X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1"

Transcription

1 X. GPU Programming : Advanced Graphics - Chapter X 1

2 X.1 GPU Architecture : Advanced Graphics - Chapter X 2

3 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores on nvidia GeForce 9800GT (7 years ago) 512 processing cores on nvidia GeForce GTX 580 (5 years ago) 1536 processing cores on nvidia GeForce GTX 680 (3 years ago) 2048 processing cores on nvidia GeForce GTX 980 (last year) 3072 processing cores on nvidia GeForce GTX Titan X (last month) : Advanced Graphics - Chapter X 3

4 Restrictions Not a generalized vector processor Cannot read and write to same areas of memory Limited output capability Currently, expensive to output to arbitrary locations in memory Restricted memory size 1GB on nvidia GeForce 9800GT 1.5GB on nvidia GeForce GTX 580 2GB on nvidia GeForce GTX 680 4GB on nvidia GeForce GTX GB on nvidia GeForce GTX Titan X : Advanced Graphics - Chapter X 4

5 Notation Vertex A data structure for a point in a mesh, containing position, normal, texture coordinates, etc. Fragment A pixel, possibly sub-pixel, of a rasterized image Shaders Small programs run in the GPU at specific stages of the GPU pipeline : Advanced Graphics - Chapter X 5

6 Memory constructs Buffered Objects Uniform Registers/State Table Interpolated Registers Temporary Registers Textures : Advanced Graphics - Chapter X 6

7 Memory constructs Buffered Objects CPU Generated Streams of Data Limited Modifiability Example Vertex Data of a Mesh : Advanced Graphics - Chapter X 7

8 Memory constructs Uniform Registers/State Table Constant Data through the Pipeline Only Necessarily Constant for 1 Polygon 32 general purpose registers State Table Specific Registers Projection/Model View Matrices Lights and more : Advanced Graphics - Chapter X 8

9 Memory constructs Interpolated Registers Per Vertex Data of a Polygon Stores Information Interpolated Across Polygon 10 General Purpose Interpolated Registers : Advanced Graphics - Chapter X 9

10 Memory constructs Temporary Registers Standard Notion of Registers Temporary Registers for In Shader Calculations : Advanced Graphics - Chapter X 10

11 Memory constructs Textures Closest to Random Access Memory Expensive to Access Multiple Dependent Accesses Extremely Expensive : Advanced Graphics - Chapter X 11

12 GPU pipeline Program/ API Driver GPU Front End CPU GPU Bus Vertex Processing Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations Framebuffer : Advanced Graphics - Chapter X 12

13 GPU pipeline Program/ API Program API Your Program Either OpenGL or DirectX Interface : Advanced Graphics - Chapter X 13

14 GPU pipeline Driver Driver Black-box Implementations are Company Secrets Largest Bottleneck in many GPU programs : Advanced Graphics - Chapter X 14

15 GPU pipeline GPU Front End GPU Front End Receives commands & data from driver PCI Express helps at this stage : Advanced Graphics - Chapter X 15

16 GPU pipeline Vertex Processing Vertex Processing Normally performs transformations Programmable vertex POSITION, NORMAL, BINORMAL*, TANGENT*, TEXCOORD[0-7], COLOR[0-1], PSIZE Vertex Processor shader textures data for rasterization POSITION PSIZE FOG data for interpolation TEXCOORD[0-7] COLOR[0-1] : Advanced Graphics - Chapter X 16

17 GPU pipeline Primitive Assembly Primitive Assembly Compiles Vertices into Points, Lines and/or Polygons Link elements and set rasterizer : Advanced Graphics - Chapter X 17

18 GPU pipeline Rasterization & Interpolation Rasterization For each fragment determine respective area of triangle (Barycentric Coordinates) or other primitive Interpolation Primitive Assembler data for rasterization Primitive Type PSIZE POSITION Rasterizer rasterized data DEPTH FOG Barycentric Coordinates TEXCOORD[0-7] COLOR[0-1] data for interpolation TEXCOORD[0-7] COLOR[0-1] Interpolator interpolated data : Advanced Graphics - Chapter X 18

19 GPU pipeline Fragment Processing Fragment Processing Programmable rasterized data DEPTH interpolated data TEXCOORD[0-7] COLOR[0-1] Fragment Processor shader data for raster ops DEPTH COLOR[0-3] textures : Advanced Graphics - Chapter X 19

