Math 8803/4803, Spring 2008: Discrete Mathematical Biology

Size: px
Start display at page:

Download "Math 8803/4803, Spring 2008: Discrete Mathematical Biology"

Transcription

1 Math 8803/4803, Spring 2008: Discrete Mathematical Biology Prof. Christine Heitsch School of Mathematics Georgia Institute of Technology Lecture 11 February 1, 2008

2 and give one secondary structure for this sequence in Fig. l(a), where the base pairs are indicated by dashes. This structure is referred to in the biological literature as a cloverleaf and is the secondary structure assumed by transfer RNA molecules. In RNA secondary structures as nested arcs R = cagcaucacauccgcgggguaaacgcuaaacgcu 318 W.R. Schmitt, M.S. Waterman 1 Discrete Applied Mathematics 51 (1994) (4 C o-o G A C A I U I C o-0 U A C A C C (I-4 G G G (1-o c O-4 Fig. 1. Two representations of secondary structure How many possible S(R) for a sequence R of length n? structures determine the shape and hence the function of these important biological molecules. The structure of RNA is utilized in regulating the expression of genes, in the assembly of protein molecules, and in many other fundamental biological processes. For an excellent general reference to molecular biology, see Lewin [3]. As an example of secondary structure, we consider the sequence C. E. Heitsch, GA Tech 1 CAGCAUCACAUCCGCGGGGUAAACGCU

3 RNA foldings as plane trees Abstract folded sequence to its skeleton : stacked base pairs edges, single-stranded regions vertices. 1 loop leaf vertex 4 loop vertex of degree stacked base pairs edge of weight 6 6 external loop root vertex How many possible plane trees T with n edges? C. E. Heitsch, GA Tech 2

4 Some graph theory A graph G is a set of vertices V, a set of edges E, and a mapping which associates each edge e E to an unordered pair of vertices {x, y} for x, y V. A weighted graph G has a real number associated to each edge e. A simple closed path is a walk in a graph G which begins and ends at the same vertex but is otherwise a sequence of distinct vertices and distinct edges. A connected graph that contains no nontrivial simple closed paths is a tree. A rooted tree has a unique identified vertex (the root). A child of a (parent) vertex is a vertex one edge farther away from the root. A subtree of a vertex in a rooted tree is a child and all its descendents. C. E. Heitsch, GA Tech 3

5 Plane / ordered / linear trees From Stanley s Enumerative Combinatorics, Vol. 2 : Definition. A plane tree T is a rooted tree whose subtrees at any vertex are linearly ordered. A vertex with k children has degree k. T n = {T n edges (and n + 1 vertices)} T 3 = {,,,, } C. E. Heitsch, GA Tech 4

6 1 edge = 2 half-edges Left half right half Label the half-edges of T T n with the string s = n Let e(i, j) be the edge with the ith and jth half-edges (i < j). By parity, there is an even number of k between i and j in s. C. E. Heitsch, GA Tech 5

7 Counting plane trees T 3 = {,,,, } We know that T 3 = 5. What about when n = 4? T always has an edge e(1, j) for j = 2k, 1 k n. e(1, j) e(1, 2) e(1, 4) e(1, 6) e(1, 8) # of T T 3 T 1 T 2 T 2 T 1 T 3 C. E. Heitsch, GA Tech 6

8 Catalan numbers e(1, j) e(1, 2) e(1, 4)... e(1, 2n) # of T T 0 T n 1 T 1 T n 2... T n 1 T 0 Let T n = C n. Then C n = n 1 j=1 C j C n j 1. C n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,... C n = 1 n + 1 ( ) 2n n C. E. Heitsch, GA Tech 7

9 Catalan formula derivation G(x) = n=0 C n x n xg(x) 2 G(x) + 1 = 0 x G(x) = 1 1 4x 2 = x 0 (1 4t) 1/2 dt ( ) 1/2 n = ( 2n n ) ( 4) n (1 4x) 1/2 = n=0 ( 2n n ) x n C. E. Heitsch, GA Tech 8

10 and give one secondary structure for this sequence in Fig. l(a), where the base pairs are indicated by dashes. This structure is referred to in the biological literature as a cloverleaf and is the secondary structure assumed by transfer RNA molecules. In RNA secondary structures as nested arcs R = cagcaucacauccgcgggguaaacgcuaaacgcu 318 W.R. Schmitt, M.S. Waterman 1 Discrete Applied Mathematics 51 (1994) (4 C o-o G A C A I U I C o-0 U A C A C C (I-4 G G G (1-o c O-4 Fig. 1. Two representations of secondary structure How many possible S(R) for a sequence R of length n? structures determine the shape and hence the function of these important biological molecules. The structure of RNA is utilized in regulating the expression of genes, in the assembly of protein molecules, and in many other fundamental biological processes. For an excellent general reference to molecular biology, see Lewin [3]. As an example of secondary structure, we consider the sequence C. E. Heitsch, GA Tech 9 CAGCAUCACAUCCGCGGGGUAAACGCU

