theorem-9 Let S be a nonempty r.e. set. Then there is a primitive recursive function f (u) such that S = {f (n) n 2 N} = {f (0), f (1),...}. Thatis,S is the range of f. Proof. By Theorem-7 we can write, S = {x (9t)R(x, t)}. Let x 0 2 S and u =< x, t >. Consider ( the following function x if R(x, t) f (u) = otherwise x 0 That is, f (< x, t >) =x.r(x, t)+x 0. R(x, t) Which is same as f (u) =l(u).r(l(u), r(u)) + x 0. (R(l(u), r(u))).

14 Theorem-10 Let f (x) be a partially computable function and let S = {f (x) f (x) #}. (Thatis,S is the range of f.) Then S is r.e. Proof Let program P computes f and p =#(P). Then we need to demonstrate a program, say Q, which behaves as follow, Q stops at x () 9u9t, (STP(u, p, t)&f (u) =x) () 9 < u, t >, (STP(u, p, t)&f (u) =x) () 9n, (STP(l(n), p, r(n)) & f (l(n)) = x) Thus Q can be the following program, [A] F STP(l(Z), p, r(z)) Goto B F f (l(z)) = X Goto E [B] Z Z + 1 Goto A

15 Theorem-11 Suppose that S 6= are all equivalent: 1. S is r.e..thenthefollowingstatements

Recursive Functions. Recursive functions are built up from basic functions by some operations.

Recursive Functions. Recursive functions are built up from basic functions by some operations. Recursive Functions Recursive functions are built up from basic functions by some operations. The Successor Function Let s get very primitive. Suppose we have 0 defined, and want to build the nonnegative

More information

Computability Theory XI

Computability Theory XI Computability Theory XI Recursively Enumerable Set Guoqiang Li Shanghai Jiao Tong University Dec. 12&19, 2013 Assignment Assignment 4 was announced! The deadline is Dec. 26! An Exercise Let A, B N. Define

More information

Midterm Practice Exam Sample Solutions

Midterm Practice Exam Sample Solutions Name: SID: CS 620 Theory of Computation Fall 2017 Instructor: Marc Pomplun Midterm Practice Exam Sample Solutions Duration: 1 hour and 15 minutes You only need your writing utensils to complete this exam.

More information

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS JOSHUA LENERS Abstract. An algorithm is function from ω to ω defined by a finite set of instructions to transform a given input x to the desired output

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook) Fall, 2008 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10. Other references:

More information

CHAPTER 4. COMPUTABILITY AND DECIDABILITY

CHAPTER 4. COMPUTABILITY AND DECIDABILITY CHAPTER 4. COMPUTABILITY AND DECIDABILITY 1. Introduction By definition, an n-ary function F on N assigns to every n-tuple k 1,...,k n of elements of N a unique l N which is the value of F at k 1,...,k

More information

Phil 320 Chapter 7: Recursive sets and relations Note: 0. Introduction Significance of and main objectives for chapter 7:

Phil 320 Chapter 7: Recursive sets and relations Note: 0. Introduction Significance of and main objectives for chapter 7: Phil 320 Chapter 7: Recursive sets and relations (Note: We cover only section 7.1.) 0. Introduction Significance of and main objectives for chapter 7: 1. Chapter 7 generalizes the notion of recursive (or

More information

(a) Give inductive definitions of the relations M N and M N of single-step and many-step β-reduction between λ-terms M and N. (You may assume the

(a) Give inductive definitions of the relations M N and M N of single-step and many-step β-reduction between λ-terms M and N. (You may assume the COMPUTER SCIENCE TRIPOS Part IB 205 Paper 6 4 (AMP) (a) Give inductive definitions of the relations M N and M N of single-step and many-step β-reduction between λ-terms M and N. (You may assume the definition

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science D3. GOTO-Computability Malte Helmert University of Basel April 25, 2016 Overview: Computability Theory Computability Theory imperative models of computation: D1. Turing-Computability

More information

1.3 Primitive Recursive Predicates and Bounded Minimalization

1.3 Primitive Recursive Predicates and Bounded Minimalization 12 1 Primitive Recursive Functions 1.3 Primitive Recursive Predicates and Bounded Minimalization 1.3.1 Case discrimination function The case discrimination function D is defined by D(x, y, z) = v x 0 v

