Tomaz Pisanski, University of Ljubljana, Slovenia. Thomas W. Tucker, Colgate University. Arjana Zitnik, University of Ljubljana, Slovenia

Size: px
Start display at page:

Download "Tomaz Pisanski, University of Ljubljana, Slovenia. Thomas W. Tucker, Colgate University. Arjana Zitnik, University of Ljubljana, Slovenia"

Transcription

1 Eulerian Embeddings of Graphs Tomaz Pisanski, University of Ljubljana, Slovenia Thomas W. Tucker, Colgate University Arjana Zitnik, University of Ljubljana, Slovenia Abstract A straight-ahead walk in an embedded Eulerian graph G always passes from an edge to the opposite edge adjacent to the same vertex. A straight-ahead walk is called Eulerian if all the edges of the embedded graph G are traversed in this way starting from an arbitrary edge. The embedding that contains an Eulerian straight-ahead walk is called an Eulerian embedding. In this article, we characterize some properties of Eulerian embeddings of graphs and of embeddings of graphs such that the corresponding medial graph is Eulerian embedded. There are some interesting consequences. For example, we show that every 2-edge connected graph has an orientable embedding in which no face is adjacent to itself at and edge. We also show that every connected 4-valent graph has an embedding in an orientable surface in which it is a medial graph of some graph. 1 Introduction A projection of a link on the plane denes a planar four-valent graph. Using the properties of the embedding of this graph it is possible to determine the number of components of the link and in particular, if the link in question is a knot. Our aim is to identify the property of the embedded graph which makes the separation of knots from links possible. A straight-ahead walk or a SAW in the embedded Eulerian graph G always passes from an edge to the opposite edge adjacent to the same vertex. A projection of a link in the plane is a knot if and only if it contains exactly one SAW. In this paper we assume the graphs to be nite and connected and the embeddings to be 2-cell. Let us now introduce some denitions. Graph Theory, Combinatorics, Algorithms, and Applications,

2 2 T. Pisanski, T. Tucker and A. Zitnik A circuit is a closed walk with no repeated edges. The straight ahead walks, the SAWs, of an embedded Eulerian graph G induce a circuit partition of the edges. Let us denote by s(g; S) the number of components of SAW decomposition of G. An embedding of Eulerian graph G in surface S is Eulerian, if it contains exactly one SAW, ie. s(g; S) = 1: An Eulerian directed graph is a graph together with a directed Eulerian circuit in the graph. At an Eulerian directed graph an embedding is alternating if the directions of edges alternate in the rotations at each vertex. The medial graph of an embedded graph G, M e(g), is a graph, embedded in the same surface as G and it is obtained from G as follows: the vertices of Me(G) are the edges of G and two vertices of Me(G) are adjacent if they share a common angle in G: Note that embedded graphs, which are dual to each other, have the same medial graphs. The medial graph of any graph is 4-valent and thus Eulerian. A graph is Eulerian medial embedded if its medial is Eulerian embedded. For motivation, let us pose the following question: Question 1 Does every 2-edge connected graph have an orientable embedding in which no face is adjacent to itself at a vertex? If this question were solved, it would answer the Question 2, which is its weaker version, and also the famous double cover conjecture. In the sequel we will give a positive answer to the Question 2 for Eulerian graphs. Question 2 Does every 2-edge connected graph have an orientable embedding in which no face is adjacent to itself at an edge? Question 3 The double cover conjecture: can every graph be covered with cycles such that each edge lies on exactly two cycles? Here we state a Theorem, which is obvious, but has some interesting consequences. Theorem 1 In an alternating orientable embedding of an Eulerian directed graph all face boundaries are directed consistently by edge directions. Corollary 2 An alternating orientable embedding of an Eulerian directed graph has bipartite dual.

