IN RECENT years, several authors proposed new parallel

Size: px
Start display at page:

Download "IN RECENT years, several authors proposed new parallel"

Transcription

1 56 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 1, FEBRUARY 2006 Uncoupled Actuation of Pan-Tilt Wrists J. M. Hervé Abstract Using algebraic properties of displacement (or rigid-body motion) subsets, the paper introduces new two-degree-of-freedom (2-DOF) nonoverconstrained orientation mechanisms. The angles of pan and tilt are also referred to as the angles of precession and nutation, respectively, employing the standard terminology of Euler angles. A serial array of two revolute pairs provides the kinematic constraint of an end-effector. For instance, the first axis of rotation is fixed vertically, and the second axis rotates around the first axis, remaining parallel to the horizontal plane. Such a 2-DOF wrist is fit for orienting various devices like telescopes, cameras, antennas, etc. The first axis is fixed, and can be actuated by any powerful heavy servomotor. The paper discloses new mechanisms that allow the actuation of the second movable axis by a fixed servomotor. Moreover, the actuation of the movable axis is not a function of the pan.in other words, the pan and the tilt are controlled independently or in a fully uncoupled manner. Index Terms Orientation manipulators, parallel mechanisms, type synthesis, uncoupled motion, wrists. I. INTRODUCTION IN RECENT years, several authors proposed new parallel wrists [1] [9]. These wrists are also termed orientation parallel mechanisms. The set of all rotations around axes passing through a given point is denoted. In this paper, curly brackets are employed to designate displacement subsets. The elements of are called spherical motions. Any spherical joint of center generates a displacement subset that is. The set is endowed with the algebraic structure of a 3-D Lie group. In any Cartesian frame of reference having its origin at, the Lie group of geometrical point transformations is represented by the isomorphic matrix Lie group usually denoted SO(3) [10]. The elements of SO(3) are special (proper) orthogonal matrices, and these matrices act on vector arrays of Cartesian coordinates. The notation SO(3) comes from the classical mathematical theory of the general linear group GL(n), which acts on elements of. Unfortunately, the notation SO(3) ignores the location of the center of the spherical displacements. As a consequence, this classical notation is not effective for geometric reasoning. The Lie subgroups of are the 1-D Lie subgroups of rotations around axes passing through the given point and parallel to the unit vector. A revolute pair of axis generates the displacement subset.if is a Cartesian frame of reference, then the first two Manuscript received February 22, 2005; revised July 6, This paper was recommended for publication by Associate Editor J. Angeles and Editor H. Arai upon evaluation of the reviewers comments. The author is with the Ecole Centrale Paris, Grande voie des vignes, Chatenay-Malabry 92295, France ( jherve@ecp.fr). Digital Object Identifier /TRO coordinates of any generic point are transformed through a product by a matrix of the Lie subgroup SO(2) [10]. However, the classical notation SO(2) gives no information about the axis, which is essential for any geometric analysis. If two revolute pairs with axes intersecting at point generate two subgroups and, then the kinematic chain of the serial array of these pairs generates a displacement subset, which is the product represented as. In any algebraic group, the product of two subsets is the set of the element products. and are included in. Because of the product closure in the group, the product is also included in. If, then the intersection is the set that contains only the identity transform. is the improper displacement subgroup of dimension zero. The product is a 2-D manifold included in the 3-D subgroup, but it is not a Lie subgroup of. By the same token, one can show that if are linearly independent vectors, then is a 3-D manifold included in the 3-D Lie group. The identity transform belongs to both and. Hence, is a 3-D neighborhood of the identity in the group ; when dealing with motion type, one can ignore the boundaries of the neighborhood and, therefore,. Neglecting the possible difference in the amplitude of the displacements allowed, the serial array of three revolute pairs with axes intersecting at generates the subgroup of spherical rotations around. Hence, there are multiple ways to generate, namely, the spherical joint of center and any serial layout of three revolute pairs (RRR), provided that the axes intersect at and are not coplanar. A spherical parallel mechanism (or parallel wrist) can be constructed, implementing three distinct legs that generate the same subgroup [1], [2]. These mechanisms are overconstrained, because one leg is enough to produce the spherical motion and the other two legs are redundantly compatible with the first given leg. By addition of mobility in the legs, nonoverconstrained parallel wrists were devised [3] [7]. In these new parallel wrists, each leg generates a 5-D manifold of displacements, which contains the subgroup. The product of two Lie subgroups of rotation around two intersecting axes is not a Lie subgroup of displacements, but rather a 2-D manifold included in. However, this motion type is often useful in many applications for orienting objects that have axial symmetry. In most cases, is vertical and is horizontal. Employing the standard Euler terminology, the angle of rotation about the vertical axis is called /$ IEEE

