Algorithm Design (4) Metaheuristics

Size: px
Start display at page:

Download "Algorithm Design (4) Metaheuristics"

Transcription

1 Algorithm Design (4) Metaheuristics Takashi Chikayama School of Engineering The University of Tokyo

2 Formalization of Constraint Optimization Minimize (or maximize) the objective function f(x 0,, x n ) with values <x 1,, x n >, x k D k that satisfy a condition C(x 1,, x n ) An objective function to be minimized is also called a cost function A value set <x 1,, x n > that satisfies the constraint but may not give the minimum (or maximum) the objective function is called a feasible solution

3 Algorithms for Combinatorial Optimization Strict algorithms Strictly the best solution is found i.e., No other feasible solution is better Often requires large computational cost Approximate algorithms Find a solution hopefully close to the best i.e., Not necessarily the real best Often decreases the computational cost

4 Iterative Improvement Methods 1. Find an initial feasible solution, which satisfies the constraint but may be far from optimal 2. The solution is modified a bit without violating the constraints, making the next feasible solution (neighbor solution) 3. Repeat the process until some termination condition is reached Small modifications are expected to lead to better feasible solutions

5 Simple Iterative Improvement In the step 2 of the previous page, always choose the best among the neighbor solutions Simple and efficient Several names Local Search Greedy Search Hill Climbing

6 Local Search 1. If there exists a better feasible solution in the neighborhood of the current solution, make that current 2. Repeat this until there is no better solutions in the neighborhood Neighborhood: A set of feasible solutions that can be easily derived from the current solution Usually, only some of the variables comprising the solution are modified Broad neighborhood means high cost in each step Should be able to cover all the feasible solutions

7 Convergence to Local Optima Local search may result in a locally optimal solution which is far from the global optimum initial solution cost one of local optima The global optimum solution space

8 Repeated Local Search Repeat local search from randomly chosen multiple initial solutions cost initial solution one of local optima another initial solution The global optimum solution space

9 Repeated Local Search Quite simple and efficient High parallelism: a parameter survey Parallel trials with different parameters No communication nor synchronization except for data distribution and solution gathering Depends on characteristics of the search space and distribution of initial solutions Can initial solutions be placed close to optimum No reason to use more complicated metaheuristics if repeated local search is enough

10 Metaheuristics Heuristics Methods likely to lead to solutions No guarantee, however, to find a solution Usually specific to problem areas Metaheuristics Heuristics independent on problem areas The same formulation can be applied widely Search in a space with some appropriate neighborhood notion is considered here

11 Simulated Annealing (SA) Local search always take the best neighbor, which often leads to local optima Allowing a little worse solution may help Annealing (metallurgy) Heating and then slowly cooling increases crystal size and releases defects Giving higher energy makes the state jump out of a locally lowest energy state, to be able to go toward lower energy states

12 Annealing Balls on a tray are flattened by shaking up potential energy

13 Notions in Algorithms and Physical Counterparts Algorithm Cost Feasible solutions Optimum Local search Annealing Metallurgy Physics Energy level Physical states Ground state Quenching Annealing = Slow cooling

14 Local Search vs. Simulated Annealing initial solution cost local optimum global optimum solution space

15 Choice of Next Solution in SA A randomly chosen neighborhood solution is chosen if it is not too bad 1. In the neighborhood of the current solution X, randomly choose one solution Y 2. With a random number r in the range [0,1], and some constant T (temperature), Y is accepted if the cost improvement satisfies r d e / T 3. If not, go back to step 1 and repeat

16 Temperature and Acceptance Probability Acceptance Probability Cost Improvement Temp

17 Temperature Scheduling Temperature value is critical Low temperature does not allow the solution escape from local optima High temperature may make an already good solution much worse Allow relatively large worsening in the beginning and gradually decrease the allowance Temperature scheduling High temp cool down low temp

18 Difficulty of Temp. Scheduling Cooling down too rapidly may make the search trapped in a local optimum Cooling down slowly takes more computation time With large enough constant c and setting the temperature of the n-th step T n to c/log n, the algorithm is guaranteed to converge to the real optimum solution Unfortunately, convergence is too slow for practical use

19 Conventional Scheduling A frequently used scheme is to decrease the temperature by a constant ratio α (0 < α < 1) T αt; There is no good general scheme to decide the value of α Usually, a constant close to 1 (0.999, for example) is used for α

20 Temperature-Parallel SA Parallel annealing with different temp. Decent solutions with high temp. are swapped with not-so-good solutions with lower temp. No temperature scheduling needed High Temp. Low Temp.