11 Counting sets of base pairs Let R = b 1 b 2... b n and suppose that any base pair b i b j is possible for i + 1 < j. Let S(n) be the number of secondary structures for R. For n = 6, S(n) = 17. Theorem. [10] We have S(0) = 0, S(1) = 1, and for n 2, S(n + 1) = S(n) + S(n 1) + n 2 k=1 S(k)S(n k 1) C. E. Heitsch, GA Tech 10

12 Generating functions Lemma. [10] If φ(x) = k 0 S(k)xk, φ 2 (x)x 2 φ(x)(1 x x 2 ) + x = 0. Proof. Let φ(x) = y. Recall S(n + 2) S(n + 1) S(n) = n 1 S(n k)s(k). y 2 = n 1 ( S(n k)s(k))x n k=1 n=1 k=1 = n 1 (S(n + 2) S(n + 1) S(n))x n = S(n + 2)x n S(n + 1)x n S(n)x n n 1 n 1 n 1 = y x2 x x 2 y x x y C. E. Heitsch, GA Tech 11

13 Asymptotics Theorem. [10] As n, S(n) π n 3/2 ( ) n. 2 Proof. From before, F (x, y) = x 2 y 2 (1 x x 2 )y + x = 0. There is a theorem that asserts when F (x, y) = 0, r > 0, s > S(0), is the unique solution of F (r, s) = 0, F y (r, s) = 0, the n-the coefficient of φ(x), S(n) satisfies r S(n) 2 F x (r, s) 2πF yy (r, s) n 1/2 r n. Solving for r and s yields s = and 1 r = C. E. Heitsch, GA Tech 12

14 Counting subtypes of secondary structures Let P n,k be the set of secondary structures on b 1... b n with exactly k basepairs and set P (n, k) = P n,k. Theorem. [10] Set P (n, 0) = 1 for all n and P (n, k) = 0 for k n/2. Then for n 2, P (n + 1, k + 1) = P (n, k + 1) + n 1 k ( j=1 i=0 P (j 1, i)p (n j, k i)) Corollary. [10] P (n) = n/2 k=0 P (n, k) C. E. Heitsch, GA Tech 13

15 s(n + 1) = s(n) + C s(j - l)s(n -j), (1) j=l for n 3 2, and s(o) = s(l) = s(2) = 1. Asymptotic formulae for s(n) and related sequences determined by a recurrence relation generalizing the above are given by Stein and Waterman [S]. Let 9& Some be the set of secondary examples structures on [n] which have exactly k pairs, and let s(n,k) = lyn,,j. For example, the set.jy ~,~ is shown in Fig. 2. The numbers s(n, k) are also studied in [2], where it is shown that they satisfy the recurrence s(n+l,k+l)=s(h,k+l)+ 1 xs(j-l,i)s(n-j,k-i), 1 (2) P 6,2 : I I Fig. 2. The set Y,,,. Let L n,k be the set of plane trees having n vertices, k of which are not leaves. 320 W.R. Schmitt, M.S. Waterman / Discretr Applied Mathematics 51 (1994) L 5,3 : Fig. 3. The set Y5,,, for II 3 2, where s(n, 0) = 1, for all n, and s(n, k) = 0 for k 3 $I. Using vector notation, this recurrence can be written in a form identical to that of Eq. (1). Hence, the sequences (s(y1, k): k > 0) can be viewed as vector generalizations of Catalan numbers. It turns out that the numbers s(n, k) are much easier to compute than the s(n). Our main result is a remarkably simple formula for s(n, k), which is obtained by constructing a bijection from Y,,k onto a certain set of trees. A linear tree is a rooted tree together with a linear ordering on the set of children of each vertex in the tree. An isomorphism of linear trees is a root-preserving tree C. E. Heitsch, GA Tech 14

16 Another bijection between structures and trees W.R. Schmitt, MS. Waterman / Discrete Applied Mathematics 51 (1994) Theorem. Example. [a) {FZ\. Z\. [10] For all n, k 1, there exists a bijection (b) φ : S n+k 2,k 1 L n,k Fig. 4. A secondary structure and its corresponding tree W.R. Schmitt, MS. Waterman / Discrete Applied Mathematics 51 (1994) [a) {FZ\. Z\ (b) Fig. 4. A secondary structure and its corresponding tree Fig. 5. Labelling of a linear tree, determining corresponding secondary structure. It is straightforward to verify that the maps c$ and CI are inverses of one another. C. E. Heitsch, GA Tech 15 Theorem 2.2. The number of secondary structures over a sequence of length n having exactly k pairs is given by