2 HERVÉ: UNCOUPLED ACTUATION OF PAN-TILT WRISTS 57 Fig. 1. Fig. 2. (a) Serial pan-tilt wrist. (b) Parallel pan-tilt wrist. (a) Spherical pan-tilt wrist. (b) Nonoverconstrained 2-DOF wrist. the precession, and the angle of rotation about the horizontal axis is the nutation. In other terminology, these angles are named azimuth and elevation, or also pan and tilt; in this paper, the words pan and tilt will be preferred. That motion type is generated by the series array of two revolute pairs that is sketched in Fig. 1(a). One cannot use the closure of the product in any subgroup to establish that would be equal to another product of two factors. However, a fully parallel two-degree-offreedom (2-DOF) wrist with two limbs is depicted in Fig. 1(b). The two servomotors cannot be mounted on the frame. The pan motor can be on a first limb, and the tilt motor can be on a second limb, but that tilt motor is not fixed. In order to ease the understanding, actuated pairs are gray-colored and the limb that is used to actuate the tilt is drawn with gray lines. Gosselin and Caron [8] proposed a parallel actuation of a 2-DOF wrist, Fig. 2(a). The whole mechanism is a spherical single loop kinematic chain and all relative displacements are spherical motions around a center. This mechanism is overconstrained and requires five intersecting axes; else, the mechanism cannot work. Carricato and Parenti-Castelli [9] proposed a novel 2-DOF wrist. In this mechanism type, a fixed motor can actuate the tilt independently of the pan. The nonoverconstrained version of this wrist will be demonstrated and depicted, among others, in Section III, using group theory. II. GROUP THEORY IN KINEMATICS Notwithstanding relevant recent papers, for instance, [11], most of present-day authors dealing with robot kinematics and type synthesis of parallel manipulators do not usually employ group theory. Hence, it may be worth recalling some fundamental aspects of what can be found in the literature. Moreover, a clarified presentation of basic concepts seems to be necessary. Actually, the group-algebraic property of the Euclidean displacement set formalizes and generalizes properties that are generally considered as obvious. For instance, the product of two translations is still a translation, the product of two spherical motions around a point is a spherical motion around the same point, etc. Using the terminology of algebra, one will say that the product of translations is a closed product in the subset of translations, etc. Roughly speaking, an algebraic group is a set endowed with a closed product having the properties of a multiplication that is not always commutative. The set of rigid-body displacements is endowed with the algebraic structure of a group. More precisely, this group is a 6-D Lie group, which is also endowed with the algebraic structure of a smooth 6-D manifold. The author, who introduced a geometric notation for the Lie subgroups of displacements, discovered early on the importance of the algebraic structure of a group in the analysis and synthesis of mechanisms [12]. Further contributions were disclosed in [13]. The book of Karger and Novák [14], first published in Czech, and later translated into English, laid the mathematical foundations for the application of the Lie theory of groups to the kinematics of rigid-body systems. However, the key role of Lie subgroups is ignored in that book. Later, Selig [10] published a full book, which is an extensive and valuable contribution to the Lie theory of groups in kinematics and robotics. Nevertheless, Selig s work is a special development of the matrix subgroup SE(3) of the more general theory of the matrix group GL(n) acting on -dimensional vectors. Selig [15] became aware of some incompleteness in the matrix notation. The matrix Lie subgroups of SE(3) actually represent conjugacy (or conjugation) classes of subgroups, instead of subgroups of geometrical transformations. As a matter of fact, the matrix subgroups have to be associated with a frame of reference in order to become geometric subgroups. That is, matrix notation gives no information on the frame of reference and, therefore, is not adequate for reasoning with geometric entities. Most of the displacement Lie subgroups have a usual name, the initial of which is recalled in the author s notation. For example, R means rotation, T translation, S spherical displacement, and so on. The invariant geometric entity, which determines a particular subgroup among all the equivalent subgroups of its conjugacy class, is also included in the author s notation. For example, an axis can be determined by a frame of reference, and a subgroup of rotations around the axis is consequently denoted. A property of the subgroup is to be represented by a matrix subgroup SO(2) in any frame of reference. The required elements of the frame of reference are underlined in the foregoing example, as well as in Table I. Notation

3 58 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 1, FEBRUARY 2006 TABLE I SUBGROUP NOTATION TABLE III PRODUCTS OF DEPENDENT SUBGROUPS [12] TABLE II GRAPH OF BINARY RELATION TO BE A LIE SUBGROUP OF A LIE SUBGROUP SO(2) could be used instead of. Table I shows the connections between the geometric subgroups [12], [13] and the matrix subgroups, as explained in [10]. The inclusion of a Lie subgroup in a greater-dimensional Lie subgroup defines a binary relation of partial order between all the Lie subgroups. Most of the inclusions are subject to geometric conditions that are recalled in Table II. It may be worth recalling that in any group, the intersection of two subgroups is always a subgroup. If the intersection of two subgroups is the improper subgroup, which contains only one element, the identity transform, then the subgroups are said independent; else, subgroups are dependent. The product of two dependent subgroups contains twice the subgroups of their intersection. The redundancy in that intersection can be eliminated, thus yielding a regular representation of the product, i.e., without superfluous parameters. Detailed explanation of such an elimination is done in the paper for the cases and. The table of products of dependent subgroups that was published in [12] is reproduced here as Table III for completeness. Gray coloring indicates the cases that are used in the paper. The other cases are not relevant to our particular problem because the product contains the translation set, that has to be avoided. In a given kinematic chain, the set of feasible relative displacements of a rigid body with respect to a second body is called kinematic bond between these two bodies. Generally, a kinematic bond is a manifold in, which has a dimension. The integer is called dimension or degree of freedom of the bond. However, in very special closed-loop chains, a kinematic bond has a bifurcation and is not a manifold. In these singular cases, the DOF is not well defined. A

4 HERVÉ: UNCOUPLED ACTUATION OF PAN-TILT WRISTS 59 Fig. 3. (a) Coupled actuation of pan and tilt. (b) Special arrangement with two coaxial R pairs. kinematic chain that produces a given bond between two of its bodies is called a generator of the bond. A given bond generally has several generators that can be considered as kinematic equivalencies. III. GENERAL GEOMETRY OF PAN-TILT WRISTS In what follows, numerous novel pan-tilt wrists are synthesized with three advantageous properties: the mechanism is not overconstrained and, therefore, can work even in the presence of manufacturing and assembly errors; the actuation of the angle of tilt is not a function of the angle of pan; the tilt is actuated by a fixed servomotor, which may be linear or rotational (actuation by a helical pair is not considered). A general nonoverconstrained 2-DOF wrist mechanism is shown in Fig. 2(b). The fixed base is connected to the oriented body by two limbs. One limb is an array that produces the geometric constraint of the desired motion; the second limb is any kinematic chain that generates 6-DOF motions. In other words, the second limb is a generator of the displacement group. The 6-D Lie group is represented in any Cartesian frame of reference by the matrix group usually called special Euclidean group and denoted SE(3). A possible second limb architecture is, which is a serial chain of two revolute pairs, one prismatic pair, and a spherical pair. Such a mechanism is shown in Fig. 3(a). The pair can be chosen for the actuation of the tilt. However, the rotation around the vertical axis (pan) generally will modify the tilt for any given value of the translation in the actuated pair. In other words, the pan and the tilt are coupled. A more special second limb can be made of a serial arrangement of a 5-DOF kinematic chain and a revolute pair, which is coaxial with the fixed revolute pair producing the pan, Fig. 3(b). The kinematic chain is closed, including two adjacent coaxial pairs, which produce a passive rotation in the loop. Consequently, the chain works as an equivalent chain, which is a general spatial chain that is movable with one DOF, and the whole chain can rotate around the fixed axis. The mechanism can be Fig. 4. (a) General uncoupled actuation. (b) Special architecture. considered as equivalent to a rotating closed loop. An example of a mechanism with uncoupled actuation of the pan and the tilt is shown in Fig. 4(a). In this example, a moving prismatic (gray) pair actuates the angle without affecting the value of. In a special case of a possible kinematic chain shown in Fig. 4(b) for the independent actuation of, an actuated pair is adjacent and parallel to the pair that is coaxial with the actuated pair of the pan. Then the array is equivalent to a cylindrical pair that generates the 2-D Lie subgroup of displacements. is an Abelian or commutative group: the product of two transformations that belong to does not depend on the order of the two factors. One can also write being called a direct product of and in group theory. Hence, the order of the two kinematic pairs in can be changed without modifying the values of the rotation in and the translation in. The resulting mechanism of Fig. 5(a) is equivalent to the mechanism of Fig. 4(b). In the new layout, the actuated pair becomes fixed. A family of nonoverconstrained 2-DOF orientation mechanisms with a tilt actuation that is not coupled with the pan actuation has the architecture type proposed by Fig. 5(b). The oriented object and the fixed actuated pair are connected by a kinematic chain, which generates a 5-D manifold included in the 6-D Lie group of displacements. It is worth noticing that the notation does not characterize a precise manifold but only a manifold type, whereas the Lie subgroups are fully determined by the author s notation. Suitable manifolds have to obey two conditions. The manifold must contain the subgroup of rotations around the fixed axis, and must not contain the subgroup. In other words and The last condition is required to obtain the necessary six dimensions of the kinematic bond between the fixed base and the oriented body (see Fig. 5).