3 Eulerian Embeddings of Graphs 3 Proof Every face has two possible orientations. You can order each face with an oriantation and neighboring faces get dierent ones. 2 Note, that the corollary 2 does not hold for non-orientable surfaces. Corollary 3 Answer to Question 2 is "yes" for Eulerian graphs. Corollary 4 Any 4-valent graph G is a medial graph of some orientable embedding. Proof Choose an Eulerian directed circuit in G and place the rotations around vertices so that the embedding is alternating. The alternating orientable embedding has bipartite dual. Choose faces of one color as vertices of the graph and join them by an edge if they share a vertex in G. 2 2 Some examples Figure 1: The pyramid graph and its medial graph - the antiprism A 4. For a start, let us give some examples of Eulerian embedded plane graphs and of plane graphs whose medial graph is Eulerian embedded. The most obvious examples of Eulerian embedded graphs are cycles Cn: The medial graphs of odd cycles, which are odd cycles with double edges, are also Eulerian embedded. There exist less trivial innite families of plane graphs, whose medial graphs are Eulerian embedded, too. It is easy to see, that the medial of the pyramid graph - the antiprism on Figure 1 is Eulerian embedded. We used the computer system Vega, see [3], to verify whether this property holds for all the pyramid graphs. We also checked the number of SAWs in medial

4 4 T. Pisanski, T. Tucker and A. Zitnik graphs of prisms P rn and antiprisms An. The results gave us the following theorem, which we state without proof: Theorem 5 s(an; Sphere) = s(m e(p r); Sphere) = ( 3 n = 3k 8 >< >: 1 n 6= 3k 1 n = 2k n = 4k 2 n = 4k + 2 s(m e(an); Sphere) = ( 4 n = 3k 2 n 6= 3k Let G 1 and G 2 be graphs, 2-cell embedded in orientable surfaces Sk1 and Sk2; respectively, where Sk denotes the sphere with k 0 handles. The connected sum G 1 #G 2 of graphs G 1 and G 2 with respect to the directed edges (v 1 ; u 1 ) in G 1 and (v 2 ; u 2 ) in G 2 is obtained as follows: take the union of graphs G 1 and G 2 and substitute the edges (v1; u1) and (v2; u2) by the edges (v1; v2) and (u1; u2): The rotation scheme is inherited from the embeddings of G 1 and G 2, except for the vertices v 1 ; v 2 ; u 1 and u 2 : In the rotation around v 1, u 1 is substituted by v 2, in the rotation around u 1, v 1 is substituted by u 2, and in the rotation around v 2, u 2 is substituted by v 1, in the rotation around u 2, v 2 is substituted by u 1. The connected sum of G 1 and G 2 is therefore a connected graph, 2-cell embedded in the surface Sk1+k2: The following theorem is very useful for constructing innite families of Eulerian embedded graphs: Theorem 6 Let G = G 1 #G 2. Then s(g; S) = s(g 1 ; Sk1)+s(G 2 ; Sk2)? 1: In particular, if G1 and G2 are Eulerian embedded, then G is Eulerian embedded as well. In Figure 2, the connected sum of the antiprisms A 4 and A 5 is shown. Both A4 and A5 are Eulerian embedded and so is their connected sum.

5 Eulerian Embeddings of Graphs 5 Figure 2: The connected sum of the antiprisms A4 and A5. Given an embedded graph, we substitute every k?valent vertex by a cycle on k vertices. The obtained graph is cubic and embedded in the same surface. It is called the truncation of the embedded graph. There are two types of faces in a truncated graph: the ones that correspond to former vertices and the ones that correspond to the faces with the boundary twice as long as in the original graph. In Figure 3, we show the number of SAWs of medial graphs of the graphs of platonic solids, their truncations and double-truncations We observe that the truncation of graphs sometimes preserves the number of SAWs in their medials. The graphs with this property are all cubic. It turns out, that this property holds for all cubic graphs. Graph Me Me(Tr) Me(Tr(Tr)) Tetrahedron Cube Octahedron Dodecahedron Icosahedron Figure 3: The numbers of SAWs in medial graphs of the platonic solids, their truncations and double-truncations. Theorem 7 The truncations of cubic maps preserve the number of SAWs in their medials. Proof Let us show, that for each straight-ahead walk in Me(G),