21 Tabu Search If local search ended up at is a local optimum X, we may select some feasible solution in the neighborhood of X as the next candidate Simply doing this will lead to X again, resulting in an infinite loop Make recently visited candidates taboo Keep already visited candidates in a list and exclude them from the candidates The list may grow too long

22 Simple Taboo List may Become Too Large Putting all feasible solutions in into the list is required to escape the local optimum Initial solution cost Local optimum Global optimum Space of feasible solutions

23 More Efficient Taboo Condition Settings diff(x, Y): Changes made to move from a feasible solution X to another one Y E.g., Which variables have different values For a certain period after a move X Y, diff(y, X) will be kept as a taboo change in the taboo list Much smaller than solutions themselves With the taboo period of L steps, the search will never have a loop shorter than 2L steps

24 Difficulty in Setting the Taboo Period A period too short makes the search likely to loop around local optima A period too long will make The cost of taboo checking larger, and Non-taboo moves within the neighborhood fewer; In the worst case, all moves within the neighborhood may become taboos

25 Design of Neighborhood is Essential Both simulated annealing and tabu search can escape from small local optima, but larger local optima are hard to escape from It is essential to design neighborhoods so that smooth transition of neighborhoods will lead to the global optimum With a good neighborhood design, simple local search may also lead to a good solution

26 Good Neighborhood Design

27 Different Choices of Neighborhoods for TSP 2-opt 3-opt Or-opt

28 Multiple Searches in Parallel All of local search, annealing, and tabu search try to gradually improve a single solution Parallelization is available by improving multiple feasible solutions in parallel, but, information on the solutions visited in the improvement process is not utilized Group Optimization

29 Particle Swarm Optimization Particles move around in a multi-dimensional space, as insects swarm around food Positions in the space have fitness values Particles can exchange information

30 Particle Swarm Optimization Assumption: Solutions within the neighborhood of a good solution are likely to be good also A particle has acceleration given by some linear combination of the following Direction of the best solution found so far by the particle itself Direction of the best solution found in the neighborhood of the particle Direction of the best ever found globally Some randomness

31 Utilizing Parts of Solutions When solutions can be decomposed into parts A feasible solution may have good parts and not-so-good parts Updating a feasible solution may destroy the good parts Combining good parts of multiple feasible solution may be enabled if search is conducted for a group of solutions Genetic Algorithms

32 Genetic Algorithms An algorithm mimicking evolution 1. Start with a group (population) of a number of initial solutions (individuals) 2. Offspring made through some alterations Decompose individuals and combine the parts again to make new individuals: Mating Some random alterations: Mutation 3. Pick up better individuals to form the next generation: Selection 4. Loop back to 2 until an appropriate solution is obtained

33 Gene, Mating, and Mutation A gene as a list of variables Mating: Crossover With two genes X = { x 1, x 2,, x n } Y = { y 1, y 2,, y n } Define a cross point k (1< k n) at random and make crossed genes Z = { x 1, x 2,, x k, y k+1, y k+2,, y n } W = { y 1, y 2,, y k, x k+1, x k+2,, x n } Mutation: Random changes of values

34 Selection In principle, individuals with higher fitness (those with lower costs) are chosen Strict application of the principle will damage the gene diversity, that may impede later improvements Not-so-good individuals may have good parts in their genes Through mating with other individuals, the good parts may become apparent Introduce some randomness to the selection

35 Points in Gene Design Results of mating and mutation should represent feasible solutions frequently Inefficient if only few meet constraints; Even extinction may result Relaxing the constraint and reflecting its violation to the cost may be useful Crossover should preserve meaningful parts of genes Variables closely related should have close locations on genes