5 60 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 1, FEBRUARY 2006 Fig. 5. (a) Fixed actuation of an uncoupled pan-tilt wrist. (b) Its generic type. Fig. 6. family. (a) Nonmovable chain. (b) Its integration in a general wrist of the first A general possible solution is that is illustrated by the example of Fig. 5(a). can be any 4-D manifold that verifies. A less obvious solution is obtained if. is a displacement Lie subgroup of dimension. contains and is a manifold of dimension 5-. The condition movable chain, Fig. 6(a), which establishes the required property. Hence, the limb can be used to transmit the actuation in the fixed joint in a manner that is uncoupled with the pan, Fig. 6(b). However, particular geometric conditions have to be avoided, as explained in Section VI. There are many ways to generate an adequate manifold. A special way is the use of a product of two dependent subgroups. A simple example is given by with implies necessarily but not always sufficiently that and Hence, despite cannot be the 4-D subgroup of Schönflies (often spelt Schoenflies) motions, because always contains the 3-D subgroup of spatial translation, which intersects with the linear translation. As a matter of fact, one can write Likewise, though cannot be because is included in Hence, only two subgroups containing can be the subgroup, namely, the subgroup of spherical motions around the point Q with axis, and the subgroup or of planar displacements along a plane Pl that is perpendicular to the unit vector. IV. FIRST FAMILY OF WRISTS: An serial chain is chosen as an example of a limb that generates an adequate manifold. In this example, the adequate manifold is Because of the product closure in the subgroup can be decomposed into the product of three rotation subgroups around three axes intersecting at Q, and therefore, one can write provided that are linearly independent. It is worth recalling that the equality is valid for finite displacements only in a neighborhood of the identity. One can also write for any vector base can be equated to, and the product However, and designate the same axis, because belongs to the axis ; therefore, and are equal. The square of is equal to because of the product closure in the subgroup. The product is the 5-D manifold provided that the spherical pair center Q lies on the axis. The closed loop of structural type is generally a non- which is also equal to

6 HERVÉ: UNCOUPLED ACTUATION OF PAN-TILT WRISTS 61 Fig. 7. (a) Wrist with an SS arrayof Carricato and Parenti-Castelli and (b) related wrist without passive motion. Fig. 9. motion. (a) Wrist with an SG array, and (b) related wrist without passive Fig. 8. (a) Kinematic equivalences of an SS array, and (b) of an SG array. Fig. 10. (a) Nonmovable subchain and (b) its integration in a general wrist of the second family. These set equalities have a practical application. A 5-DOF serial array of two spherical pairs can be employed, thus leading to the sketch of Fig. 7(a). This mechanism is the actuator of the tilt in the pointing device of Carricato and Parenti-Castelli [9]. The free rotation around the axis determined by the two sphere centers is passive, with respect to the kinematic bond generated by. This passive motion can be eliminated. If stands for two pairs with axes intersecting at the center of the first pair, any open chain can replace the array, provided that the axes and the line of the two sphere centers make up a frame of reference, Fig. 8(a). Hence, the new mechanism of Fig. 7( b) without two coaxial revolute pairs is derived. Referring to Table III of dependent subgroups (Section II), a manifold can be also the result of. The intersection is the subgroup, where is the unit vector that is perpendicular to the plane direction Pl. can also be denoted. By elimination of the redundancy of the square of can be equated to the 5-D manifold. The condition implies that the plane Pl has to be nonparallel to. The optimal situation for this condition is obtained for. Fig. 8(b) shows a possible elimination of the passive rotation in the chain, which is equivalent to an chain. In Fig. 9(a), an array of a spherical pair and a planar pair generates the manifold. The implementation of this chain in a pan-tilt wrist is shown in Fig. 9(b), where the pair is replaced by an equivalent generator of planar motion (or planar gliding). Obviously, other generators, and of planar motion can also be implemented. In the symbolic notation of pair arrays, the underline indicates planar chains. V. SECOND FAMILY OF WRISTS: The manifold can also be the subgroup of planar displacements if and only if the plane is perpendicular to. A corresponding embodiment of the limb for the tilt actuation has the architecture, provided that the pair axes are not parallel to, Fig. 10(b). The closed loop of Fig. 10(a) generally is not movable (exceptions are explained in Section VI), which means The planar pair generates the subgroup of planar displacements, but its kinematic equivalencies also do. The equivalency

