CS 112 The Rendering Pipeline. Slide 1

Size: px
Start display at page:

Download "CS 112 The Rendering Pipeline. Slide 1"

Transcription

1 CS 112 The Rendering Pipeline Slide 1

2 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n Projection Transformation n Clipping and Vertex Interpolation of Attributes n Rasterization and Pixel Interpolation of Attributes Slide 2

3 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages n Model-view Transformation n Projection Transformation n Clipping and Vertex Interpolation of Attributes n Rasterization and Pixel Interpolation of Attributes Slide 3

4 Model-view Transformation n Model Transformation n View Transformation n World Coordinate System n Object Coordinate System Slide 4

5 World and Object Coordinates Y W Y O X O Z W X W Z O Y O Y O X O MODEL TRANSFORMATION X O Z O Z O Slide 5

6 Model Transformation n Transforming from the object to world coordinates n Placing the object in the desired position, scale and orientation n Can be done by any kind of transformations n Graphics hardware/library support only linear transformations like translate, rotate, scale, and shear Slide 6

7 View Transformation Y W X W Z W Slide 7

8 View Transformation n Position and orientation of eye (9 parameters) n View point - POINT : (x, y, z) [3] n Normal to the image plane VECTOR: (vx, vy,vz) [3] n View Up VECTOR: (ux, uy,uz) [3] n Default: (0,0,0), (0,0,-1), (0,1,0) n Transformation to align n n n n Eye with the origin Normal to the image plane with negative Z axis View Up vector with positive Y axis Can be achieved by rotation and translation Slide 8

9 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages n Model view Transformation n Projection Transformation n Clipping and Vertex Interpolation of Attributes n Rasterization and Pixel Interpolation of Attributes Slide 9

10 Projection Transformation n Define the view frustum (6 parameters) n Assume origin is the view point n Near and far planes (planes parallel to XY plane in the negative Z axis) [2] n Left, right, top, bottom rectangle defined on the near plane [4] Y -Z X near far Slide 10

11 Projection Transformation n Transforming the view frustum (along with the objects inside it) into a n cuboid with unit square faces on the near and far planes n the negative Z axis passes through the center of these two faces. n Projecting the objects on the near plane n Consists of a shear and a perspective projection operations. Slide 11

12 Projection Transformation Y X Z Slide 12

13 Important n Every vertex undergoes the modelview and projection transformation n Geometric transformation n Topology does not change n Even when transforming triangles n Sufficient to transform the vertices Slide 13

14 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages n Model view Transformation n Projection Transformation n Clipping and Vertex Interpolation of Attributes n Rasterization and Pixel Interpolation of Attributes Slide 14

15 Clipping n Removing the part of the polygon outside the view frustum n If the polygon spans inside and outside the view frustum n introduce new vertices on the boundary Slide 15

16 Interpolation of Attributes n For the new vertices introduced n compute all the attributes n Using interpolation of the attributes of all the original vertices Slide 16

17 Interpolation of Attributes n For the new vertices introduced n compute all the attributes n Using interpolation of the attributes of all the original vertices Slide 17

18 Window Coordinate Transformation n Scale XY coordinates of unit cuboid to reflect size of window (relative pixel coordinates) n Translate these coordinates to the position of the window on the monitor screen to represent the absolute pixel coordinates. n Z value is used for resolving occlusion Slide 18

19 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages n Model view Transformation n Projection Transformation n Clipping and Vertex Interpolation of Attributes n Rasterization and Pixel Interpolation of Attributes Slide 19

20 Rasterization n Process of generating pixels in the scan (horizontal) line order (top to bottom, left to right). n Which pixels are in the polygon Scan Line left right left right Slide 20

21 Interpolation of Attributes n Interpolate the colors and other attributes at pixels from the attributes of the left and right extent of the scan line on the polygon edge. n Also in scan line order Scan Line left right left right Slide 21

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode Graphic Pipeline 1 Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to model 3D world? How to render them?