36 Genes with Explicit Structures Genes can have structures other than lists Obtaining feasible solutions through mating and mutation could be made easier Tree-structure: Explicit correspondence of parts of solutions and the gene structure

37 Island Model GA Population is divided into groups GA is applied to each group individually Good individuals are exchanged occasionally Evolution in an area consisting of islands Each group would develop distinctive sets of genes Good parallelism with small communication Reported to be efficient even in sequential environments

38 Genetic Programming Automatic programming through GA Programs as tree-structured genes Nodes: Primitive operations Leaves: Constants and variables Fitness: How close to the specification The same algorithm as GA Good for problems that specification fitness can be quantitatively stated e.g. Find an expr. that explains data seq.

39 There Ain't No Such Thing As A Free Lunch It is impossible to get something for nothing 19 th century tradition of saloons in US to provide free lunch to patrons who had purchased at least one drink The food were salty and thus the customers usually ended up paying for a lot of beer When we obtain something free, that is actually at the expense of something else

40 No-Free-Lunch Theorem Wolpert and Macready, 1995 When objective functions are drawn uniformly at random, all algorithms have identical mean performance Algorithms that perform better for some kinds of objective functions must perform worse for some other kinds Algorithms that fit the characteristics of the objective functions should be chosen

41 Metaheuristics Heuristics not specific to problem domains Can be applied to a variety of problems Heuristics is heuristics No guarantee to find a good solution Whether the formulation fits the problem is the question Complicated algorithms have higher computational costs Simple repeated local search may work better

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.3 4.6) Searching: So Far We ve discussed how to build goal-based and utility-based agents that search to solve problems We ve also presented

More information

Escaping Local Optima: Genetic Algorithm

Escaping Local Optima: Genetic Algorithm Artificial Intelligence Escaping Local Optima: Genetic Algorithm Dae-Won Kim School of Computer Science & Engineering Chung-Ang University We re trying to escape local optima To achieve this, we have learned

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

Comparison of TSP Algorithms

Comparison of TSP Algorithms Comparison of TSP Algorithms Project for Models in Facilities Planning and Materials Handling December 1998 Participants: Byung-In Kim Jae-Ik Shim Min Zhang Executive Summary Our purpose in this term project

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Single-State Meta-Heuristics Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Recap: Goal is to Find the Optimum Challenges of general optimization

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

x n+1 = x n f(x n) f (x n ), (1)

x n+1 = x n f(x n) f (x n ), (1) 1 Optimization The field of optimization is large and vastly important, with a deep history in computer science (among other places). Generally, an optimization problem is defined by having a score function

More information

Chapter 14 Global Search Algorithms

Chapter 14 Global Search Algorithms Chapter 14 Global Search Algorithms An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Introduction We discuss various search methods that attempts to search throughout the entire feasible set.

More information

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random Example: n-queens Put n queens on an n n board with no two queens on the same row, column, or diagonal A search problem! State space: the board with 0 to n queens Initial state: the empty board or a board

More information

Simulated Annealing. Slides based on lecture by Van Larhoven

Simulated Annealing. Slides based on lecture by Van Larhoven Simulated Annealing Slides based on lecture by Van Larhoven Iterative Improvement 1 General method to solve combinatorial optimization problems Principle: Start with initial configuration Repeatedly search

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Revision Lecture Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University

More information

TABU search and Iterated Local Search classical OR methods

TABU search and Iterated Local Search classical OR methods TABU search and Iterated Local Search classical OR methods tks@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Outline TSP optimization problem Tabu Search (TS) (most

More information

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt TABU search and Iterated Local Search classical OR methods Outline TSP optimization problem Tabu Search (TS) (most important) Iterated Local Search (ILS) tks@imm.dtu.dk Informatics and Mathematical Modeling

More information

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Best-First Search. Recall Uniform-Cost Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms

Outline. Best-first search. Greedy best-first search A* search Heuristics Local search algorithms Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Algorithms & Complexity