More information

Solution Set 8 Date: 1 December, 1992

Solution Set 8 Date: 1 December, 1992 Burt Rosenberg Math 688: Theory of Computability and Complexity 1 Solution Set 8 Date: 1 December, 1992 1. Prove the following functions are primitive recursive, (a) x < y. The functions sgn(n) and monus(x,

More information

Lecture 5: Predicate Calculus. ffl Predicate Logic ffl The Language ffl Semantics: Structures

Lecture 5: Predicate Calculus. ffl Predicate Logic ffl The Language ffl Semantics: Structures Lecture 5: Predicate Calculus ffl Predicate Logic ffl The Language ffl Semantics: Structures 1 Why Predicate Logic? Propositional logic is not powerful enough to express statements such as ffl For every

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science D4. Primitive Recursion and µ-recursion Malte Helmert University of Basel April 26, 2017 Overview: Computability Theory Computability Theory imperative models of computation:

More information

Reasoning about programs. Chapter 9 of Thompson

Reasoning about programs. Chapter 9 of Thompson Reasoning about programs Chapter 9 of Thompson Proof versus testing A proof will state some property of a program that holds for all inputs. Testing shows only that a property holds for a particular set

More information

Theory of Computer Science. Theory of Computer Science. D4.1 Introduction. D4.2 Basic Functions and Composition. D4.3 Primitive Recursion

Theory of Computer Science. Theory of Computer Science. D4.1 Introduction. D4.2 Basic Functions and Composition. D4.3 Primitive Recursion Theory of Computer Science April 27, 2016 D4. Primitive Recursion and µ-recursion Theory of Computer Science D4. Primitive Recursion and µ-recursion Malte Helmert University of Basel April 27, 2016 D4.1

More information

We ve studied the main models and concepts of the theory of computation:

We ve studied the main models and concepts of the theory of computation: CMPSCI 601: Summary & Conclusions Lecture 27 We ve studied the main models and concepts of the theory of computation: Computability: what can be computed in principle Logic: how can we express our requirements

More information

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack.

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. Other Automata We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. From all of this information we decide what state

More information

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson Lecture 7: Primitive Recursion is Turing Computable Michael Beeson Closure under composition Let f and g be Turing computable. Let h(x) = f(g(x)). Then h is Turing computable. Similarly if h(x) = f(g 1

More information

Inference rule for Induction

Inference rule for Induction Inference rule for Induction Let P( ) be a predicate with domain the positive integers BASE CASE INDUCTIVE STEP INDUCTIVE Step: Usually a direct proof Assume P(x) for arbitrary x (Inductive Hypothesis),

More information

Lecture 5: The Halting Problem. Michael Beeson

Lecture 5: The Halting Problem. Michael Beeson Lecture 5: The Halting Problem Michael Beeson Historical situation in 1930 The diagonal method appears to offer a way to extend just about any definition of computable. It appeared in the 1920s that it

More information

Debugging Program Slicing

Debugging Program Slicing Debugging Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at 1 What is a Slice? A Slice is a reduced

More information

Recursive Functions. 6.1 Primitive Recursive Functions

Recursive Functions. 6.1 Primitive Recursive Functions 6 Recursive Functions The intuitive notion of an effectively computable function is the notion of a function for which there are definite, explicit rules, following which one could in principle compute

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

05. Turing Machines and Spacetime. I. Turing Machines and Classical Computability.

05. Turing Machines and Spacetime. I. Turing Machines and Classical Computability. 05. Turing Machines and Spacetime. I. Turing Machines and Classical Computability. 1. Turing Machines A Turing machine (TM) consists of (Turing 1936): Alan Turing 1. An unbounded tape. Divided into squares,

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 13 Dr. Ted Ralphs IE411 Lecture 13 1 References for Today s Lecture IE411 Lecture 13 2 References for Today s Lecture Required reading Sections 21.1 21.2 References

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

Elementary Recursive Function Theory

Elementary Recursive Function Theory Chapter 7 Elementary Recursive Function Theory 7.1 Acceptable Indexings In a previous Section, we have exhibited a specific indexing of the partial recursive functions by encoding the RAM programs. Using

More information

CSE20: Discrete Mathematics

CSE20: Discrete Mathematics Spring 2018 Summary Last time: Today: Introduction to Basic Set Theory (Vardy) More on sets Connections between sets and logic Reading: Chapter 2 Set Notation A, B, C: sets A = {1, 2, 3}: finite set with

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Lecture 15 Ana Bove May 23rd 2016 More on Turing machines; Summary of the course. Overview of today s lecture: Recap: PDA, TM Push-down

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets?