17 More enumerative results Theorem. [10] For n, k 0, S(n, k) = 1 k ( n k k + 1 )( n k + 1 k 1 ). Corollary. [10] n k=1 ( )( ) 1 n k n k + 1 k k + 1 k π n 3/2 ( ) n 2 Corollary. [10] S(n + k, k) = S(2n k 1, n k 1) C. E. Heitsch, GA Tech 16

18 Acknowledgments Predicted RNA foldings courtesy of Michael Zuker s mfold algorithm, available online through bioinfo.math.rpi.edu/ zukerm/. Neil Sloane s On-Line Encyclopedia of Integer Sequences: njas/sequences/seis.html. C. E. Heitsch, GA Tech 17

19 References [1] N. Dershowitz and S. Zaks. Enumerations of ordered trees. Discrete Math., 31(1):9 28, [2] W. Fontana, D. Konings, P. F. Stadler, and P. Schuster. Statistics of RNA secondary structures. Biopolymers, 33(9): , Sept [3] I. L. Hofacker, P. Schuster, and P. F. Stadler. Combinatorics of RNA secondary structures. Discrete Appl. Math., 88(1-3): , [4] M. Nebel. Combinatorial properties of RNA secondary structures, [5] A. Orlitsky and S. S. Venkatesh. On edge-colored interior planar graphs on a circle and the expected number of RNA secondary structures. Discrete Appl. Math., 64(2): , [6] J. Riordan. Combinatorial identities. John Wiley & Sons Inc., New York, [7] W. R. Schmitt and M. S. Waterman. Linear trees and RNA secondary structure. Discrete Appl. Math., 51(3): , [8] R. P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. [9] P. R. Stein and M. S. Waterman. On some new sequences generalizing the Catalan and Motzkin numbers. Discrete Math., 26(3): , [10] M. S. Waterman. Introduction to Computational Biology. Chapman & Hall/CRC, C. E. Heitsch, GA Tech 18

Linear trees and RNA secondary. structuret's

Linear trees and RNA secondary. structuret's ELSEVIER Discrete Applied Mathematics 51 (1994) 317-323 DISCRETE APPLIED MATHEMATICS Linear trees and RNA secondary. structuret's William R. Schmitt*.", Michael S. Watermanb "University of Memphis. Memphis,

More information

Deciphering the Information Encoded in RNA Viral Genomes

Deciphering the Information Encoded in RNA Viral Genomes Deciphering the Information Encoded in RNA Viral Genomes Christine E. Heitsch Genome Center of Wisconsin and Mathematics Department University of Wisconsin Madison Detecting and Processing Regularities

More information

Noncrossing Trees and Noncrossing Graphs

Noncrossing Trees and Noncrossing Graphs Noncrossing Trees and Noncrossing Graphs William Y. C. Chen and Sherry H. F. Yan 2 Center for Combinatorics, LPMC, Nanai University, 30007 Tianjin, P.R. China chen@nanai.edu.cn, 2 huifangyan@eyou.com Mathematics

More information

Parity reversing involutions on plane trees and 2-Motzkin paths

Parity reversing involutions on plane trees and 2-Motzkin paths European Journal of Combinatorics 27 (2006) 283 289 www.elsevier.com/locate/ejc Parity reversing involutions on plane trees and 2-Motzkin paths William Y.C. Chen a,,louisw.shapiro b,laural.m. Yang a a

More information

Recursive Bijections for Catalan Objects

Recursive Bijections for Catalan Objects 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.3 Recursive Bijections for Catalan Objects Stefan Forcey Department of Mathematics The University of Akron Akron, OH 44325-4002

More information

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees Fundamenta Informaticae 56 (2003) 105 120 105 IOS Press A Fast Algorithm for Optimal Alignment between Similar Ordered Trees Jesper Jansson Department of Computer Science Lund University, Box 118 SE-221

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS.

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. STEFAN FORCEY, MOHAMMADMEHDI KAFASHAN, MEHDI MALEKI, AND MICHAEL STRAYER Abstract. In this note we introduce several instructive examples of bijections found between

More information

NOTE. Intransitive Trees

NOTE. Intransitive Trees journal of combinatorial theory, Series A 79, 360366 (1997) article no. TA962735 NOTE Intransitive Trees Alexander Postnikov* Department of Mathematics, Massachusetts Institute of Technology, Cambridge,

More information

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300)

Evolution Module. 6.1 Phylogenetic Trees. Bob Gardner and Lev Yampolski. Integrated Biology and Discrete Math (IBMS 1300) Evolution Module 6.1 Phylogenetic Trees Bob Gardner and Lev Yampolski Integrated Biology and Discrete Math (IBMS 1300) Fall 2008 1 INDUCTION Note. The natural numbers N is the familiar set N = {1, 2, 3,...}.