Algorithms & Complexity Algorithms & Complexity Nicolas Stroppa - nstroppa@computing.dcu.ie CA313@Dublin City University. 2006-2007. November 21, 2006 Classification of Algorithms O(1): Run time is independent of the size of

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

More information

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n

TDDC17. Intuitions behind heuristic search. Recall Uniform-Cost Search. Best-First Search. f(n) =... + h(n) g(n) = cost of path from root node to n Intuitions behind heuristic search The separation property of GRAPH-SEARCH TDDC17 Seminar III Search II Informed or Heuristic Search Beyond Classical Search Find a heuristic measure h(n) which estimates

More information

Optimization Techniques for Design Space Exploration

Optimization Techniques for Design Space Exploration 0-0-7 Optimization Techniques for Design Space Exploration Zebo Peng Embedded Systems Laboratory (ESLAB) Linköping University Outline Optimization problems in ERT system design Heuristic techniques Simulated

More information

CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION

CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION 131 CHAPTER 6 ORTHOGONAL PARTICLE SWARM OPTIMIZATION 6.1 INTRODUCTION The Orthogonal arrays are helpful in guiding the heuristic algorithms to obtain a good solution when applied to NP-hard problems. This

More information

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems

CS 331: Artificial Intelligence Local Search 1. Tough real-world problems CS 331: Artificial Intelligence Local Search 1 1 Tough real-world problems Suppose you had to solve VLSI layout problems (minimize distance between components, unused space, etc.) Or schedule airlines

More information

Simulated Annealing. G5BAIM: Artificial Intelligence Methods. Graham Kendall. 15 Feb 09 1

Simulated Annealing. G5BAIM: Artificial Intelligence Methods. Graham Kendall. 15 Feb 09 1 G5BAIM: Artificial Intelligence Methods Graham Kendall 15 Feb 09 1 G5BAIM Artificial Intelligence Methods Graham Kendall Simulated Annealing Simulated Annealing Motivated by the physical annealing process

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function Introduction METAHEURISTICS Some problems are so complicated that are not possible to solve for an optimal solution. In these problems, it is still important to find a good feasible solution close to the

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland March 19, 2014

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic We know how to use heuristics in search BFS, A*, IDA*, RBFS, SMA* Today: What if the

More information

Advanced Search Simulated annealing

Advanced Search Simulated annealing Advanced Search Simulated annealing Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Jerry Zhu, Andrew Moore http://www.cs.cmu.edu/~awm/tutorials

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 20 CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 2.1 CLASSIFICATION OF CONVENTIONAL TECHNIQUES Classical optimization methods can be classified into two distinct groups:

More information

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman Lecture 4 3B1B Optimization Michaelmas 2017 A. Zisserman Convexity Robust cost functions Optimizing non-convex functions grid search branch and bound simulated annealing evolutionary optimization The Optimization

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

Solving Traveling Salesman Problem Using Parallel Genetic. Algorithm and Simulated Annealing

Solving Traveling Salesman Problem Using Parallel Genetic. Algorithm and Simulated Annealing Solving Traveling Salesman Problem Using Parallel Genetic Algorithm and Simulated Annealing Fan Yang May 18, 2010 Abstract The traveling salesman problem (TSP) is to find a tour of a given number of cities

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) The problem # Unique board configurations in search space 8-puzzle 9! = 362880 15-puzzle 16! = 20922789888000 10 13 24-puzzle

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Beyond Classical Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed

More information

Random Search Report An objective look at random search performance for 4 problem sets

Random Search Report An objective look at random search performance for 4 problem sets Random Search Report An objective look at random search performance for 4 problem sets Dudon Wai Georgia Institute of Technology CS 7641: Machine Learning Atlanta, GA dwai3@gatech.edu Abstract: This report

More information

Simple mechanisms for escaping from local optima:

Simple mechanisms for escaping from local optima: The methods we have seen so far are iterative improvement methods, that is, they get stuck in local optima. Simple mechanisms for escaping from local optima: I Restart: re-initialise search whenever a

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Local Search. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Local Search CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A*