20 GPU pipeline Raster Operations Depth Checking Check framebuffer to see if lesser depth already exists (Z- Buffer) Limited Programmability Blending Use alpha channel to combine colors already in the framebuffer Limited Programmability : Advanced Graphics - Chapter X 20

21 Example Program/ API Bus Driver GPU Front End Vertex Processing Code Snippet. glbegin(gl_triangles); gltexcoord2f(1,0); glvertex3f(0,1,0); gltexcoord2f(0,1); glvertex3f(-1,-1,0); gltexcoord2f(0,0); glvertex3f(1,-1,0); glend(); Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations Framebuffer(s) : Advanced Graphics - Chapter X 21

22 Example Program/ API Driver Bus GPU Front End GPU Vertex Processing Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations Framebuffer(s) : Advanced Graphics - Chapter X 22

23 Example Program/ API Driver Bus GPU Front End Vertex Processing viewing frustum Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations Framebuffer(s) : Advanced Graphics - Chapter X 23

24 Example Program/ API Driver Bus GPU Front End Vertex Processing Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations screen space Framebuffer(s) : Advanced Graphics - Chapter X 24

25 Example Program/ API Driver Bus GPU Front End Vertex Processing Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations framebuffer Framebuffer(s) : Advanced Graphics - Chapter X 25

26 Example Program/ API Driver Bus GPU Front End Vertex Processing Primitive Assembly Rasterization & Interpolation Fragment Processing Raster Operations framebuffer Framebuffer(s) : Advanced Graphics - Chapter X 26

27 Summary of GPU part : Advanced Graphics - Chapter X 27

28 Quick architecture notes Limits in Shader Size MIMD Branches are supported with a large overhead Unified Shading Architecture Xbox 360 ATI Pool of processors with load balancing : Advanced Graphics - Chapter X 28

29 Higher-level shading languages Vectorized languages for designing shader programs Easy way out of tedious assembly coding Not Perfect Results Are Sometimes Clearly Not Optimized Examples Cg GLSL HLSL : Advanced Graphics - Chapter X 29

30 GPGPU General Purpose GPU Processing Key Notes Goal to exploit fragment processor Each pixel represents a compacted 4-component element of data Most optimal in gathering algorithms Vertex shader needed to re-order output Possibly Optimal in Unified Shading Architecture : Advanced Graphics - Chapter X 30

31 X.2 GL Shading Language : Advanced Graphics - Chapter X 31

32 GLSL GL Shading Language or GLSlang defined by Architectural Review Board of OpenGL closeness to OpenGL : Advanced Graphics - Chapter X 32

33 References OpenGL Shading Language. Randy J. Rost. 2nd Edition, The orange book : Advanced Graphics - Chapter X 33

34 Vertex shader In a vertex shader you can write code for tasks such as: Vertex position transformation using the modelview and projection matrices Normal transformation, and if required its normalization Texture coordinate generation and transformation Lighting per vertex or computing values for lighting per pixel Color computation Output gl_position : Advanced Graphics - Chapter X 34

35 Hello World example Vertex Shader : Advanced Graphics - Chapter X 35

36 Fragment shader This unit is responsible for operations like: Computing colors, and texture coordinates per pixel Texture application Fog computation Computing normals if you want lighting per pixel Output nothing gl_fragcolor (the final color of the fragment) or gl_fragdata (when rendering to multiple targets) : Advanced Graphics - Chapter X 36

37 Hello World example Fragment Shader : Advanced Graphics - Chapter X 37

38 Embedding shaders : Advanced Graphics - Chapter X 38

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1 Programmable GPUs Real Time Graphics Virtua Fighter 1995 (SEGA Corporation) NV1 Dead or Alive 3 2001 (Tecmo Corporation) Xbox (NV2A) Nalu 2004 (NVIDIA Corporation) GeForce 6 Human Head 2006 (NVIDIA Corporation)

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

Programming shaders & GPUs Christian Miller CS Fall 2011

Programming shaders & GPUs Christian Miller CS Fall 2011 Programming shaders & GPUs Christian Miller CS 354 - Fall 2011 Fixed-function vs. programmable Up until 2001, graphics cards implemented the whole pipeline for you Fixed functionality but configurable

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Sign up for crits! Announcments