More information

Fast algorithm for generating ascending compositions

Fast algorithm for generating ascending compositions manuscript No. (will be inserted by the editor) Fast algorithm for generating ascending compositions Mircea Merca Received: date / Accepted: date Abstract In this paper we give a fast algorithm to generate

More information

Lecture 2 : Counting X-trees

Lecture 2 : Counting X-trees Lecture 2 : Counting X-trees MATH285K - Spring 2010 Lecturer: Sebastien Roch References: [SS03, Chapter 1,2] 1 Trees We begin by recalling basic definitions and properties regarding finite trees. DEF 2.1

More information

#A14 INTEGERS 15A (2015) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS

#A14 INTEGERS 15A (2015) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS #A4 INTEGERS 5A (205) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS Melkamu Zeleke Department of Mathematics, William Paterson University, Wayne, New Jersey Mahendra Jani

More information

The Oldest Child Tree

The Oldest Child Tree The Oldest Child Tree Dennis E. Davenport Mathematics Department Howard University, Washington, DC dennis.davenport@howard.edu Louis W. Shapiro Mathematics Department Howard University, Washington, DC

More information

arxiv: v2 [math.co] 28 Feb 2013

arxiv: v2 [math.co] 28 Feb 2013 RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. STEFAN FORCEY, MOHAMMADMEHDI KAFASHAN, MEHDI MALEKI, AND MICHAEL STRAYER arxiv:1212.1188v2 [math.co] 28 Feb 2013 Abstract. In this note we introduce several instructive

More information

Tiling with fences. 16:00 Wednesday 26th October 2016, Room 3303, MUIC. Michael A. Allen. Physics Department, Mahidol University, Bangkok

Tiling with fences. 16:00 Wednesday 26th October 2016, Room 3303, MUIC. Michael A. Allen. Physics Department, Mahidol University, Bangkok Tiling with fences 16:00 Wednesday 26th October 2016, Room 3303, MUIC Michael A. Allen Physics Department, Mahidol University, Bangkok We look at tiling an n-board (a linear array of n square cells of

More information

On the Number of Tilings of a Square by Rectangles

On the Number of Tilings of a Square by Rectangles University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2012 On the Number of Tilings

More information

Pattern Avoidance in Ternary Trees

Pattern Avoidance in Ternary Trees 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 15 (2012), Article 12.1.5 Pattern Avoidance in Ternary Trees Nathan Gabriel 1 Department of Mathematics Rice University Houston, TX 77251, USA Katherine

More information

Divided differences of inverse functions and partitions of a convex polygon

Divided differences of inverse functions and partitions of a convex polygon Divided differences of inverse functions and partitions of a convex polygon Michael S. Floater and Tom Lyche Abstract We derive a formula for an n-th order divided difference of the inverse of a function.

More information

Well labeled paths and the volume of a polytope

Well labeled paths and the volume of a polytope Well labeled paths and the volume of a polytope Philippe Nadeau (Joint work with Olivier Bernardi and Bertrand Duplantier) Fakultät für Mathematik Universität Wien SLC 62, Heilsbronn February 24th, 2009

More information

Digital Logic Design: a rigorous approach c

Digital Logic Design: a rigorous approach c Digital Logic Design: a rigorous approach c Chapter 4: Directed Graphs Guy Even Moti Medina School of Electrical Engineering Tel-Aviv Univ. October 31, 2017 Book Homepage: http://www.eng.tau.ac.il/~guy/even-medina

More information

Proper Partitions of a Polygon and k-catalan Numbers

Proper Partitions of a Polygon and k-catalan Numbers Proper Partitions of a Polygon and k-catalan Numbers Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA sagan@math.msu.edu July 13, 2005 Abstract Let P be

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

Multivariate Lagrange inversion formula and the cycle lemma

Multivariate Lagrange inversion formula and the cycle lemma Multivariate Lagrange inversion formula and the cycle lemma Axel Bacher and Gilles Schaeffer Université Paris Nord, and CNRS / École Polytechnique Abstract. We give a multitype extension of the cycle lemma

More information

Binary Heaps in Dynamic Arrays

Binary Heaps in Dynamic Arrays Yufei Tao ITEE University of Queensland We have already learned that the binary heap serves as an efficient implementation of a priority queue. Our previous discussion was based on pointers (for getting