More information

An Overview of Search Algorithms With a Focus in Simulated Annealing

An Overview of Search Algorithms With a Focus in Simulated Annealing An Overview of Search Algorithms With a Focus in Simulated Annealing K Jones Appalachian State University joneskp1@appstate.edu May 7, 2014 Definition of Annealing Definition: Annealing, in metallurgy

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Informed search algorithms

More information

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list Unless P=NP, there is no polynomial time algorithm for SAT, MAXSAT, MIN NODE COVER, MAX INDEPENDENT SET, MAX CLIQUE, MIN SET COVER, TSP,. But we have to solve (instances of) these problems anyway what

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

AI Programming CS S-08 Local Search / Genetic Algorithms

AI Programming CS S-08 Local Search / Genetic Algorithms AI Programming CS662-2013S-08 Local Search / Genetic Algorithms David Galles Department of Computer Science University of San Francisco 08-0: Overview Local Search Hill-Climbing Search Simulated Annealing

More information

A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling

A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling Australian Journal of Basic and Applied Sciences, 5(12): 1578-1585, 211 ISSN 1991-8178 A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling 1 Mohammad Fathian,

More information

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very slow lowering of temperature.

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very slow lowering of temperature. Simulated Annealing Key idea: Vary temperature parameter, i.e., probability of accepting worsening moves, in Probabilistic Iterative Improvement according to annealing schedule (aka cooling schedule).

More information

Single Candidate Methods

Single Candidate Methods Single Candidate Methods In Heuristic Optimization Based on: [3] S. Luke, "Essentials of Metaheuristics," [Online]. Available: http://cs.gmu.edu/~sean/book/metaheuristics/essentials.pdf. [Accessed 11 May

More information

BEYOND CLASSICAL SEARCH

BEYOND CLASSICAL SEARCH 4 BEYOND CLASSICAL In which we relax the simplifying assumptions of the previous chapter, thereby getting closer to the real world. Chapter 3 addressed a single category of problems: observable, deterministic,

More information

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II CS 188: Artificial Intelligence K-Consistency Constraint Satisfaction Problems II Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca

More information

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat:

Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Local Search Local Search (Greedy Descent): Maintain an assignment of a value to each variable. Repeat: Select a variable to change Select a new value for that variable Until a satisfying assignment is

More information

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search Hansen and Mladenovic, Variable neighborhood search: Principles and applications, EJOR 43 (2001) 1 Basic notions of VNS Systematic change of the neighborhood in search Does

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 21, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Exercise: The Knapsack

More information

Automatic Generation of Test Case based on GATS Algorithm *

Automatic Generation of Test Case based on GATS Algorithm * Automatic Generation of Test Case based on GATS Algorithm * Xiajiong Shen and Qian Wang Institute of Data and Knowledge Engineering Henan University Kaifeng, Henan Province 475001, China shenxj@henu.edu.cn

More information

ABSTRACT I. INTRODUCTION. J Kanimozhi *, R Subramanian Department of Computer Science, Pondicherry University, Puducherry, Tamil Nadu, India

ABSTRACT I. INTRODUCTION. J Kanimozhi *, R Subramanian Department of Computer Science, Pondicherry University, Puducherry, Tamil Nadu, India ABSTRACT 2018 IJSRSET Volume 4 Issue 4 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section : Engineering and Technology Travelling Salesman Problem Solved using Genetic Algorithm Combined Data

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 17: Coping With Intractability Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Branch-and-Bound (B&B) Variant of backtrack with costs

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

Using Genetic Algorithms to solve the Minimum Labeling Spanning Tree Problem

Using Genetic Algorithms to solve the Minimum Labeling Spanning Tree Problem Using to solve the Minimum Labeling Spanning Tree Problem Final Presentation, oliverr@umd.edu Advisor: Dr Bruce L. Golden, bgolden@rhsmith.umd.edu R. H. Smith School of Business (UMD) May 3, 2012 1 / 42

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable.