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? Diagonalization Cardinalities The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? We say that a set S has at least as great cardinality as set T, written S T, if

More information

Theory of Computer Science. D2.1 Introduction. Theory of Computer Science. D2.2 LOOP Programs. D2.3 Syntactic Sugar. D2.

Theory of Computer Science. D2.1 Introduction. Theory of Computer Science. D2.2 LOOP Programs. D2.3 Syntactic Sugar. D2. Theory of Computer Science April 20, 2016 D2. LOOP- and WHILE-Computability Theory of Computer Science D2. LOOP- and WHILE-Computability Malte Helmert University of Basel April 20, 2016 D2.1 Introduction

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

Elementary Recursive Function Theory

Elementary Recursive Function Theory Chapter 6 Elementary Recursive Function Theory 6.1 Acceptable Indexings In a previous Section, we have exhibited a specific indexing of the partial recursive functions by encoding the RAM programs. Using

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D.

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman And Introduction to Languages and The by J. C. Martin Basic Mathematical

More information

Prim Rec, Decidable, Undecidable, and Beyond. William Gasarch-U of MD

Prim Rec, Decidable, Undecidable, and Beyond. William Gasarch-U of MD Primitive Recursive An attempt to pin down the set of functions that are computable. A function f is Primitive Recursive 1) f (x 1,..., x n ) = 0 OR f (x 1,..., x n ) = x i + c, c N. 2) If g 1 (x 1,...,

More information

CS 531: Notes II. January 31, 2014

CS 531: Notes II. January 31, 2014 CS 531: Notes II January 31, 2014 1 Acceptable and Decidable Languages Let P be a program and x be a string. What happens when we run P on on input x. There are there possibilities. i) The program runs

More information

Computability via Recursive Functions

Computability via Recursive Functions Computability via Recursive Functions Church s Thesis All effective computational systems are equivalent! To illustrate this point we will present the material from chapter 4 using the partial recursive

More information

A catalogue of proofs that various sets, functions and relations are primitive recursive 26 February 2012 at 20:57

A catalogue of proofs that various sets, functions and relations are primitive recursive 26 February 2012 at 20:57 A catalogue of proofs that various sets, functions and relations are primitive recursive 26 February 2012 at 20:57 Public In this note (which is mainly intended as a 'memo' for myself) I am interested

More information

5.2: Closure Properties of Recursive and Recursively Enumerable Languages

5.2: Closure Properties of Recursive and Recursively Enumerable Languages 5.2: Closure Properties of Recursive and Recursively Enumerable Languages In this section, we will see that the recursive and recursively enumerable languages are closed under union, concatenation, closure

More information

First Order Predicate Logic CIS 32

First Order Predicate Logic CIS 32 First Order Predicate Logic CIS 32 Functionalia Demos? HW 3 is out on the web-page. Today: Predicate Logic Constructing the Logical Agent Predicate Logic First-order predicate logic More expressive than

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences.

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences. Quantification In this and subsequent chapters, we will develop a more formal system of dealing with categorical statements, one that will be much more flexible than traditional logic, allow a deeper analysis

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Lecture 7 Number Theory Euiseong Seo

Lecture 7 Number Theory Euiseong Seo Lecture 7 Number Theory Euiseong Seo (euiseong@skku.edu) 1 Number Theory God created the integers. All else is the work of man Leopold Kronecker Study of the property of the integers Specifically, integer

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

Section 13.2 The Church-Turing Thesis The Church-Turing Thesis: Anything that is intuitively computable can be be computed by a Turing machine.