Sign up for crits! Announcments Sign up for crits! Announcments Reading for Next Week FvD 16.1-16.3 local lighting models GL 5 lighting GL 9 (skim) texture mapping Modern Game Techniques CS248 Lecture Nov 13 Andrew Adams Overview The

More information

SHADER PROGRAMMING. Based on Jian Huang s lecture on Shader Programming

SHADER PROGRAMMING. Based on Jian Huang s lecture on Shader Programming SHADER PROGRAMMING Based on Jian Huang s lecture on Shader Programming What OpenGL 15 years ago could do http://www.neilturner.me.uk/shots/opengl-big.jpg What OpenGL can do now What s Changed? 15 years

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 What is a Shader? Wikipedia: A shader is a computer program used in 3D computer graphics to determine the final surface properties of an object

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Outline 2/ 49 A brief Introduction into Programmable Graphics Hardware Hardware Graphics Pipeline Shading Languages Tools GPGPU Resources Hardware Graphics Pipeline 3/ 49

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Introduction to Computer Graphics and OpenGL Graphics Hardware Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/etri_cg/ Class Objectives Understand how GPUs have been evolved Understand

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

Shaders CSCI 4229/5229 Computer Graphics Fall 2017

Shaders CSCI 4229/5229 Computer Graphics Fall 2017 Shaders CSCI 4229/5229 Computer Graphics Fall 2017 What is a Shader? A shader is a computer program that runs on the GPU to calculate the properties of vertexes, pixels and other graphical processing Examples:

More information

Graphics Hardware. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 2/26/07 1

Graphics Hardware. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 2/26/07 1 Graphics Hardware Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/26/07 1 From last time Texture coordinates Uses of texture maps reflectance and other surface parameters lighting

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary Cornell University CS 569: Interactive Computer Graphics Introduction Lecture 1 [John C. Stone, UIUC] 2008 Steve Marschner 1 2008 Steve Marschner 2 NASA University of Calgary 2008 Steve Marschner 3 2008

More information

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University Part 1: General introduction Ch. Hoelbling Wuppertal University Lattice Practices 2011 Outline 1 Motivation 2 Hardware Overview History Present Capabilities 3 Programming model Past: OpenGL Present: CUDA

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Programmable Shaders //per vertex inputs from main attribute aposition; attribute anormal; //outputs to frag. program varying

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 12 PROGRAMMABLE SHADERS Announcement Programming Assignment #2 deadline next week: Session #7 Review of project proposals 2 Lecture Overview GPU programming 3 GPU Pipeline

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Cg 2.0. Mark Kilgard

Cg 2.0. Mark Kilgard Cg 2.0 Mark Kilgard What is Cg? Cg is a GPU shading language C/C++ like language Write vertex-, geometry-, and fragmentprocessing kernels that execute on massively parallel GPUs Productivity through a

More information

The GPGPU Programming Model

The GPGPU Programming Model The Programming Model Institute for Data Analysis and Visualization University of California, Davis Overview Data-parallel programming basics The GPU as a data-parallel computer Hello World Example Programming

More information

Advanced Computer Graphics (CS & SE ) Lecture 7

Advanced Computer Graphics (CS & SE ) Lecture 7 Advanced Computer Graphics (CS & SE 233.420) Lecture 7 CREDITS Bill Mark, NVIDIA Programmable Graphics Technology, SIGGRAPH 2002 Course. David Kirk, GPUs and CPUs:The Uneasy Alliance, Panel Presentation,

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

Introduction to the OpenGL Shading Language

Introduction to the OpenGL Shading Language Introduction to the OpenGL Shading Language Randi Rost Director of Developer Relations, 3Dlabs 08-Dec-2005 1 Why use graphics programmability? Graphics hardware has changed radically Fixed functionality

More information

Shader Programming 1. Examples. Vertex displacement mapping. Daniel Wesslén 1. Post-processing, animated procedural textures

Shader Programming 1. Examples. Vertex displacement mapping. Daniel Wesslén 1. Post-processing, animated procedural textures Shader Programming 1 Examples Daniel Wesslén, dwn@hig.se Per-pixel lighting Texture convolution filtering Post-processing, animated procedural textures Vertex displacement mapping Daniel Wesslén 1 Fragment