Hill Climbing. Assume a heuristic value for each assignment of values to all variables. Maintain an assignment of a value to each variable. Hill Climbing Many search spaces are too big for systematic search. A useful method in practice for some consistency and optimization problems is hill climbing: Assume a heuristic value for each assignment

More information

Heuristic Optimization Introduction and Simple Heuristics

Heuristic Optimization Introduction and Simple Heuristics Heuristic Optimization Introduction and Simple Heuristics José M PEÑA (jmpena@fi.upm.es) (Universidad Politécnica de Madrid) 1 Outline 1. What are optimization problems? 2. Exhaustive vs. Heuristic approaches

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries. CS 188: Artificial Intelligence Fall 2007 Lecture 5: CSPs II 9/11/2007 More CSPs Applications Tree Algorithms Cutset Conditioning Today Dan Klein UC Berkeley Many slides over the course adapted from either

More information

Using Genetic Algorithms to optimize ACS-TSP

Using Genetic Algorithms to optimize ACS-TSP Using Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada {mpilat,arpwhite}@scs.carleton.ca

More information

Exploration vs. Exploitation in Differential Evolution

Exploration vs. Exploitation in Differential Evolution Exploration vs. Exploitation in Differential Evolution Ângela A. R. Sá 1, Adriano O. Andrade 1, Alcimar B. Soares 1 and Slawomir J. Nasuto 2 Abstract. Differential Evolution (DE) is a tool for efficient

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 6, 2015 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe 2 Exercise: The Knapsack Problem

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

Local Search (Ch )

Local Search (Ch ) Local Search (Ch. 4-4.1) Local search Before we tried to find a path from the start state to a goal state using a fringe set Now we will look at algorithms that do not care about a fringe, but just neighbors

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu. Lecture 5: Search 4.

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu. Lecture 5: Search 4. Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu Lecture 5: Search 4 http://cs.nju.edu.cn/yuy/course_ai16.ashx Previously... Path-based search Uninformed search Depth-first, breadth

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17

What is Search For? CSE 473: Artificial Intelligence. Example: N-Queens. Example: N-Queens. Example: Map-Coloring 4/7/17 CSE 473: Artificial Intelligence Constraint Satisfaction Dieter Fox What is Search For? Models of the world: single agent, deterministic actions, fully observed state, discrete state space Planning: sequences

More information

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 4: Beyond Classical Search Introduction to Artificial Intelligence 2 nd semester 2016/2017 Chapter 4: Beyond Classical Search Mohamed B. Abubaker Palestine Technical College Deir El-Balah 1 Outlines local search algorithms and optimization

More information

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen INF3490 - Biologically inspired computing Lecture 1: Marsland chapter 9.1, 9.4-9.6 2017 Optimization and Search Jim Tørresen Optimization and Search 2 Optimization and Search Methods (selection) 1. Exhaustive

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

SPATIAL OPTIMIZATION METHODS

SPATIAL OPTIMIZATION METHODS DELMELLE E. (2010). SPATIAL OPTIMIZATION METHODS. IN: B. WHARF (ED). ENCYCLOPEDIA OF HUMAN GEOGRAPHY: 2657-2659. SPATIAL OPTIMIZATION METHODS Spatial optimization is concerned with maximizing or minimizing

More information

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement

Outline. Informed Search. Recall: Uninformed Search. An Idea. Heuristics Informed search techniques More on heuristics Iterative improvement Outline Informed Search ECE457 Applied Artificial Intelligence Fall 2007 Lecture #3 Heuristics Informed search techniques More on heuristics Iterative improvement Russell & Norvig, chapter 4 Skip Genetic

More information

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.

Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7. Chapter 7: Derivative-Free Optimization Introduction (7.1) Genetic Algorithms (GA) (7.2) Simulated Annealing (SA) (7.3) Random Search (7.4) Downhill Simplex Search (DSS) (7.5) Jyh-Shing Roger Jang et al.,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth 16 rd November, 2011 Informed Search and Exploration Example (again) Informed strategy we use a problem-specific

More information

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems AutOrI LAB, DIA, Roma Tre Email: mandal@dia.uniroma3.it January 16, 2014 Outline 1 An example Assignment-I Tips Variants

More information

ARTIFICIAL INTELLIGENCE. Informed search

ARTIFICIAL INTELLIGENCE. Informed search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Informed search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Optimization in Brachytherapy. Gary A. Ezzell, Ph.D. Mayo Clinic Scottsdale

Optimization in Brachytherapy. Gary A. Ezzell, Ph.D. Mayo Clinic Scottsdale Optimization in Brachytherapy Gary A. Ezzell, Ph.D. Mayo Clinic Scottsdale Outline General concepts of optimization Classes of optimization techniques Concepts underlying some commonly available methods

More information

n Informally: n How to form solutions n How to traverse the search space n Systematic: guarantee completeness

n Informally: n How to form solutions n How to traverse the search space n Systematic: guarantee completeness Advanced Search Applications: Combinatorial Optimization Scheduling Algorithms: Stochastic Local Search and others Analyses: Phase transitions, structural analysis, statistical models Combinatorial Problems

More information

Evolutionary Algorithms: Perfecting the Art of Good Enough. Liz Sander

Evolutionary Algorithms: Perfecting the Art of Good Enough. Liz Sander Evolutionary Algorithms: Perfecting the Art of Good Enough Liz Sander Source: wikipedia.org Source: fishbase.org Source: youtube.com Sometimes, we can t find the best solution. Sometimes, we can t find

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Today: Informed search algorithms

More information

Local Search. CS 486/686: Introduction to Artificial Intelligence

Local Search. CS 486/686: Introduction to Artificial Intelligence Local Search CS 486/686: Introduction to Artificial Intelligence 1 Overview Uninformed Search Very general: assumes no knowledge about the problem BFS, DFS, IDS Informed Search Heuristics A* search and

More information

mywbut.com Informed Search Strategies-II

mywbut.com Informed Search Strategies-II Informed Search Strategies-II 1 3.3 Iterative-Deepening A* 3.3.1 IDA* Algorithm Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the following modifications: The depth

More information

Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops

Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops 1 Srinivas P. S., 2 Ramachandra Raju V., 3 C.S.P Rao. 1 Associate Professor, V. R. Sdhartha Engineering College, Vijayawada 2 Professor,

More information

Announcements. CS 188: Artificial Intelligence Fall Reminder: CSPs. Today. Example: 3-SAT. Example: Boolean Satisfiability.

Announcements. CS 188: Artificial Intelligence Fall Reminder: CSPs. Today. Example: 3-SAT. Example: Boolean Satisfiability. CS 188: Artificial Intelligence Fall 2008 Lecture 5: CSPs II 9/11/2008 Announcements Assignments: DUE W1: NOW P1: Due 9/12 at 11:59pm Assignments: UP W2: Up now P2: Up by weekend Dan Klein UC Berkeley

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 5: CSPs II 9/11/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 1 Assignments: DUE Announcements

More information

Evolutionary Methods for State-based Testing

Evolutionary Methods for State-based Testing Evolutionary Methods for State-based Testing PhD Student Raluca Lefticaru Supervised by Florentin Ipate University of Piteşti, Romania Department of Computer Science Outline Motivation Search-based software

More information

GRASP. Greedy Randomized Adaptive. Search Procedure

GRASP. Greedy Randomized Adaptive. Search Procedure GRASP Greedy Randomized Adaptive Search Procedure Type of problems Combinatorial optimization problem: Finite ensemble E = {1,2,... n } Subset of feasible solutions F 2 Objective function f : 2 Minimisation

More information

A Two-Dimensional Mapping for the Traveling Salesman Problem

A Two-Dimensional Mapping for the Traveling Salesman Problem Computers Math. Apphc. Vol. 26, No. 12, pp. 65-73, 1993 0898-1221/93 $6.00 + 0.00 Printed in Great Britain. All rights reserved Copyright 1993 Pergarnon Press Ltd A Two-Dimensional Mapping for the Traveling

More information

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal.

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal. METAHEURISTIC Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca March 2015 Overview Heuristic Constructive Techniques: Generate

More information