More information

Genus Ranges of 4-Regular Rigid Vertex Graphs

Genus Ranges of 4-Regular Rigid Vertex Graphs Genus Ranges of 4-Regular Rigid Vertex Graphs Dorothy Buck Department of Mathematics Imperial College London London, England, UK d.buck@imperial.ac.uk Nataša Jonoska Egor Dolzhenko Molecular and Computational

More information

arxiv: v1 [math.co] 20 Aug 2012

arxiv: v1 [math.co] 20 Aug 2012 ENUMERATING TRIANGULATIONS BY PARALLEL DIAGONALS Alon Regev Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois regev@math.niu.edu arxiv:108.91v1 [math.co] 0 Aug 01 1 Introduction

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

Good Will Hunting s Problem: Counting Homeomorphically Irreducible Trees

Good Will Hunting s Problem: Counting Homeomorphically Irreducible Trees Good Will Hunting s Problem: Counting Homeomorphically Irreducible Trees Ira M. Gessel Department of Mathematics Brandeis University Brandeis University Combinatorics Seminar September 18, 2018 Good Will

More information

Rotation Distance is Fixed-Parameter Tractable

Rotation Distance is Fixed-Parameter Tractable Rotation Distance is Fixed-Parameter Tractable Sean Cleary Katherine St. John September 25, 2018 arxiv:0903.0197v1 [cs.ds] 2 Mar 2009 Abstract Rotation distance between trees measures the number of simple

More information

hal , version 1-11 May 2006 ccsd , version 1-11 May 2006

hal , version 1-11 May 2006 ccsd , version 1-11 May 2006 Author manuscript, published in "Journal of Combinatorial Theory Series A 114, 5 (2007) 931-956" BIJECTIVE COUNTING OF KREWERAS WALKS AND LOOPLESS TRIANGULATIONS OLIVIER BERNARDI ccsd-00068433, version

More information

THE DESCENT STATISTIC ON 123-AVOIDING PERMUTATIONS

THE DESCENT STATISTIC ON 123-AVOIDING PERMUTATIONS Séminaire Lotharingien de Combinatoire 63 (2010), Article B63a THE DESCENT STATISTIC ON 123-AVOIDING PERMUTATIONS MARILENA BARNABEI, FLAVIO BONETTI, AND MATTEO SILIMBANI Abstract. We exploit Krattenthaler

More information

Bounds on the signed domination number of a graph.

Bounds on the signed domination number of a graph. Bounds on the signed domination number of a graph. Ruth Haas and Thomas B. Wexler September 7, 00 Abstract Let G = (V, E) be a simple graph on vertex set V and define a function f : V {, }. The function

More information

Dynamic Programming Course: A structure based flexible search method for motifs in RNA. By: Veksler, I., Ziv-Ukelson, M., Barash, D.

Dynamic Programming Course: A structure based flexible search method for motifs in RNA. By: Veksler, I., Ziv-Ukelson, M., Barash, D. Dynamic Programming Course: A structure based flexible search method for motifs in RNA By: Veksler, I., Ziv-Ukelson, M., Barash, D., Kedem, K Outline Background Motivation RNA s structure representations

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Binary trees having a given number of nodes with 0, 1, and 2 children.

Binary trees having a given number of nodes with 0, 1, and 2 children. Binary trees having a given number of nodes with 0, 1, and 2 children. Günter Rote 13. August 1997 Zusammenfassung We give three combinatorial proofs for the number of binary trees having a given number

More information

Basic Properties The Definition of Catalan Numbers

Basic Properties The Definition of Catalan Numbers 1 Basic Properties 1.1. The Definition of Catalan Numbers There are many equivalent ways to define Catalan numbers. In fact, the main focus of this monograph is the myriad combinatorial interpretations

More information

Counting Vertices in Isohedral Tilings

Counting Vertices in Isohedral Tilings Counting Vertices in Isohedral Tilings John Choi Nicholas Pippenger, Advisor Arthur Benjamin, Reader May, 01 Department of Mathematics Copyright c 01 John Choi. The author grants Harvey Mudd College and

More information

Bijective counting of tree-rooted maps and shuffles of parenthesis systems

Bijective counting of tree-rooted maps and shuffles of parenthesis systems Bijective counting of tree-rooted maps and shuffles of parenthesis systems Olivier Bernardi Submitted: Jan 24, 2006; Accepted: Nov 8, 2006; Published: Jan 3, 2006 Mathematics Subject Classifications: 05A15,