7 62 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 1, FEBRUARY 2006 Fig. 12. (a) Wrist with a GS array and (b) equivalent wrist with a planar-spherical subchain, RR-S, (c) PR-S, (d) PP-S. Fig. 11. Wrist with a subchain of type G. (a) RR : RRR-RR, (b) RRP -RR, (c) RP P -RR, (d) RRR-U. can be a series of three revolute pairs with axes perpendicular to the equivalent plane. As a matter of fact, the rotations that are produced by the pairs are included in the planar motion of, and the product of the three independent rotations is a closed product in the 3-D subgroup. That way, the mechanism of Fig. 11(a) is readily obtained. In this new system, there is no real pair that is coaxial with the precession pair. Other generators of planar motion, namely can replace the planar chain. Fig. 11(b) and (c) show examples with one and two pairs for the generation of.itis noteworthy that in any limb of the family type, the two pairs can have intersecting axes, thus making up a universal joint, and Fig. 11(d) depicts a simple mechanism that may have some practical interest. In the joint, the direction of an axis can be chosen almost freely, but must not be perpendicular to the plane of ; else, the serial array is singular. The adequate manifold can also be obtained by means of other kinematic chains. Some products of two dependent subgroups can be equated to,as explained above in the case of the family with. The numerous equivalencies of the serial layout of a generator of planar displacements and a generator of spherical displacements can be used once more. Fig. 12(a) shows the use of a array of a planar pair and a spherical pair to generate an adequate 5-D manifold. Fig. 12(b), (c), and (d) illustrate the implementation of some of the equivalencies of that are obtained by elimination of Fig. 13. Wrist with a planar-cylindrical subchain of type (a) RRC, (b) RP C. the superfluous 1-DOF rotation in. All the numerous equivalencies of the planar-spherical bond are discussed in [16], and are also disclosed as limbs of parallel 5-DOF manipulators by Li et al. [17]. In Fig. 11(b), a subchain can be replaced by, provided that the pair axis in is chosen parallel to the pair, thereby obtaining the device of Fig. 13. By the same token, the mechanism of Fig. 11(c) can become the special system of Fig. 13(b). VI. INADEQUATE LIMBS The limb that transmits the actuation in the fixed joint to the tilt generates 5-D manifolds of displacements, which have to be independent of the vertical translation or. In other words, must not contain. It is not quite simple to verify that condition. Many 5-D manifolds contain

8 HERVÉ: UNCOUPLED ACTUATION OF PAN-TILT WRISTS 63 In Fig. 15, two pairs are parallel in the limb producing the 5-D manifold, where is the unit vector in the direction of the two parallel pairs. Vector may be perpendicular to or not. The 2-D manifold is included in the 3-D subgroup. Hence, is included with broad meaning in, which is a product of two dependent subgroups. The intersection is equal to being perpendicular to both and. We can write Fig. 14. (a) Wrong pan-tilt wrist and (b) its movable subchain. because of the product closure in the subgroup. Hence, is proven. By other possible ways of elimination of the redundant subgroup, the set equality is in- can be established (see Table III), which proves that cluded in Consequently, the closed chain of Fig. 15(b) is movable with one DOF, and the mechanism of Fig. 15(a) does not work as a 2-DOF wrist. Fig. 15. (a) Wrong pan-tilt wrist and (b) its movable subchain. translational displacement subsets. The 5-D manifolds that contain must be rejected because. The 5-DOF limbs of translational parallel manipulators [18] produce 5-D manifolds that contain the 3-D subgroup. The manifolds containing a subgroup of planar translations must be rejected only if the plane is parallel to. A comprehensive discussion on these numerous 5-D manifolds, which must be avoided for obtaining adequate manifolds, lies outside of the scope of the paper. In what follows, two examples show that by adding special geometric conditions, a 5-D manifold may become inadequate. Fig. 14(a) is a particular geometry of the mechanism of Fig. 6(b). Two pairs have parallel axes, namely and. The manifold is. This manifold can be equated to a product of two dependent subgroups (see Table III) Hence, the manifold contains. If is perpendicular to, then contains. The closed chain of Fig. 14(b) is movable as a 1-DOF planar chain, and therefore, the device of Fig. 14(a) is not a 2-DOF wrist. Fig. 15(a) shows a special case of the mechanism of Fig. 10(b). VII. CONCLUSION Many new pan-tilt devices were disclosed in addition to the mechanical systems introduced by Carricato and Parenti-Castelli. In these parallel wrists, the two actuators can be mounted directly on the base and, hence, can be heavy and bulky without adding to the inertial forces and, consequently, without compromising the capability of a very fast pan-tilt wrist. Such a statement seems to be effective for the 2-DOF agile eye of the Robotics Laboratory of Laval University, Quebec, QC, Canada. However, the use of a limb also implies moving masses. In practice, the kinetic energy of the limb should be compared with the kinetic energy of a moving servomotor in order to choose the best design for a 2-DOF wrist. Moreover, in parallel 2-DOF wrists, the collision-free and singularity-free workspace is reduced and, moreover, the tolerance in the joints may degrade the performance. The discussion of such practical concerns lies outside of the scope of the paper that is essentially theoretical. Nevertheless, the new 2-DOF parallel wrists that are introduced in the paper may have advantageous features depending on specific applications. The actuation of the tilt is fully uncoupled with the actuation of the pan, thereby providing a direct control of these two angles. These angles can be actuated intuitively. The rotations are referred to the vertical direction and, therefore, can account for the gravity effect. The possible incorporation of a weight-balancing fixed device can be envisioned. Hence, the simplest mechanisms described here seem to be well-suited for orienting an object like a camera, an antenna, a laser beam, etc., and maybe also for adjusting the pitch of windmill wings or helicopter blades.