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Figure 1: A perspective view of a polyhedron on an infinite plane. Cameras and Perspective Rendering

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Clipping and Culling Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand clipping and culling Understand view-frustum, back-face

More information

Perspective transformations

Perspective transformations Perspective transformations Transformation pipeline Modelview: model (position objects) + view (position the camera) Projection: map viewing volume to a standard cube Perspective division: project D to

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks)

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Cameras and Perspective Figure 1: A perspective view of a polyhedron on an infinite plane. Rendering

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

CS Exam 1 Review Problems Fall 2017

CS Exam 1 Review Problems Fall 2017 CS 45500 Exam 1 Review Problems Fall 2017 1. What is a FrameBuffer data structure? What does it contain? What does it represent? How is it used in a graphics rendering pipeline? 2. What is a Scene data

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Triangle Rasterization

Triangle Rasterization Triangle Rasterization Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/07/07 1 From last time Lines and planes Culling View frustum culling Back-face culling Occlusion culling

More information

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL OpenGL: Open Graphics Library Introduction to OpenGL Part II CS 351-50 Graphics API ( Application Programming Interface) Software library Layer between programmer and graphics hardware (and other software

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Models and Architectures

More information

Lecture 7 of 41. Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro

Lecture 7 of 41. Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro Viewing 4 of 4: Culling and Clipping Lab 1b: Flash Intro William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public mirror

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping Interactive Computer Graphics The Graphics Pipeline: The Graphics Pipeline Input: - geometric model - illumination model - camera model - viewport Some slides adopted from F. Durand and B. Cutler, MIT

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation CS38: Introduction to Computer Graphics Projection Chapter Min H. Kim KAIST School of Computing Smooth Interpolation SUMMARY 2 Cubic Bezier Spline To evaluate the function c(t) at any value of t, we perform

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Albrecht Dürer, Underweysung der Messung mit

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce

More information

CS354 Computer Graphics Viewing and Modeling

CS354 Computer Graphics Viewing and Modeling Slide Credit: Donald S. Fussell CS354 Computer Graphics Viewing and Modeling Qixing Huang February 21th 2018 Computer Viewing There are three aspects of the viewing process, all of which are implemented

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52

INTRODUCTION TO COMPUTER GRAPHICS. It looks like a matrix Sort of. Viewing III. Projection in Practice. Bin Sheng 10/11/ / 52 cs337 It looks like a matrix Sort of Viewing III Projection in Practice / 52 cs337 Arbitrary 3D views Now that we have familiarity with terms we can say that these view volumes/frusta can be specified

More information

Hidden surface removal. Computer Graphics

Hidden surface removal. Computer Graphics Lecture Hidden Surface Removal and Rasterization Taku Komura Hidden surface removal Drawing polygonal faces on screen consumes CPU cycles Illumination We cannot see every surface in scene We don t want

More information

Two basic types: image-precision and object-precision. Image-precision For each pixel, determine which object is visable Requires np operations

Two basic types: image-precision and object-precision. Image-precision For each pixel, determine which object is visable Requires np operations walters@buffalo.edu CSE 480/580 Lecture 21 Slide 1 Visible-Surface Determination (Hidden Surface Removal) Computationaly expensive Two basic types: image-precision and object-precision For n objects and

More information

Geometry Unit 1: Transformations in the Coordinate Plane. Guided Notes

Geometry Unit 1: Transformations in the Coordinate Plane. Guided Notes Geometry Unit 1: Transformations in the Coordinate Plane Guided Notes Standard: MGSE9 12.G.CO.1 Know precise definitions Essential Question: What are the undefined terms essential to any study of geometry?

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

Computer Graphics with OpenGL ES (J. Han) Chapter VII Rasterizer

Computer Graphics with OpenGL ES (J. Han) Chapter VII Rasterizer Chapter VII Rasterizer Rasterizer The vertex shader passes the clip-space vertices to the rasterizer, which performs the following: Clipping Perspective division Back-face culling Viewport transform Scan

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division 15. Clipping Procedures for eliminating all parts of primitives outside of the specified view volume are referred to as clipping algorithms or simply clipping This takes place as part of the Projection

More information

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH VISIBILITY & CULLING Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH Visibility Visibility Given a set of 3D objects, which surfaces are visible from a specific point

More information

- Rasterization. Geometry. Scan Conversion. Rasterization

- Rasterization. Geometry. Scan Conversion. Rasterization Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

EXAMINATIONS 2016 TRIMESTER 2

EXAMINATIONS 2016 TRIMESTER 2 EXAMINATIONS 2016 TRIMESTER 2 CGRA 151 INTRODUCTION TO COMPUTER GRAPHICS Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Silent non-programmable calculators or silent programmable calculators

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

Project 1, 467. (Note: This is not a graphics class. It is ok if your rendering has some flaws, like those gaps in the teapot image above ;-)