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

A Generalization of the Catalan Numbers

A Generalization of the Catalan Numbers 2 3 47 6 23 Journal of Integer Sequences, Vol 6 (203, Article 368 A Generalization of the Catalan Numbers Reza Kahkeshani Department of Pure Mathematics Faculty of Mathematical Sciences University of Kashan

More information

The Boundary of Ordered Trees

The Boundary of Ordered Trees 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (205), Article 5.5.8 The Boundary of Ordered Trees Dennis E. Davenport and Louis W. Shapiro Mathematics Department Howard University Washington, DC 20059

More information

A bijection between ordered trees and 2-Motzkin paths and its many consequences

A bijection between ordered trees and 2-Motzkin paths and its many consequences Discrete Mathematics 256 (2002) 655 670 www.elsevier.com/locate/disc A bijection between ordered trees and 2-Motzkin paths and its many consequences Emeric Deutsch a;, Louis W. Shapiro b a Department of

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

STAIRCASE TILINGS AND LATTICE PATHS

STAIRCASE TILINGS AND LATTICE PATHS STAIRCASE TILINGS AND LATTICE PATHS Silvia Heubach Department of Mathematics, California State University Los Angeles 55 State University Drive, Los Angeles, CA 9-84 USA sheubac@calstatela.edu Toufik Mansour

More information

Weighted Catalan Numbers and Their Divisibility Properties

Weighted Catalan Numbers and Their Divisibility Properties Weighted Catalan Numbers and Their Divisibility Properties Sarah Shader under the direction of Mr. Gaku Liu Massachusetts Institute of Technology Research Science Institute Abstract The weighted Catalan

More information

Explanation for Tree isomorphism talk

Explanation for Tree isomorphism talk Joint Advanced Student School Explanation for Tree isomorphism talk by Alexander Smal (avsmal@gmail.com) Saint-Petersburg, Russia 2008 Abstract In this talk we considered a problem of tree isomorphism.

More information

Lecture Notes on Karger s Min-Cut Algorithm. Eric Vigoda Georgia Institute of Technology Last updated for Advanced Algorithms, Fall 2013.

Lecture Notes on Karger s Min-Cut Algorithm. Eric Vigoda Georgia Institute of Technology Last updated for Advanced Algorithms, Fall 2013. Lecture Notes on Karger s Min-Cut Algorithm. Eric Vigoda Georgia Institute of Technology Last updated for 4540 - Advanced Algorithms, Fall 2013. Today s topic: Karger s min-cut algorithm [3]. Problem Definition

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Chordal graphs and the characteristic polynomial

Chordal graphs and the characteristic polynomial Discrete Mathematics 262 (2003) 211 219 www.elsevier.com/locate/disc Chordal graphs and the characteristic polynomial Elizabeth W. McMahon ;1, Beth A. Shimkus 2, Jessica A. Wolfson 3 Department of Mathematics,

More information

Bijective Proofs of Two Broken Circuit Theorems

Bijective Proofs of Two Broken Circuit Theorems Bijective Proofs of Two Broken Circuit Theorems Andreas Blass PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802 Bruce Eli Sagan THE UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PENNSYLVANIA

More information

arxiv: v1 [math.co] 4 Sep 2017

arxiv: v1 [math.co] 4 Sep 2017 Abstract Maximal chord diagrams up to all isomorphisms are enumerated. The enumerating formula is based on a bijection between rooted one-vertex one-face maps on locally orientable surfaces andacertain

More information

A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs

A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs Michael Dairyko Pomona College Schuyler Veeneman San Francisco State University July 28, 2012 Claudia Rodriguez Arizona State

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

arxiv: v1 [math.co] 4 Apr 2011

arxiv: v1 [math.co] 4 Apr 2011 arxiv:1104.0510v1 [math.co] 4 Apr 2011 Minimal non-extensible precolorings and implicit-relations José Antonio Martín H. Abstract. In this paper I study a variant of the general vertex coloring problem

More information

1 Some Solution of Homework

1 Some Solution of Homework Math 3116 Dr. Franz Rothe May 30, 2012 08SUM\3116_2012h1.tex Name: Use the back pages for extra space 1 Some Solution of Homework Proposition 1 (Counting labeled trees). There are n n 2 different labeled

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 4: Basic Concepts in Graph Theory Section 3: Trees 1 Review : Decision Tree (DT-Section 1) Root of the decision tree on the left: 1 Leaves of the

More information

ON VERTEX b-critical TREES. Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray

ON VERTEX b-critical TREES. Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray Opuscula Math. 33, no. 1 (2013), 19 28 http://dx.doi.org/10.7494/opmath.2013.33.1.19 Opuscula Mathematica ON VERTEX b-critical TREES Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray Communicated