9 64 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 1, FEBRUARY 2006 The algebraic properties of displacement subsets constitute the cornerstone of the method used. The paper also contributes to the advancement of the science of mechanisms and machines. REFERENCES [1] H. Asada and J. A. Cro Granito, Kinematic and static characterization of wrist joints and their optimal design, in Proc. IEEE Int. Conf. Robot. Autom., St. Louis, MO, 1985, pp [2] C. Gosselin and J. Angeles, The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator, ASME J. Mech., Transmission, Autom. Des., vol. 111, no. 2, pp , [3] M. Karouia and J. M. Hervé, A three-dof tripod for generating spherical rotation, in Advances in Robot Kinematics. Dordrecht, The Netherlands: Kluwer, 2000, pp [4], A family of novel orientational 3-DOF parallel robots, in Romansy. Vienna, Austria: Springer Wien, 2002, vol. 14, pp [5], New parallel wrists: Special limbs with motion dependency, in On Advances in Robot Kinematics. Dordrecht, The Netherlands: Kluwer, 2004, pp [6] X.-W. Kong and C. M. Gosselin, Type synthesis of 3-DOF spherical parallel manipulators based on screw theory, in Proc. ASME DETC, Montréal, QC, Canada, Sep. Oct. 2002, Paper DETC2002/MECH [7], Type synthesis of three-degree-of-freedom spherical parallel manipulators, Int. J. Robot. Res., vol. 23, no. 3, pp , [8] C. Gosselin and F. Caron, Two-Degree-of-Freedom Spherical Orienting Device, U.S. Patent 5,966,991, Oct. 19, [9] M. Carricato and V. Parenti-Castelli, A novel fully decoupled two-degrees-of-freedom parallel wrist, Int. J. Robot. Res., vol. 23, no. 6, pp , [10] J. M. Selig, Geometrical Methods in Robotics. New York: Springer, [11] J. Angeles, The qualitative synthesis of parallel manipulators, ASME J. Mech. Des., vol. 126, no. 4, pp , [12] J. M. Hervé, Analyze structurelle des mécanismes par groupe des déplacements, Mech. Mach. Theory, vol. 13, no. 4, pp , [13], The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory, vol. 34, no. 5, pp , Jul [14] A. Karger and J. Novák, Space Kinematics and Lie Groups. New York: Gordon and Breach, [15] J. M. Selig, Geometrical Foundations of Robotics, Singapore: World Scientific, [16] J. M. Hervé and I. Bonev. (2003) The planar-spherical bond, implementation in parallel mechanisms. [Online]. Available: [17] Q.-C. Li, Z. Huang, and J. M. Hervé, Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements, IEEE Trans. Robot. Autom., vol. 20, no. 2, pp , Apr [18] A. Frisoli, D. Checcacci, F. Salsedo, and M. Bergamasco, Synthesis by screw algebra of translating in-parallel actuated mechanisms, in Adv. Robot Kinematics. Dordrecht, The Netherlands: Kluwer, 2000, pp science. Jacques M. Hervé was born in France in He received the Dipl.Ing. degree from Ecole Centrale Paris, Paris, France, in 1968, and the Ph.D. degree in 1976 from the University of Paris 6, Paris, France. He began an academic career in 1968, and in 1983, he was appointed Professor and became responsible for a research team in mechanical design at Ecole Centrale Paris. He has been an Invited Researcher in the U.S., Canada, and Japan, and is also a consultant for several companies. His professional interest is teaching and research in mechanism and machine

High-Precision Five-Axis Machine for High-Speed Material Processing Using Linear Motors and Parallel-Serial Kinematics

High-Precision Five-Axis Machine for High-Speed Material Processing Using Linear Motors and Parallel-Serial Kinematics High-Precision Five-Axis Machine for High-Speed Material Processing Using Linear Motors and Parallel-Serial Kinematics Sameh Refaat*, Jacques M. Hervé**, Saeid Nahavandi* and Hieu Trinh* * Intelligent

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL MODELIZATION OF A 3-PSP 3-DOF PARALLEL MANIPULATOR USED AS FLIGHT SIMULATOR MOVING SEAT. MASTER IN ENGINEERING PROJET III MEC693 SUBMITTED TO: Luc Baron Ph.D. Mechanical

More information

A Family of New Parallel Architectures with Four Degrees of Freedom

A Family of New Parallel Architectures with Four Degrees of Freedom A Family of New arallel Architectures with Four Degrees of Freedom DIMITER ZLATANOV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 74 Tel: (418) 656-3474,

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach

The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach The Collision-free Workspace of the Tripteron Parallel Robot Based on a Geometrical Approach Z. Anvari 1, P. Ataei 2 and M. Tale Masouleh 3 1,2 Human-Robot Interaction Laboratory, University of Tehran

More information

The International Journal of Robotics Research

The International Journal of Robotics Research The International Journal of Robotics Research http://ijr.sagepub.com On the Kinematic Design of Spherical Three-Degree-of- Freedom Parallel Manipulators Clément M. Gosselin and Eric Lavoie The International

More information

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS

SYNTHESIS OF PLANAR MECHANISMS FOR PICK AND PLACE TASKS WITH GUIDING LOCATIONS Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA DETC2013-12021

More information

Rotating Table with Parallel Kinematic Featuring a Planar Joint

Rotating Table with Parallel Kinematic Featuring a Planar Joint Rotating Table with Parallel Kinematic Featuring a Planar Joint Stefan Bracher *, Luc Baron and Xiaoyu Wang Ecole Polytechnique de Montréal, C.P. 679, succ. C.V. H3C 3A7 Montréal, QC, Canada Abstract In

More information

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Júlia Borràs (1), Erika Ottaviano (2), Marco Ceccarelli (2) and Federico Thomas (1) (1) Institut de Robòtica i Informàtica

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism and Robot Kinematics, Part I: Algebraic Foundations Mechanism and Robot Kinematics, Part I: Algebraic Foundations Charles Wampler General Motors R&D Center In collaboration with Andrew Sommese University of Notre Dame Overview Why kinematics is (mostly)

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

Working and Assembly Modes of the Agile Eye

Working and Assembly Modes of the Agile Eye Working and Assembly Modes of the Agile Eye Ilian A. Bonev Damien Chablat and Philippe Wenger Département de génie de la production automatisée Institut de Recherche en Communications École de Technologie

More information

Kinematic Design Principles

Kinematic Design Principles Kinematic Design Principles BJ Furman 24SEP97 Introduction Machines and instruments are made up of elements that are suitably arranged and many of which that are movably connected. Two parts that are in

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Kinematic chains 1 Readings & prerequisites Chapter 2 (prerequisites) Reference systems Vectors Matrices Rotations, translations, roto-translations Homogeneous representation of vectors and matrices Chapter

More information

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS ALBA PEREZ Robotics and Automation Laboratory University of California, Irvine Irvine, CA 9697 email: maperez@uci.edu AND J. MICHAEL MCCARTHY Department of Mechanical

More information

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT

DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT DOUBLE CIRCULAR-TRIANGULAR SIX-DEGREES-OF- FREEDOM PARALLEL ROBOT V. BRODSKY, D. GLOZMAN AND M. SHOHAM Department of Mechanical Engineering Technion-Israel Institute of Technology Haifa, 32000 Israel E-mail:

More information

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices

An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices An Improved Dynamic Modeling of a 3-RPS Parallel Manipulator using the concept of DeNOC Matrices A. Rahmani Hanzaki, E. Yoosefi Abstract A recursive dynamic modeling of a three-dof parallel robot, namely,

More information

Changing Assembly Modes without Passing Parallel Singularities in Non-Cuspidal 3-RPR Planar Parallel Robots

Changing Assembly Modes without Passing Parallel Singularities in Non-Cuspidal 3-RPR Planar Parallel Robots Changing Assembly Modes without Passing Parallel Singularities in Non-Cuspidal 3-RPR Planar Parallel Robots Ilian A. Bonev 1, Sébastien Briot 1, Philippe Wenger 2 and Damien Chablat 2 1 École de technologie