Section 13.2 The Church-Turing Thesis The Church-Turing Thesis: Anything that is intuitively computable can be be computed by a Turing machine. Section 13.2 The Church-Turing Thesis The Church-Turing Thesis: Anything that is intuitively computable can be be computed by a Turing machine. It is a thesis rather than a theorem because it relates the

More information

s(n) An Arithmetic Function of Some Interest, and Related Arithmetic

s(n) An Arithmetic Function of Some Interest, and Related Arithmetic s(n) An Arithmetic Function of Some Interest, and Related Arithmetic Gideon Samid, PhD samidg@tx.technion.ac.il Abstract: Every integer n > 0 є N defines an increasing monotonic series of integers: n 1,

More information

Shell CSCE 314 TAMU. Haskell Functions

Shell CSCE 314 TAMU. Haskell Functions 1 CSCE 314: Programming Languages Dr. Dylan Shell Haskell Functions 2 Outline Defining Functions List Comprehensions Recursion 3 Conditional Expressions As in most programming languages, functions can

More information

Semantics of COW. July Alex van Oostenrijk and Martijn van Beek

Semantics of COW. July Alex van Oostenrijk and Martijn van Beek Semantics of COW /; ;\ \\ // /{_\_/ `'\ \ (o) (o } / :--',-,'`@@@@@@@@ @@@@@@ \_ ` \ ;:( @@@@@@@@@ @@@ \ (o'o) :: ) @@@@ @@@@@@,'@@( `====' Moo! :: : @@@@@: @@@@ `@@@: :: \ @@@@@: @@@@@@@) ( '@@@' ;; /\

More information

Warm-Up Problem. Let L be the language consisting of as constant symbols, as a function symbol and as a predicate symbol. Give an interpretation where

Warm-Up Problem. Let L be the language consisting of as constant symbols, as a function symbol and as a predicate symbol. Give an interpretation where Warm-Up Problem Let L be the language consisting of as constant symbols, as a function symbol and as a predicate symbol Give an interpretation where is false Use a finite domain in your interpretation

More information

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017 COMPSCI 632: Approximation Algorithms August 30, 2017 Lecturer: Debmalya Panigrahi Lecture 2 Scribe: Nat Kell 1 Introduction In this lecture, we examine a variety of problems for which we give greedy approximation

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Chapter 1. Fundamentals of Higher Order Programming

Chapter 1. Fundamentals of Higher Order Programming Chapter 1 Fundamentals of Higher Order Programming 1 The Elements of Programming Any powerful language features: so does Scheme primitive data procedures combinations abstraction We will see that Scheme

More information

Introduction to optimization

Introduction to optimization Introduction to optimization G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Optimization Industrial

More information

TURING S ORACLE : FROM ABSOLUTE TO RELATIVE COMPUTABILITY--AND BACK. Solomon Feferman Logic Seminar, Stanford, April 10, 2012

TURING S ORACLE : FROM ABSOLUTE TO RELATIVE COMPUTABILITY--AND BACK. Solomon Feferman Logic Seminar, Stanford, April 10, 2012 TURING S ORACLE : FROM ABSOLUTE TO RELATIVE COMPUTABILITY--AND BACK Solomon Feferman Logic Seminar, Stanford, April 10, 2012 Plan 1. Absolute computability: machines and recursion theory. 2. Relative computability:

More information

Test # 1 Review. to the line x y 5. y 64x x 3. y ( x 5) 4 x 2. y x2 2 x. Á 3, 4 ˆ 2x 5y 9. x y 2 3 y x 1. Á 6,4ˆ and is perpendicular. x 9. g(t) t 10.

Test # 1 Review. to the line x y 5. y 64x x 3. y ( x 5) 4 x 2. y x2 2 x. Á 3, 4 ˆ 2x 5y 9. x y 2 3 y x 1. Á 6,4ˆ and is perpendicular. x 9. g(t) t 10. Name: Class: Date: ID: A Test # 1 Review Short Answer 1. Find all intercepts: y 64x x 3 2. Find all intercepts: y ( x 5) 4 x 2 3. Test for symmetry with respect to each axis and to the origin. y x2 2 x

More information

Universal RAM Programs and Undecidability of the Halting Problem

Universal RAM Programs and Undecidability of the Halting Problem Chapter 5 Universal RAM Programs and Undecidability of the Halting Problem 5.1 Pairing Functions Pairing functions are used to encode pairs of integers into single integers, or more generally, finite sequences