More information

The number of spanning trees of plane graphs with reflective symmetry

The number of spanning trees of plane graphs with reflective symmetry Journal of Combinatorial Theory, Series A 112 (2005) 105 116 www.elsevier.com/locate/jcta The number of spanning trees of plane graphs with reflective symmetry Mihai Ciucu a, Weigen Yan b, Fuji Zhang c

More information

Outerplanar Obstructions for the Feedback Vertex Set

Outerplanar Obstructions for the Feedback Vertex Set Outerplanar Obstructions for the Feedback Vertex Set Juanjo Rué 1,4 Departament de Matemàtica Aplicada 2, Universitat Politècnica de Catalunya, Barcelona, Spain Konstantinos S. Stavropoulos 2,3,4 Dimitrios

More information

arxiv:math.co/ v1 27 Jan 2006

arxiv:math.co/ v1 27 Jan 2006 Bijective counting of tree-rooted maps and shuffles of parenthesis systems Olivier Bernardi arxiv:math.co/0601684 v1 27 Jan 2006 Abstract The number of tree-rooted maps, that is, rooted planar maps with

More information

HOMEWORK #4 SOLUTIONS - MATH 4160

HOMEWORK #4 SOLUTIONS - MATH 4160 HOMEWORK #4 SOLUTIONS - MATH 4160 DUE: FRIDAY MARCH 7, 2002 AT 10:30AM Enumeration problems. (1 How many different ways are there of labeling the vertices of the following trees so that the graphs are

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Reconstruction Conjecture for Graphs Isomorphic to Cube of a Tree

Reconstruction Conjecture for Graphs Isomorphic to Cube of a Tree Reconstruction Conjecture for Graphs Isomorphic to Cube of a Tree S. K. Gupta Akash Khandelwal arxiv:1207.1875v1 [cs.dm] 8 Jul 2012 July 10, 2012 Abstract This paper proves the reconstruction conjecture

More information

Root Cover Pebbling on Graphs

Root Cover Pebbling on Graphs University of Dayton ecommons Honors Theses University Honors Program Spring 4-2015 Root Cover Pebbling on Graphs Claire A. Sonneborn Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

A combinatorial proof of a formula for Betti numbers of a stacked polytope

A combinatorial proof of a formula for Betti numbers of a stacked polytope A combinatorial proof of a formula for Betti numbers of a staced polytope Suyoung Choi Department of Mathematical Sciences KAIST, Republic of Korea choisy@aistacr (Current Department of Mathematics Osaa

More information

A generalization of Mader s theorem

A generalization of Mader s theorem A generalization of Mader s theorem Ajit A. Diwan Department of Computer Science and Engineering Indian Institute of Technology, Bombay Mumbai, 4000076, India. email: aad@cse.iitb.ac.in 18 June 2007 Abstract

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

#A55 INTEGERS 10 (2010), A LEFT WEIGHTED CATALAN EXTENSION 1

#A55 INTEGERS 10 (2010), A LEFT WEIGHTED CATALAN EXTENSION 1 #A55 INTEGERS 10 (2010), 771-792 A LEFT WEIGHTED CATALAN EXTENSION 1 Paul R. F. Schumacher Department of Mathematics, Texas A&M University at Qatar, Doha, Qatar paul.schumacher@qatar.tamu.edu Received:

More information

Green s relations on the partition monoid and several related monoids

Green s relations on the partition monoid and several related monoids Green s relations on the partition monoid and several related monoids D. G. FitzGerald 1 and Kwok Wai Lau 2 1 School of Mathematics and Physics, University of Tasmania (address for correspondence) 2 Sydney

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/ CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 10.5 Trees Copyright Cengage Learning. All rights reserved. Trees In mathematics, a tree is a connected graph

More information

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1 Planar graphs Typically a drawing of a graph is simply a notational shorthand or a more visual way to capture the structure of the graph. Now we focus on the drawings themselves. Definition A drawing of

More information

Universal Line-Sets for Drawing Planar 3-Trees

Universal Line-Sets for Drawing Planar 3-Trees Universal Line-Sets for Drawing Planar -Trees Md. Iqbal Hossain, Debajyoti Mondal, Md. Saidur Rahman, and Sammi Abida Salma Graph Drawing and Information Visualization Laboratory, Department of Computer

More information

Localization in Graphs. Richardson, TX Azriel Rosenfeld. Center for Automation Research. College Park, MD

Localization in Graphs. Richardson, TX Azriel Rosenfeld. Center for Automation Research. College Park, MD CAR-TR-728 CS-TR-3326 UMIACS-TR-94-92 Samir Khuller Department of Computer Science Institute for Advanced Computer Studies University of Maryland College Park, MD 20742-3255 Localization in Graphs Azriel