More information

Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities

Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities Resolution of spherical parallel Manipulator (SPM) forward kinematic model (FKM) near the singularities H. Saafi a, M. A. Laribi a, S. Zeghloul a a. Dept. GMSC, Pprime Institute, CNRS - University of Poitiers

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

A Pair of Measures of Rotational Error for Axisymmetric Robot End-Effectors

A Pair of Measures of Rotational Error for Axisymmetric Robot End-Effectors A Pair of Measures of Rotational Error for Axisymmetric Robot End-Effectors Sébastien Briot and Ilian A. Bonev Department of Automated Manufacturing Engineering, École de Technologie Supérieure (ÉTS),

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute We know how to describe the transformation of a single rigid object w.r.t. a single

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic chains Readings & prerequisites From the MSMS course one shall already be familiar with Reference systems and transformations Vectors

More information

Workspaces of planar parallel manipulators

Workspaces of planar parallel manipulators Workspaces of planar parallel manipulators Jean-Pierre Merlet Clément M. Gosselin Nicolas Mouly INRIA Sophia-Antipolis Dép. de Génie Mécanique INRIA Rhône-Alpes BP 93 Université Laval 46 Av. Felix Viallet

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Type synthesis of 3-DOF multi-mode translational/spherical parallel mechanisms with lockable joints Kong, Xianwen; Jin, Yan

Type synthesis of 3-DOF multi-mode translational/spherical parallel mechanisms with lockable joints Kong, Xianwen; Jin, Yan Heriot-Watt University Heriot-Watt University Research Gateway Type synthesis of 3-DOF multi-mode translational/spherical parallel mechanisms with lockable joints Kong, Xianwen; Jin, Yan Published in:

More information

ACOMPARISON of the number of independent actively. Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms

ACOMPARISON of the number of independent actively. Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms IEEE TRANSACTIONS ON ROBOTICS, VOL 21, NO 3, JUNE 2005 277 Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platms Maher G Mohamed and Clément M Gosselin, Member,

More information

PPGEE Robot Dynamics I

PPGEE Robot Dynamics I PPGEE Electrical Engineering Graduate Program UFMG April 2014 1 Introduction to Robotics 2 3 4 5 What is a Robot? According to RIA Robot Institute of America A Robot is a reprogrammable multifunctional

More information

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1

Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N 1 David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 James P. Schmiedeler The Ohio State University, Columbus, OH 43210 e-mail:

More information

A NOVEL METHOD FOR THE DESIGN OF 2-DOF PARALLEL MECHANISMS FOR MACHINING APPLICATIONS

A NOVEL METHOD FOR THE DESIGN OF 2-DOF PARALLEL MECHANISMS FOR MACHINING APPLICATIONS A NOVEL METHOD FOR THE DESIGN OF 2-DOF PARALLEL MECHANISMS FOR MACHINING APPLICATIONS Félix Majou Institut de Recherches en Communications et Cybernétique de Nantes 1, 1 rue de la Noë, 44321 Nantes, FRANCE

More information

LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS

LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS LEVEL-SET METHOD FOR WORKSPACE ANALYSIS OF SERIAL MANIPULATORS Erika Ottaviano*, Manfred Husty** and Marco Ceccarelli* * LARM: Laboratory of Robotics and Mechatronics DiMSAT University of Cassino Via Di

More information

Moveability and Collision Analysis for Fully-Parallel Manipulators

Moveability and Collision Analysis for Fully-Parallel Manipulators Moveability and Collision Analysis for Fully-Parallel Manipulators Damien Chablat, Philippe Wenger To cite this version: Damien Chablat, Philippe Wenger. Moveability and Collision Analysis for Fully-Parallel

More information

Force-Moment Capabilities of Redundantly-Actuated Planar-Parallel Architectures

Force-Moment Capabilities of Redundantly-Actuated Planar-Parallel Architectures Force-Moment Capabilities of Redundantly-Actuated Planar-Parallel Architectures S. B. Nokleby F. Firmani A. Zibil R. P. Podhorodeski UOIT University of Victoria University of Victoria University of Victoria

More information

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS

DETC APPROXIMATE MOTION SYNTHESIS OF SPHERICAL KINEMATIC CHAINS Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-34372

More information

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France Some algebraic geometry problems arising in the field of mechanism theory J-P. Merlet INRIA, BP 93 06902 Sophia Antipolis Cedex France Abstract Mechanism theory has always been a favorite field of study

More information

Inherently Balanced Double Bennett Linkage

Inherently Balanced Double Bennett Linkage Inherently Balanced Double Bennett Linkage V. van der Wijk Delft University of Technology - Dep. of Precision and Microsystems Engineering Mechatronic System Design, e-mail: v.vanderwijk@tudelft.nl Abstract.

More information

SCREW-BASED RELATIVE JACOBIAN FOR MANIPULATORS COOPERATING IN A TASK

SCREW-BASED RELATIVE JACOBIAN FOR MANIPULATORS COOPERATING IN A TASK ABCM Symposium Series in Mechatronics - Vol. 3 - pp.276-285 Copyright c 2008 by ABCM SCREW-BASED RELATIVE JACOBIAN FOR MANIPULATORS COOPERATING IN A TASK Luiz Ribeiro, ribeiro@ime.eb.br Raul Guenther,

More information

Orientation Capability, Error Analysis, and Dimensional Optimization of Two Articulated Tool Heads With Parallel Kinematics

Orientation Capability, Error Analysis, and Dimensional Optimization of Two Articulated Tool Heads With Parallel Kinematics Xin-Jun Liu Institute of Manufacturing Engineering, Department of Precision Instruments, Tsinghua University, Beijing, 100084, People s Republic of China e-mail: XinJunLiu@mail.tsinghua.edu.cn Ilian A.