6 6 T. Pisanski, T. Tucker and A. Zitnik there exists a unique straight-ahead walk in Me(Tr(G)). To each vertex of G there corresponds a face in Me(G), which is in case of cubic graphs a triangle. In Figure 4 we can see a subgraph of Me(Tr(G)) that corresponds to a vertex of G, say v. It has a similar structure as a part of Me(G), corresponding to v, it only has another triangle inside. In each angle of the triangles, there are two edges going out. Let us denote the rst edge encountered when going from the boundary of the triangle in clockwise order, the rst edge, and the other edge, the second edge. To each edge going from the triangle in Me(G) there corresponds an edge going from the bigger triangle in Me(Tr(G)). Let us say, that the rst edges in Me(G) correspond to the second edges in Me(Tr(G)). Then a part of a straight ahead walk, going through the triangle in Me(G) has a unique correspondig straight-ahead walk in Me(Tr(G)). 2 Me?! # Tr Me?! Figure 4: What corresponds to a vertex of cubic graph in medial, truncation and medial of truncation So we obtain some other innite families of Eulerian embedded plane graphs - the medials of all the truncatios of the "odd" prisms, medials of their truncations and so on. 3 Eulerian medial embeddings A Petrie walk is a walk in an embedded graph G, where every two, but no three, edges lie on the boundary of the same face. It is not

7 Eulerian Embeddings of Graphs 7 hard to see that SAWs of medial graphs correspond to Petrie walks of the original map. See, for example, [2], where the Petrie walks are called left-right paths. If the signatures of edges in G are changed, ie. the orientation preserving edges become orientation reversing and vice versa, a dierent embedding of G is obtained, which is called the Petrie dual of (the embedded) graph G. The faces of the Petrie dual are exactly the Petrie walks of the original embedding of G. That means, that an Eulerian medial embedding of a graph is equivalent to Petrie dual being 1-face embedded. Theorem 8 Every graph embedding can be subdivided to give an Eulerian medial embedding. Proof The proof depends on the following idea: If SAWs of a 4-valent graph have two circuits at a vertex the other two matchings at a vertex give one circuit through that vertex. Subdividing an edge of the original graph can be viewed as changing the matching of the corresponding vertex of the medial graph. At each step we subdivide an edge, whose corresponding vertex of the medial graph is contained in two dierent SAWs, and at the end we obtain an Eulerian medial embedded graph. 2 The following corollary is an easy consequence of the Theorem and the fact that for every surface there exist medial graphs. Corollary 9 Every surface admits Eulerian embeddings. The question arises, whether every graph has an Eulerian medial embedding. If we consider only oriantable surfaces, the answer is "no". The simplest example of graphs having no orientable Eulerian embedding are even cycles. The embedding of an even cycle to an orientable surface is unique and the corresponding medial graph has two SAWs. But the answer is positive if we allow nonorientable embeddings, too. Theorem 10 For every rotation scheme, there is an assignment of signatures to edges that gives a medial Eulerian embedding (possibly nonorientable). Proof The proof is divided in two steps.

8 8 T. Pisanski, T. Tucker and A. Zitnik Change the signatures of edges between distinct faces until a oneface embedding is obtained. If the signature of an edge between two faces is changed, these two faces are merged to one face. The Petrie dual of the so-obtained graph has the medial with required property. 2 4 Eulerian embeddings of Eulerian graphs Every Eulerian directed graph has an Eulerian embedding, orientable and non orientable. To obtain such an embedding just choose any embedding where SAW is the given Eulerian circuit - at each vertex the opposite edges are consecutive in the Eulerian circuit. Let us state a theorem, characterizing Eulerian embeddings of covering graphs. For the denitions of covering graphs and Cayley graphs see, for example, [1]. Theorem 11 Let G be an Eulerian embedded graph, which is Eulerian directed according to its SAW. Given any cyclic voltage graph on G such that the sum of voltages along the directed edges generates the group, then the covering graph is Eulerian embedded. For the proof, see [4]. Cayley graphs are regular coverings of bouquets of circles. A regular embedding of a Cayley graph is given by lifting the rotation of the bouquet of circles to the Cayley graph. The rotation is called special, if the SAW in the bouquet of circles is Eulerian. The following theorem is thus an easy consequence of the Theorem 11. Theorem 12 Given any regular embedding of an even Cayley graph, it is Eulerian if and only if the group is cyclic, the rotation is special and the sum of the generators generates the group. 5 Conclusion and open problems Since each Eulerian graph G admits an orientable Eulerian embedding, it makes sense to dene an Eulerian genus for it. The natural question is which Eulerian graphs have their Eulerian genus equal to the