More information

CSE 311: Foundations of Computing. Lecture 8: Predicate Logic Proofs

CSE 311: Foundations of Computing. Lecture 8: Predicate Logic Proofs CSE 311: Foundations of Computing Lecture 8: Predicate Logic Proofs Last class: Propositional Inference Rules Two inference rules per binary connective, one to eliminate it and one to introduce it Elim

More information

1-GENERATOR QUASI-CYCLIC CODES

1-GENERATOR QUASI-CYCLIC CODES Jrl Syst Sci & Complexity (2007) 20: 554 561 1-GENERATOR QUASI-CYCLIC CODES Junying PEI Xuejun ZHANG Received: 16 June 2005 Abstract This paper discusses the enumeration of 1-generator quasi-cyclic codes

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Peter Bro Miltersen September 29, 2005 Version 2.0 1 Kolmogorov Complexity In this section, we present the concept of Kolmogorov Complexity

More information

In class 75min: 2:55-4:10 Thu 9/30.

In class 75min: 2:55-4:10 Thu 9/30. MATH 4530 Topology. In class 75min: 2:55-4:10 Thu 9/30. Prelim I Solutions Problem 1: Consider the following topological spaces: (1) Z as a subspace of R with the finite complement topology (2) [0, π]

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

COMP80 Lambda Calculus Programming Languages Slides Courtesy of Prof. Sam Guyer Tufts University Computer Science History Big ideas Examples:

COMP80 Lambda Calculus Programming Languages Slides Courtesy of Prof. Sam Guyer Tufts University Computer Science History Big ideas Examples: COMP80 Programming Languages Slides Courtesy of Prof. Sam Guyer Lambda Calculus Formal system with three parts Notation for functions Proof system for equations Calculation rules called reduction Idea:

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

4 Generating functions in two variables

4 Generating functions in two variables 4 Generating functions in two variables (Wilf, sections.5.6 and 3.4 3.7) Definition. Let a(n, m) (n, m 0) be a function of two integer variables. The 2-variable generating function of a(n, m) is F (x,

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

Lecture 9: More Lambda Calculus / Types

Lecture 9: More Lambda Calculus / Types Lecture 9: More Lambda Calculus / Types CSC 131 Spring, 2019 Kim Bruce Pure Lambda Calculus Terms of pure lambda calculus - M ::= v (M M) λv. M - Impure versions add constants, but not necessary! - Turing-complete

More information

- M ::= v (M M) λv. M - Impure versions add constants, but not necessary! - Turing-complete. - true = λ u. λ v. u. - false = λ u. λ v.

- M ::= v (M M) λv. M - Impure versions add constants, but not necessary! - Turing-complete. - true = λ u. λ v. u. - false = λ u. λ v. Pure Lambda Calculus Lecture 9: More Lambda Calculus / Types CSC 131 Spring, 2019 Kim Bruce Terms of pure lambda calculus - M ::= v (M M) λv. M - Impure versions add constants, but not necessary! - Turing-complete

More information

CAS 701 Presentation. Ackermann's Function. Qinglei Zhang, Nov. 20, 2008.

CAS 701 Presentation. Ackermann's Function. Qinglei Zhang, Nov. 20, 2008. CAS 701 Presentation Ackermann's Function Qinglei Zhang, Nov. 20, 2008. History The belief in the early 1900s: every computable function was also primitive recursive A strict subset of the recursive functions:

More information

On Seese s Conjecture. Bruno Courcelle. Université Bordeaux 1, LaBRI

On Seese s Conjecture. Bruno Courcelle. Université Bordeaux 1, LaBRI On Seese s Conjecture Bruno Courcelle Université Bordeaux 1, LaBRI Summary 1. Graphs, Languages, Theories 2. MS-compatible structure transformations and MS-transductions 3. Seese s Conjecture 4. Tree-width

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

Well-behaved Dataflow Graphs

Well-behaved Dataflow Graphs Well-behaved Dataflow Graphs Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of echnology L21-1 Outline Kahnian networks and dataflow Streams with holes & agged interpretation

More information

Max-Min Control Problems and Solving Zero-Sum Games on Networks

Max-Min Control Problems and Solving Zero-Sum Games on Networks 2 Max-Min Control Problems and Solving Zero-Sum Games on Networs The mathematical tool we develop in this chapter allows us to derive methods and algorithms for solving max-min discrete control problems