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Synthesis of Spatial RPRP Loops for a Given Screw System

Synthesis of Spatial RPRP Loops for a Given Screw System Synthesis of Spatial RPRP Loops for a Given Screw System A. Perez-Gracia Institut de Robotica i Informatica Industrial (IRI) UPC/CSIC, Barcelona, Spain and: College of Engineering, Idaho State Univesity,

More information

EE Kinematics & Inverse Kinematics

EE Kinematics & Inverse Kinematics Electric Electronic Engineering Bogazici University October 15, 2017 Problem Statement Kinematics: Given c C, find a map f : C W s.t. w = f(c) where w W : Given w W, find a map f 1 : W C s.t. c = f 1

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Single Actuator Shaker Design to Generate Infinite Spatial Signatures

Single Actuator Shaker Design to Generate Infinite Spatial Signatures 2 nd International and 17 th National Conference on Machines and Mechanisms inacomm215-55 Single Actuator Shaker Design to Generate Infinite Spatial Signatures K D Lagoo, T A Dwarakanath and D N Badodkar

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions

A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions Wenger P., Chablat D. et Baili M., A DH-parameter based condition for R orthogonal manipulators to have 4 distinct inverse kinematic solutions, Journal of Mechanical Design, Volume 17, pp. 150-155, Janvier

More information

THE KINEMATIC DESIGN OF A 3-DOF HYBRID MANIPULATOR

THE KINEMATIC DESIGN OF A 3-DOF HYBRID MANIPULATOR D. CHABLAT, P. WENGER, J. ANGELES* Institut de Recherche en Cybernétique de Nantes (IRCyN) 1, Rue de la Noë - BP 92101-44321 Nantes Cedex 3 - France Damien.Chablat@ircyn.ec-nantes.fr * McGill University,

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory

An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory An Efficient Method for Solving the Direct Kinematics of Parallel Manipulators Following a Trajectory Roshdy Foaad Abo-Shanab Kafr Elsheikh University/Department of Mechanical Engineering, Kafr Elsheikh,

More information

Novel 6-DOF parallel manipulator with large workspace Daniel Glozman and Moshe Shoham

Novel 6-DOF parallel manipulator with large workspace Daniel Glozman and Moshe Shoham Robotica: page 1 of 5. 2009 Cambridge University Press doi:10.1017/s0263574708005286 Novel 6-DOF parallel manipulator with large workspace Daniel Glozman and Moshe Shoham Robotics Laboratory, Department

More information

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný Kinematics - Introduction Robotics Kinematics - Introduction Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2009 Solution of inverse kinematic problem for

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

The Conceptual Design of Robotic Architectures using Complexity Rules

The Conceptual Design of Robotic Architectures using Complexity Rules The Conceptual Design of Robotic Architectures using Complexity Rules Waseem A. Khan and J. Angeles Centre for Intelligent Machines & Department of Mechanical Engineering McGill University Montreal, Quebec,

More information

Extension of Usable Workspace of Rotational Axes in Robot Planning

Extension of Usable Workspace of Rotational Axes in Robot Planning Extension of Usable Workspace of Rotational Axes in Robot Planning Zhen Huang' andy. Lawrence Yao Department of Mechanical Engineering Columbia University New York, NY 127 ABSTRACT Singularity of a robot

More information

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators 56 ICASE :The Institute ofcontrol,automation and Systems Engineering,KOREA Vol.,No.1,March,000 Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically

More information

Graphical Singularity Analysis of Planar Parallel Manipulators

Graphical Singularity Analysis of Planar Parallel Manipulators Proceedings of the 006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 006 Graphical Singularity Analysis of Planar Parallel Manipulators Amir Degani a The Robotics Institute

More information

Rigid Dynamics Solution Methodology for 3-PSU Parallel Kinematic Manipulators

Rigid Dynamics Solution Methodology for 3-PSU Parallel Kinematic Manipulators Rigid Dynamics Solution Methodology for 3-PSU Parallel Kinematic Manipulators Arya B. Changela 1, Dr. Ramdevsinh Jhala 2, Chirag P. Kalariya 3 Keyur P. Hirpara 4 Assistant Professor, Department of Mechanical

More information

CONSIDERATIONS REGARDING LINKAGES USED FOR SHAFTS COUPLING

CONSIDERATIONS REGARDING LINKAGES USED FOR SHAFTS COUPLING Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 4, 19-27 CONSIDERATIONS REGARDING LINKAGES USED FOR SHAFTS COUPLING Stelian ALACI, Florina Carmen CIORNEI, Constantin FILOTE, Luminiţa

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction This dissertation will describe the mathematical modeling and development of an innovative, three degree-of-freedom robotic manipulator. The new device, which has been named the

More information

TENTH WORLD CONGRESS ON THE THEORY OF MACHINE AND MECHANISMS Oulu, Finland, June 20-24, 1999 Finding Innitesimal Motions of Objects in Assemblies Usin

TENTH WORLD CONGRESS ON THE THEORY OF MACHINE AND MECHANISMS Oulu, Finland, June 20-24, 1999 Finding Innitesimal Motions of Objects in Assemblies Usin TENTH WORLD CONGRESS ON THE THEORY OF MACHINE AND MECHANISMS Oulu, Finland, June 20-24, 1999 Finding Innitesimal Motions of Objects in Assemblies Using Grassmann-Cayley Algebra E. Staetti, L. Ros, and

More information

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Mohammed Z. Al-Faiz,MIEEE Computer Engineering Dept. Nahrain University Baghdad, Iraq Mohammed S.Saleh

More information

KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS

KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS Annamareddy Srikanth 1 M.Sravanth 2 V.Sreechand 3 K.Kishore Kumar 4 Iv/Iv B.Tech Students, Mechanical Department 123, Asst. Prof.

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Exponential Maps for Computer Vision

Exponential Maps for Computer Vision Exponential Maps for Computer Vision Nick Birnie School of Informatics University of Edinburgh 1 Introduction In computer vision, the exponential map is the natural generalisation of the ordinary exponential

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

θ x Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing Position & Orientation & State 2 30-Jul

θ x Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing Position & Orientation & State 2 30-Jul θ x 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing Position

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Workspace and singularity analysis of 3-RRR planar parallel manipulator

Workspace and singularity analysis of 3-RRR planar parallel manipulator Workspace and singularity analysis of 3-RRR planar parallel manipulator Ketankumar H Patel khpatel1990@yahoo.com Yogin K Patel yogin.patel23@gmail.com Vinit C Nayakpara nayakpara.vinit3@gmail.com Y D Patel

More information

Analytical and Applied Kinematics

Analytical and Applied Kinematics Analytical and Applied Kinematics Vito Moreno moreno@engr.uconn.edu 860-614-2365 (cell) http://www.engr.uconn.edu/~moreno Office EB1, hours Thursdays 10:00 to 5:00 1 This course introduces a unified and