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapter 12 By Dr. Dalia M. Gil, Ph.D. Trees Tree are useful in computer science, where they are employed in a wide range of algorithms. They are used to construct efficient

More information

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Paperclip graphs Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Abstract By taking a strip of paper and forming an S curve with paperclips

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Embedding Large Complete Binary Trees in Hypercubes with Load Balancing

Embedding Large Complete Binary Trees in Hypercubes with Load Balancing JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 35, 104 109 (1996) ARTICLE NO. 0073 Embedding Large Complete Binary Trees in Hypercubes with Load Balancing KEMAL EFE Center for Advanced Computer Studies,

More information

Coding elements related to Catalan numbers by Dyck words

Coding elements related to Catalan numbers by Dyck words Coding elements related to Catalan numbers by Dyck words Zoltán Kása January 9, 009 Catalan numbers The Catalan numbers, named after the mathematician E. C. Catalan, defined as C n = ( ) n, n + n are as

More information

A simple formula for the series of constellations and quasi-constellations with boundaries

A simple formula for the series of constellations and quasi-constellations with boundaries A simple formula for the series of constellations and quasi-constellations with boundaries Gwendal Collet LIX, École Polytechnique 90 Palaiseau, France Éric Fusy {gcollet,fusy@lix.polytechnique.fr} Submitted:

More information

Surfaces from a polygon. Olivier Bernardi Massachusetts Instiitute of Technology

Surfaces from a polygon. Olivier Bernardi Massachusetts Instiitute of Technology Surfaces from a polygon Olivier Bernardi Massachusetts Instiitute of Technology IAP lecture series 2010 What is it about? We consider surfaces obtained by gluing polygons. What is it about? We consider

More information

Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems

Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems Bijective counting of tree-rooted maps and connection with shuffles of parenthesis systems Olivier Bernardi Abstract The number of tree-rooted maps, that is, tree-covered rooted planar maps, with n edges

More information

Minimum Cycle Bases of Halin Graphs

Minimum Cycle Bases of Halin Graphs Minimum Cycle Bases of Halin Graphs Peter F. Stadler INSTITUTE FOR THEORETICAL CHEMISTRY AND MOLECULAR STRUCTURAL BIOLOGY, UNIVERSITY OF VIENNA WÄHRINGERSTRASSE 17, A-1090 VIENNA, AUSTRIA, & THE SANTA

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

arxiv: v3 [cs.ds] 18 Apr 2011

arxiv: v3 [cs.ds] 18 Apr 2011 A tight bound on the worst-case number of comparisons for Floyd s heap construction algorithm Ioannis K. Paparrizos School of Computer and Communication Sciences Ècole Polytechnique Fèdèrale de Lausanne

More information

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT A graph G is self complementary if it is isomorphic to its complement G.

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Distribution of tree parameters

Distribution of tree parameters Distribution of tree parameters Stephan Wagner Stellenbosch University Strathmore conference, 23 June 2017 Trees Trees are one of the simplest and best-studied classes of graphs. They are characterised

More information

Enumerating Tilings of Rectangles by Squares with Recurrence Relations

Enumerating Tilings of Rectangles by Squares with Recurrence Relations Journal of Combinatorics Volume 0, Number 0, 1, 2014 Enumerating Tilings of Rectangles by Squares with Recurrence Relations Daryl DeFord Counting the number of ways to tile an m n rectangle with squares

More information

On graphs with disjoint dominating and 2-dominating sets

On graphs with disjoint dominating and 2-dominating sets On graphs with disjoint dominating and 2-dominating sets 1 Michael A. Henning and 2 Douglas F. Rall 1 Department of Mathematics University of Johannesburg Auckland Park, 2006 South Africa Email: mahenning@uj.ac.za

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

MATH10001 Mathematical Workshop. Graphs, Trees and Algorithms Part 2. Trees. From Trees to Prüfer Codes

MATH10001 Mathematical Workshop. Graphs, Trees and Algorithms Part 2. Trees. From Trees to Prüfer Codes MATH10001 Mathematical Workshop Graphs, Trees and Algorithms Part 2 Trees Recall that a simple graph is one without loops or multiple edges. We are interested in a special type of simple graph: A tree

More information

Counting with Borel s Triangle

Counting with Borel s Triangle Counting with Borel s Triangle Yue Cai and Catherine Yan Department of Mathematics, Texas A&M University, College Station, TX 77843 Abstract Borel s triangle is an array of integers closely related to

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Dissections of polygons into convex polygons

Dissections of polygons into convex polygons Dissections of polygons into convex polygons Andrzej Żak Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30 059 Kraków, Poland e-mail: zakandrz@uci.agh.edu.pl

More information