9 Eulerian Embeddings of Graphs 9 ordinary genus. Another question that can be posed is the following: which 2-cell embeddings of graphs have their connected and four-valent medial graphs Eulerian embedded? Finally, which graphs have at least one orientable embedding such that the corresponding medial graph is Eulerian embedded? Straight ahead-walks of medial graphs correspond to Petrie walks of the original map. Since maps that are Petrie duals to each other have the same 1-skeletons and the same medial graphs it would be interesting to explore the possibilities of extending this duality to straightahead walks of general embedded Eulerian graphs. References [1] Gross, J.L. & Tucker, T., Topological Graph Theory, J. Wiley & sons, [2] Lins, S., Richter, B. & Shank, H., The Gauss code problem o the plane, Aequationes Mathematicae, 33 (1987) [3] Pisanski, T. & coworkers, VEGA, a programming tool for manipulating discrete mathematical structures, see [4] Pisanski, T., Tucker, T.W. & Zitnik, A., in preparation.

Straight-ahead walks in Eulerian graphs

Straight-ahead walks in Eulerian graphs Discrete Mathematics 281 (2004) 237 246 www.elsevier.com/locate/disc Straight-ahead walks in Eulerian graphs Tomaz Pisanski a, Thomas W. Tucker b, Arjana Zitnik a a IMFM, University of Ljubljana, Jadranska

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Genus Ranges of 4-Regular Rigid Vertex Graphs

Genus Ranges of 4-Regular Rigid Vertex Graphs Genus Ranges of 4-Regular Rigid Vertex Graphs Dorothy Buck Department of Mathematics Imperial College London London, England, UK d.buck@imperial.ac.uk Nataša Jonoska Egor Dolzhenko Molecular and Computational

More information

BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS OF MAPS

BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS OF MAPS University of Ljubljana Institute of Mathematics, Physics and Mechanics Department of Mathematics Jadranska 19, 1111 Ljubljana, Slovenia Preprint series, Vol. 42 (2004), 940 BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2017 1 / 45 12.1 12.2. Planar graphs Definition

More information

Figure 1: The Gray Graph with an identied Hamilton cycle as in [1]. 2 Structural properties and alternative denitions The Gray graph G is a cubic, bip

Figure 1: The Gray Graph with an identied Hamilton cycle as in [1]. 2 Structural properties and alternative denitions The Gray graph G is a cubic, bip THE GRAY GRAPH REVISITED Dragan Marusic 1 Tomaz Pisanski 2 IMFM, Oddelek za matematiko IMFM, Oddelek za matematiko Univerza v Ljubljani Jadranska 19, 1000 Ljubljana Slovenija dragan.marusic@uni-lj.si Univerza

More information

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi 1. Euler Characteristic of Surfaces Leonhard Euler noticed that the number v of vertices, the number e of edges and

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2017/2018 About this file This file is meant to be a guideline for the lecturer. Many

More information

Face covers and the genus of apex graphs Bojan Mohar Department of Mathematics, University of Ljubljana, 1111 Ljubljana, Slovenia

Face covers and the genus of apex graphs Bojan Mohar Department of Mathematics, University of Ljubljana, 1111 Ljubljana, Slovenia Face covers and the genus of apex graphs Bojan Mohar Department of Mathematics, University of Ljubljana, 1111 Ljubljana, Slovenia bojan.mohar@uni-lj.si Abstract A graph G is an apex graph if it contains

More information

Genus of the cartesian product of triangles

Genus of the cartesian product of triangles Genus of the cartesian product of triangles Michal Kotrbčík Faculty of Informatics Masaryk University Brno, Czech Republic kotrbcik@fi.muni.cz Tomaž Pisanski FAMNIT University of Primorska Koper, Slovenia

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

On a conjecture of Keedwell and the cycle double cover conjecture

On a conjecture of Keedwell and the cycle double cover conjecture Discrete Mathematics 216 (2000) 287 292 www.elsevier.com/locate/disc Note On a conjecture of Keedwell and the cycle double cover conjecture M. Mahdian, E.S. Mahmoodian, A. Saberi, M.R. Salavatipour, R.