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

Kinematics of Closed Chains

Kinematics of Closed Chains Chapter 7 Kinematics of Closed Chains Any kinematic chain that contains one or more loops is called a closed chain. Several examples of closed chains were encountered in Chapter 2, from the planar four-bar

More information

I R TECHNICAL RESEARCH REPORT. Systematic Enumeration of Parallel Manipulators. by Lung-Wen Tsai T.R

I R TECHNICAL RESEARCH REPORT. Systematic Enumeration of Parallel Manipulators. by Lung-Wen Tsai T.R TECHNICAL RESEARCH REPORT Systematic Enumeration of Parallel Manipulators by Lung-Wen Tsai T.R. 98-33 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies and teaches advanced methodologies of design

More information

KINEMATIC ANALYSIS OF A NOVEL THREE DEGREE-OF-FREEDOM PLANAR PARALLEL MANIPULATOR

KINEMATIC ANALYSIS OF A NOVEL THREE DEGREE-OF-FREEDOM PLANAR PARALLEL MANIPULATOR International Journal of Robotics and Automation, Vol. 24, No. 2, 2009 KINEMATIC ANALYSIS OF A NOVEL THREE DEGREE-OF-FREEDOM PLANAR PARALLEL MANIPULATOR B. Li, J. Zhao, X. Yang, and Y. Hu Abstract In this

More information

Workspaces of planar parallel manipulators

Workspaces of planar parallel manipulators Workspaces of planar parallel manipulators Jean-Pierre Merlet Clément M. Gosselin Nicolas Mouly INRIA Sophia-Antipolis Dép. de Génie Mécanique INRIA Rhône-Alpes BP 93 Université Laval 46 Av. Felix Viallet

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

STIFFNESS OF PARALLEL MANIPULATORS WITH CRANK-CONNECTING ROD SYSTEM

STIFFNESS OF PARALLEL MANIPULATORS WITH CRANK-CONNECTING ROD SYSTEM DAAAM INTERNATIONAL SCIENTIFIC BOOK 2011 pp. 465-476 CHAPTER 38 STIFFNESS OF PARALLEL MANIPULATORS WITH CRANK-CONNECTING ROD SYSTEM AGINAGA, J.; ALTUZARRA, O.; IRIARTE, X. & MACHO, E. Abstract: Parallel

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

INTRODUCTION CHAPTER 1

INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators

Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators Non-Singular Assembly-mode Changing Motions for -RPR Parallel Manipulators Mazen ZEIN, Philippe Wenger and Damien Chablat Institut de Recherche en Communications et Cybernétique de Nantes UMR CNRS 6597,

More information

Singularity-Invariant Leg Substitutions in Pentapods

Singularity-Invariant Leg Substitutions in Pentapods The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Singularity-Invariant Leg Substitutions in Pentapods Júlia Borràs and Federico Thomas Abstract

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Modelling and index analysis of a Delta-type mechanism

Modelling and index analysis of a Delta-type mechanism CASE STUDY 1 Modelling and index analysis of a Delta-type mechanism K-S Hsu 1, M Karkoub, M-C Tsai and M-G Her 4 1 Department of Automation Engineering, Kao Yuan Institute of Technology, Lu-Chu Hsiang,

More information

Table of Contents Introduction Historical Review of Robotic Orienting Devices Kinematic Position Analysis Instantaneous Kinematic Analysis

Table of Contents Introduction Historical Review of Robotic Orienting Devices Kinematic Position Analysis Instantaneous Kinematic Analysis Table of Contents 1 Introduction 1 1.1 Background in Robotics 1 1.2 Robot Mechanics 1 1.2.1 Manipulator Kinematics and Dynamics 2 1.3 Robot Architecture 4 1.4 Robotic Wrists 4 1.5 Origins of the Carpal

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

Methodology to Determine Counterweights for Passive Balancing of a 3-R Orientation Sensing Mechanism using Hanging Method

Methodology to Determine Counterweights for Passive Balancing of a 3-R Orientation Sensing Mechanism using Hanging Method Methodology to Determine Counterweights for Passive Balancing of a 3-R Orientation Sensing Mechanism using Hanging Method Shasa A. Antao, Vishnu S. Nair and Rajeevlochana G. Chittawadigi Department of

More information

DETC2000/MECH KINEMATIC SYNTHESIS OF BINARY ACTUATED MECHANISMS FOR RIGID BODY GUIDANCE

DETC2000/MECH KINEMATIC SYNTHESIS OF BINARY ACTUATED MECHANISMS FOR RIGID BODY GUIDANCE Proceedings of DETC ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Baltimore, Maryland, September -3, DETC/MECH-7 KINEMATIC SYNTHESIS

More information

WORKSPACE ANALYSIS OF 6-PRRS PARALLEL MANIPULATORS BASED ON THE VERTEX SPACE CONCEPT

WORKSPACE ANALYSIS OF 6-PRRS PARALLEL MANIPULATORS BASED ON THE VERTEX SPACE CONCEPT Proceedings of the 1999 ASME Design Engineering Technical Conferences September 12-15, 1999, Las Vegas, Nevada DETC99/DAC-8647 WORKSPACE ANALYSIS OF 6-PRRS PARALLEL MANIPULATORS BASED ON THE VERTEX SPACE

More information

Comparison of some Zero torsion Parallel Manipulators based on their Maximum Inscribed Singularity free Circle and Parasitic motion

Comparison of some Zero torsion Parallel Manipulators based on their Maximum Inscribed Singularity free Circle and Parasitic motion Journée GT6 Mécanismes Reconfigurables 2016 Clermont Ferrand Comparison of some Zero torsion Parallel Manipulators based on their Maximum Inscribed Singularity free Circle and Parasitic motion Abhilash

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Design, Manufacturing and Kinematic Analysis of a Kind of 3-DOF Translational Parallel Manipulator

Design, Manufacturing and Kinematic Analysis of a Kind of 3-DOF Translational Parallel Manipulator 4-27716195 mme.modares.ac.ir 2* 1-1 -2 - mo_taghizadeh@sbu.ac.ir, 174524155 * - - 194 15 : 195 28 : 195 16 : Design, Manufacturing and Kinematic Analysis of a Kind of -DOF Translational Parallel Manipulator

More information

Chapter 2 Mechanisms Abstract

Chapter 2 Mechanisms Abstract Chapter 2 Mechanisms Abstract This chapter begins with a description of the different types of mechanisms that are generally used, especially in industrial robots. The parameters and variables of the mechanisms

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information