Project 1, 467. (Note: This is not a graphics class. It is ok if your rendering has some flaws, like those gaps in the teapot image above ;-) Project 1, 467 Purpose: The purpose of this project is to learn everything you need to know for the next 9 weeks about graphics hardware. What: Write a 3D graphics hardware simulator in your language of

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

Real Time Reflections Han-Wei Shen

Real Time Reflections Han-Wei Shen Real Time Reflections Han-Wei Shen Reflections One of the most noticeable effect of inter-object lighting Direct calculation of the physics (ray tracing) is too expensive Our focus is to capture the most

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality From Vertices to Fragments Overview Overall goal recapitulation: Input: World description, e.g., set of vertices and states for objects, attributes, camera,

More information

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object...

Rendering approaches. 1.image-oriented. 2.object-oriented. foreach pixel... 3D rendering pipeline. foreach object... Rendering approaches 1.image-oriented foreach pixel... 2.object-oriented foreach object... geometry 3D rendering pipeline image 3D graphics pipeline Vertices Vertex processor Clipper and primitive assembler

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52

INTRODUCTION TO COMPUTER GRAPHICS. cs123. It looks like a matrix Sort of. Viewing III. Projection in Practice 1 / 52 It looks like a matrix Sort of Viewing III Projection in Practice 1 / 52 Arbitrary 3D views } view volumes/frusta spec d by placement and shape } Placement: } Position (a point) } look and up vectors }

More information

CS Object Representation. Aditi Majumder, CS 112 Slide 1

CS Object Representation. Aditi Majumder, CS 112 Slide 1 CS 112 - Object Representation Aditi Majumder, CS 112 Slide 1 What is Graphics? Modeling Computer representation of the 3D world Analysis For efficient rendering For catering the model to different applications..

More information

Fondamenti di Grafica 3D The Rasterization Pipeline.

Fondamenti di Grafica 3D The Rasterization Pipeline. Fondamenti di Grafica 3D The Rasterization Pipeline paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni Ray Casting vs. GPUs for Triangles Ray Casting For each pixel (ray) For each triangle Does

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

Topics. From vertices to fragments

Topics. From vertices to fragments Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Logistics Update! all homework submissions:

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Computer Viewing. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Computer Viewing CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce the mathematics of projection Introduce OpenGL viewing functions Look at

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2013-14 COMPUTER GAMES DEVELOPMENT CMPSME27 Time allowed: 2 hours Answer any THREE questions. (40 marks each) Notes are

More information

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

BCC Sphere Transition

BCC Sphere Transition BCC Sphere Transition The Sphere Transition shape models the source image onto a sphere. Unlike the Sphere filter, the Sphere Transition filter allows you to animate Perspective, which is useful in creating

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker)

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) Visible Surface Detection (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) 1 Given a set of 3D objects and a viewing specifications, determine which lines or surfaces of the objects should be visible. A

More information

Culling. Computer Graphics CSE 167 Lecture 12

Culling. Computer Graphics CSE 167 Lecture 12 Culling Computer Graphics CSE 167 Lecture 12 CSE 167: Computer graphics Culling Definition: selecting from a large quantity In computer graphics: selecting primitives (or batches of primitives) that are

More information

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing

EECE 478. Learning Objectives. Learning Objectives. Rasterization & Scenes. Rasterization. Compositing EECE 478 Rasterization & Scenes Rasterization Learning Objectives Be able to describe the complete graphics pipeline. Describe the process of rasterization for triangles and lines. Compositing Manipulate

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology A tool needed for the graphics people all the time Very important components: Need to make them fast! Finding if

More information

Graphics 2009/2010, period 1. Lecture 6: perspective projection

Graphics 2009/2010, period 1. Lecture 6: perspective projection Graphics 2009/2010, period 1 Lecture 6 Perspective projection Orthographic vs. perspective projection Introduction Projecting from arbitrary camera positions Orthographic projection and the canonical view

More information

TSBK03 Screen-Space Ambient Occlusion

TSBK03 Screen-Space Ambient Occlusion TSBK03 Screen-Space Ambient Occlusion Joakim Gebart, Jimmy Liikala December 15, 2013 Contents 1 Abstract 1 2 History 2 2.1 Crysis method..................................... 2 3 Chosen method 2 3.1 Algorithm

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information