More information

Edge-transitive tessellations with non-negative Euler characteristic

Edge-transitive tessellations with non-negative Euler characteristic October, 2009 p. Edge-transitive tessellations with non-negative Euler characteristic Alen Orbanić Daniel Pellicer Tomaž Pisanski Thomas Tucker Arjana Žitnik October, 2009 p. Maps 2-CELL EMBEDDING of a

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

The Geodesic Integral on Medial Graphs

The Geodesic Integral on Medial Graphs The Geodesic Integral on Medial Graphs Kolya Malkin August 013 We define the geodesic integral defined on paths in the duals of medial graphs on surfaces and use it to study lens elimination and connection

More information

Embeddings of Small Graphs on the Torus

Embeddings of Small Graphs on the Torus June, 00 This article appeared in CUBO (00), - Embeddings of Small Graphs on the Torus Andrei Gagarin, William Kocay* and Daniel Neilson Computer Science Department University of Manitoba Winnipeg, Manitoba,

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Tomáš Madaras and Pavol Široczki

Tomáš Madaras and Pavol Široczki Opuscula Math. 34, no. 1 (014), 13 138 http://dx.doi.org/10.7494/opmath.014.34.1.13 Opuscula Mathematica ON THE DIMENSION OF ARCHIMEDEAN SOLIDS Tomáš Madaras and Pavol Široczki Communicated by Mariusz

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Zipper Unfoldings of Polyhedral Complexes

Zipper Unfoldings of Polyhedral Complexes Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine Martin L. Demaine Anna Lubiw Arlo Shallit Jonah L. Shallit Abstract We explore which polyhedra and polyhedral complexes can be formed by folding

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments

On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Electronic Journal of Graph Theory and Applications 3 (2) (2015), 191 196 On the Balanced Case of the Brualdi-Shen Conjecture on 4-Cycle Decompositions of Eulerian Bipartite Tournaments Rafael Del Valle

More information

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Arnaud Labourel a a LaBRI - Universite Bordeaux 1, France Abstract In 1974, Kundu [4] has shown that triangulated

More information

EXPLORATIONS ON THE DIMENSION OF A GRAPH

EXPLORATIONS ON THE DIMENSION OF A GRAPH EXPLORATIONS ON THE DIMENSION OF A GRAPH RYAN KAVANAGH Abstract. Erdős, Harary and Tutte first defined the dimension of a graph G as the minimum number n such that G can be embedded into the Euclidean

More information

6 Planar Graphs. 6.1 Euler's Formula

6 Planar Graphs. 6.1 Euler's Formula 6 Planar Graphs Roughly speaking, a graph is planar if and only if it can be drawn in the plane without any two of its edges crossing. More formally, an embedding of a graph G = (V; E) is a function f

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

Mathematica Slovaca. Roman Nedela Locally-cyclic graphs covering complete tripartite graphs. Terms of use: Persistent URL:

Mathematica Slovaca. Roman Nedela Locally-cyclic graphs covering complete tripartite graphs. Terms of use: Persistent URL: Mathematica Slovaca Roman Nedela Locally-cyclic graphs covering complete tripartite graphs Mathematica Slovaca, Vol. 42 (1992), No. 2, 143--146 Persistent URL: http://dml.cz/dmlcz/136544 Terms of use:

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week Eight Problems 1. Diagrams of all the distinct non-isomorphic trees on 6 or fewer vertices are listed in the lecture notes. Extend this list by drawing all

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

7th Bay Area Mathematical Olympiad

7th Bay Area Mathematical Olympiad 7th Bay Area Mathematical Olympiad February 22, 2005 Problems and Solutions 1 An integer is called formidable if it can be written as a sum of distinct powers of 4, and successful if it can be written

More information

A THREE AND FIVE COLOR THEOREM

A THREE AND FIVE COLOR THEOREM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, October 1975 A THREE AND FIVE COLOR THEOREM FRANK R. BERNHART1 ABSTRACT. Let / be a face of a plane graph G. The Three and Five Color Theorem

More information

Non-extendible finite polycycles

Non-extendible finite polycycles Izvestiya: Mathematics 70:3 1 18 Izvestiya RAN : Ser. Mat. 70:3 3 22 c 2006 RAS(DoM) and LMS DOI 10.1070/IM2006v170n01ABEH002301 Non-extendible finite polycycles M. Deza, S. V. Shpectorov, M. I. Shtogrin

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

Map-colouring with Polydron

Map-colouring with Polydron Map-colouring with Polydron The 4 Colour Map Theorem says that you never need more than 4 colours to colour a map so that regions with the same colour don t touch. You have to count the region round the

More information

Lecture 4: Bipartite graphs and planarity

Lecture 4: Bipartite graphs and planarity Lecture 4: Bipartite graphs and planarity Anders Johansson 2011-10-22 lör Outline Bipartite graphs A graph G is bipartite with bipartition V1, V2 if V = V1 V2 and all edges ij E has one end in V1 and V2.