More information

5 Graph Theory Basics

5 Graph Theory Basics November 14, 2017 5 Graph Theory Basics William T. Trotter trotter@math.gatech.edu Basic Definitions Definition A graph G is a pair (V, E) where V is a finite set and E is a set of 2-element subsets of

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

GEODETIC DOMINATION IN GRAPHS

GEODETIC DOMINATION IN GRAPHS GEODETIC DOMINATION IN GRAPHS H. Escuadro 1, R. Gera 2, A. Hansberg, N. Jafari Rad 4, and L. Volkmann 1 Department of Mathematics, Juniata College Huntingdon, PA 16652; escuadro@juniata.edu 2 Department

More information

The Calculi of Lambda-Conversion by Alonzo Church Annotated Notes and Ramblings of a Tired Student

The Calculi of Lambda-Conversion by Alonzo Church Annotated Notes and Ramblings of a Tired Student The Calculi of Lambda-Conversion by Alonzo Church Annotated Notes and Ramblings of a Tired Student Prepared by Ryan Flannery Contents 0 Pre-Introduction Introduction (?) 2 0.1 Numbers................................................

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1 Introduction to Automata Theory BİL405 - Automata Theory and Formal Languages 1 Automata, Computability and Complexity Automata, Computability and Complexity are linked by the question: What are the fundamental

More information

Dataflow analysis (ctd.)

Dataflow analysis (ctd.) Dataflow analysis (ctd.) Available expressions Determine which expressions have already been evaluated at each point. A expression x+y is available at point p if every path from the entry to p evaluates

More information

Theory of Computation - Module 1

Theory of Computation - Module 1 Theory of Computation - Module 1 Syllabus Proving techniques- Mathematical induction - Diagonalization principle - Pigeonhole principle - Functions - Primitive recursive and partial recursive functions

More information

Antisymmetric Relations. Definition A relation R on A is said to be antisymmetric

Antisymmetric Relations. Definition A relation R on A is said to be antisymmetric Antisymmetric Relations Definition A relation R on A is said to be antisymmetric if ( a, b A)(a R b b R a a = b). The picture for this is: Except For Example The relation on R: if a b and b a then a =

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic.

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic. Overview CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics Işıl Dillig So far: Automated reasoning in propositional logic. Propositional logic is simple and easy to

More information

Block-based Thiele-like blending rational interpolation

Block-based Thiele-like blending rational interpolation Journal of Computational and Applied Mathematics 195 (2006) 312 325 www.elsevier.com/locate/cam Block-based Thiele-like blending rational interpolation Qian-Jin Zhao a, Jieqing Tan b, a School of Computer

More information

Turing Machines. A transducer is a finite state machine (FST) whose output is a string and not just accept or reject.

Turing Machines. A transducer is a finite state machine (FST) whose output is a string and not just accept or reject. Turing Machines Transducers: A transducer is a finite state machine (FST) whose output is a string and not just accept or reject. Each transition of an FST is labeled with two symbols, one designating

More information

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter Summary Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Section 5.1 Sec.on Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken

More information

FINITELY GENERATED CLASSES OF SETS OF NATURAL NUMBERS

FINITELY GENERATED CLASSES OF SETS OF NATURAL NUMBERS FINITELY GENERATED CLASSES OF SETS OF NATURAL NUMBERS JULIA ROBINSON We say that a set S of natural numbers is generated by a class S of functions if S is the range of a function obtained by composition

More information

Notes for Lecture 20

Notes for Lecture 20 U.C. Berkeley CS170: Intro to CS Theory Handout N20 Professor Luca Trevisan November 13, 2001 Notes for Lecture 20 1 Duality As it turns out, the max-flow min-cut theorem is a special case of a more general

More information

Safe Stratified Datalog With Integer Order Does not Have Syntax

Safe Stratified Datalog With Integer Order Does not Have Syntax Safe Stratified Datalog With Integer Order Does not Have Syntax Alexei P. Stolboushkin Department of Mathematics UCLA Los Angeles, CA 90024-1555 aps@math.ucla.edu Michael A. Taitslin Department of Computer

More information

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of 2 A 2 B? Answer: 2 A 2 B = 2 A 2 B = 2 A 2 B = 8 16 = 128 Exercises Question 2: Is it true for all sets

More information