More information

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine

The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing. David Eppstein Computer Science Dept. Univ. of California, Irvine The Topology of Bendless Orthogonal Three-Dimensional Graph Drawing David Eppstein Computer Science Dept. Univ. of California, Irvine Graph drawing: visual display of symbolic information Vertices and

More information

Equipartite polytopes and graphs

Equipartite polytopes and graphs Equipartite polytopes and graphs Branko Grünbaum Tomáš Kaiser Daniel Král Moshe Rosenfeld Abstract A graph G of even order is weakly equipartite if for any partition of its vertex set into subsets V 1

More information

An Investigation of Closed Geodesics on Regular Polyhedra

An Investigation of Closed Geodesics on Regular Polyhedra An Investigation of Closed Geodesics on Regular Polyhedra Tony Scoles Southern Illinois University Edwardsville May 13, 2008 1 Introduction This paper was undertaken to examine, in detail, results from

More information

On the Component Number of Links from Plane Graphs

On the Component Number of Links from Plane Graphs On the Component Number of Links from Plane Graphs Daniel S. Silver Susan G. Williams January 20, 2015 Abstract A short, elementary proof is given of the result that the number of components of a link

More information

Key Graph Theory Theorems

Key Graph Theory Theorems Key Graph Theory Theorems Rajesh Kumar MATH 239 Intro to Combinatorics August 19, 2008 3.3 Binary Trees 3.3.1 Problem (p.82) Determine the number, t n, of binary trees with n edges. The number of binary

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

8 Colouring Planar Graphs

8 Colouring Planar Graphs 8 Colouring Planar Graphs The Four Colour Theorem Lemma 8.1 If G is a simple planar graph, then (i) 12 v V (G)(6 deg(v)) with equality for triangulations. (ii) G has a vertex of degree 5. Proof: For (i),

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Equipartite polytopes and graphs

Equipartite polytopes and graphs Equipartite polytopes and graphs Branko Grünbaum Tomáš Kaiser Daniel Král Moshe Rosenfeld Abstract A graph G of even order is weakly equipartite if for any partition of its vertex set into subsets V 1

More information

Nesting points in the sphere. Dan Archdeacon. University of Vermont. Feliu Sagols.

Nesting points in the sphere. Dan Archdeacon. University of Vermont.   Feliu Sagols. Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont Burlington, VT, USA 05405 e-mail: dan.archdeacon@uvm.edu Feliu Sagols Dept. of Computer Science University of

More information

Mathematics As A Liberal Art

Mathematics As A Liberal Art Math 105 Fall 2015 BY: 2015 Ron Buckmire Mathematics As A Liberal Art Class 26: Friday November 13 Fowler 302 MWF 10:40am- 11:35am http://sites.oxy.edu/ron/math/105/15/ Euclid, Geometry and the Platonic

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

Indexable and Strongly Indexable Graphs

Indexable and Strongly Indexable Graphs Proceedings of the Pakistan Academy of Sciences 49 (2): 139-144 (2012) Copyright Pakistan Academy of Sciences ISSN: 0377-2969 Pakistan Academy of Sciences Original Article Indexable and Strongly Indexable

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense.

Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense. Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense. Left brain Right brain Hear what you see. See what you hear. Mobius Strip http://www.metacafe.com/watch/331665/

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Face Width and Graph Embeddings of face-width 2 and 3

Face Width and Graph Embeddings of face-width 2 and 3 Face Width and Graph Embeddings of face-width 2 and 3 Instructor: Robin Thomas Scribe: Amanda Pascoe 3/12/07 and 3/14/07 1 Representativity Recall the following: Definition 2. Let Σ be a surface, G a graph,

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

An Investigation of the Planarity Condition of Grötzsch s Theorem

An Investigation of the Planarity Condition of Grötzsch s Theorem Le Chen An Investigation of the Planarity Condition of Grötzsch s Theorem The University of Chicago: VIGRE REU 2007 July 16, 2007 Abstract The idea for this paper originated from Professor László Babai

More information

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page.

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page. Combinatorial Maps Tomaz Pisanski Brigitte Servatius University of Ljubljana and University of Primorska and Worcester Polytechnic Institute Page 1 of 30 1. Maps Page 2 of 30 1.1. Flags. Given a connected

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015

THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 THE LABELLED PEER CODE FOR KNOT AND LINK DIAGRAMS 26th February, 2015 A labelled peer code is a descriptive syntax for a diagram of a knot or link on a two dimensional sphere. The syntax is able to describe

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann

10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann 10. Line Arrangements Lecture on Monday 2 nd November, 2009 by Michael Homann During the course of this lecture we encountered several situations where it was convenient to assume

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Chapter 4. Triangular Sum Labeling

Chapter 4. Triangular Sum Labeling Chapter 4 Triangular Sum Labeling 32 Chapter 4. Triangular Sum Graphs 33 4.1 Introduction This chapter is focused on triangular sum labeling of graphs. As every graph is not a triangular sum graph it is

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

Embedding quartic Eulerian digraphs on the plane

Embedding quartic Eulerian digraphs on the plane AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 67(2) (2017), Pages 364 377 Embedding quartic Eulerian digraphs on the plane Dan Archdeacon Department of Mathematics and Statistics University of Vermont Burlington,

More information

MAT 145: PROBLEM SET 4

MAT 145: PROBLEM SET 4 MAT 145: PROBLEM SET 4 DUE TO FRIDAY FEB 22 Abstract. This problem set corresponds to the sixth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Feb 15 and is

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Math 311. Trees Name: A Candel CSUN Math

Math 311. Trees Name: A Candel CSUN Math 1. A simple path in a graph is a path with no repeated edges. A simple circuit is a circuit without repeated edges. 2. Trees are special kinds of graphs. A tree is a connected graph with no simple circuits.

More information

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08 Platonic Solids Jennie Sköld January 21, 2015 Symmetries: Groups Algebras and Tensor Calculus FYAD08 Karlstad University 1 Contents 1 What are Platonic Solids? 3 2 Symmetries in 3-Space 5 2.1 Isometries

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture.

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Mock Exam Juanjo Rué Discrete Mathematics II, Winter 2013-2014 Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Problem 1 (2 points): 1. State the definition of perfect graph

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

A note on Gaussian graphs. John W. Kennedy, Pace University, New York, NY 10038

A note on Gaussian graphs. John W. Kennedy, Pace University, New York, NY 10038 A note on Gaussian graphs John W. Kennedy, Pace University, New York, NY 10038 Brigitte and Herman Servatius, Worcester Polytechnic Institute, Worcester, MA 01609-2280 Abstract A graph is Gaussian if it

More information

Coloring Subgraphs with Restricted Amounts of Hues

Coloring Subgraphs with Restricted Amounts of Hues Coloring Subgraphs with Restricted Amounts of Hues Wayne Goddard School of Computing and Dept of Mathematical Sciences Clemson University goddard@clemson.edu Robert Melville Dept of Mathematics Abstract

More information

The Order Upper Bound on Parity Embedding of a Graph

The Order Upper Bound on Parity Embedding of a Graph journal of combinatorial theory, Series B 68, 149160 (1996) article no. 0060 The Order Upper Bound on Parity Embedding of a Graph Thomas Zaslavsky* Binghamton University, Binghamton, New York 13902-6000

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) January 11, 2018 Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 In this lecture

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

PÓLYA S THEORY OF COUNTING

PÓLYA S THEORY OF COUNTING PÓLYA S THEORY OF COUNTING MANJIL P. SAIKIA Abstract. In this report, we shall study Pólya s Theory of Counting and apply it to solve some questions related to rotations of the platonic solids. Key Words:

More information

Dominating Sets in Planar Graphs 1

Dominating Sets in Planar Graphs 1 Dominating Sets in Planar Graphs 1 Lesley R. Matheson 2 Robert E. Tarjan 2; May, 1994 Abstract Motivated by an application to unstructured multigrid calculations, we consider the problem of asymptotically

More information

Subdivided graphs have linear Ramsey numbers

Subdivided graphs have linear Ramsey numbers Subdivided graphs have linear Ramsey numbers Noga Alon Bellcore, Morristown, NJ 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv,

More information