More information

CS 428: Fall Introduction to. OpenGL primer. Andrew Nealen, Rutgers, /13/2010 1

CS 428: Fall Introduction to. OpenGL primer. Andrew Nealen, Rutgers, /13/2010 1 CS 428: Fall 2010 Introduction to Computer Graphics OpenGL primer Andrew Nealen, Rutgers, 2010 9/13/2010 1 Graphics hardware Programmable {vertex, geometry, pixel} shaders Powerful GeForce 285 GTX GeForce480

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 290-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 2009 Performance: Bottlenecks Sources of bottlenecks CPU Transfer Processing Rasterizer

More information

Information Coding / Computer Graphics, ISY, LiTH GLSL. OpenGL Shading Language. Language with syntax similar to C

Information Coding / Computer Graphics, ISY, LiTH GLSL. OpenGL Shading Language. Language with syntax similar to C GLSL OpenGL Shading Language Language with syntax similar to C Syntax somewhere between C och C++ No classes. Straight ans simple code. Remarkably understandable and obvious! Avoids most of the bad things

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

1.2.3 The Graphics Hardware Pipeline

1.2.3 The Graphics Hardware Pipeline Figure 1-3. The Graphics Hardware Pipeline 1.2.3 The Graphics Hardware Pipeline A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage receives its input from the prior

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Shader Languages Currently 3 major shader languages Cg (Nvidia) HLSL (Microsoft) Derived from Cg GLSL (OpenGL) Main influences

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline (and its implementation on GPUs) Computer Graphics CMU 15-462/15-662, Fall 2015 What you know how to do (at this point in the course) y y z x (w, h) z x Position objects

More information

MXwendler Fragment Shader Development Reference Version 1.0

MXwendler Fragment Shader Development Reference Version 1.0 MXwendler Fragment Shader Development Reference Version 1.0 This document describes the MXwendler fragmentshader interface. You will learn how to write shaders using the GLSL language standards and the

More information

Optimisation. CS7GV3 Real-time Rendering

Optimisation. CS7GV3 Real-time Rendering Optimisation CS7GV3 Real-time Rendering Introduction Talk about lower-level optimization Higher-level optimization is better algorithms Example: not using a spatial data structure vs. using one After that

More information

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL Today Rendering - III CS148, Summer 2010 Graphics Pipeline and Programmable Shaders Artist Workflow Siddhartha Chaudhuri 1 2 Outline Texturing: The 10,000m View Intro to textures The fixed-function graphics

More information

CS770/870 Spring 2017 Open GL Shader Language GLSL

CS770/870 Spring 2017 Open GL Shader Language GLSL Preview CS770/870 Spring 2017 Open GL Shader Language GLSL Review traditional graphics pipeline CPU/GPU mixed pipeline issues Shaders GLSL graphics pipeline Based on material from Angel and Shreiner, Interactive

More information

CS770/870 Spring 2017 Open GL Shader Language GLSL

CS770/870 Spring 2017 Open GL Shader Language GLSL CS770/870 Spring 2017 Open GL Shader Language GLSL Based on material from Angel and Shreiner, Interactive Computer Graphics, 6 th Edition, Addison-Wesley, 2011 Bailey and Cunningham, Graphics Shaders 2

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

GPU-Based Volume Rendering of. Unstructured Grids. João L. D. Comba. Fábio F. Bernardon UFRGS

GPU-Based Volume Rendering of. Unstructured Grids. João L. D. Comba. Fábio F. Bernardon UFRGS GPU-Based Volume Rendering of João L. D. Comba Cláudio T. Silva Steven P. Callahan Unstructured Grids UFRGS University of Utah University of Utah Fábio F. Bernardon UFRGS Natal - RN - Brazil XVIII Brazilian

More information

Programming Graphics Hardware

Programming Graphics Hardware Tutorial 5 Programming Graphics Hardware Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller Overview of the Tutorial: Morning 8:30 9:30 10:15 10:45 Introduction to the Hardware Graphics Pipeline

More information

Shader Programs. Lecture 30 Subsections 2.8.2, Robb T. Koether. Hampden-Sydney College. Wed, Nov 16, 2011

Shader Programs. Lecture 30 Subsections 2.8.2, Robb T. Koether. Hampden-Sydney College. Wed, Nov 16, 2011 Shader Programs Lecture 30 Subsections 2.8.2, 2.8.3 Robb T. Koether Hampden-Sydney College Wed, Nov 16, 2011 Robb T. Koether (Hampden-Sydney College) Shader Programs Wed, Nov 16, 2011 1 / 43 Outline 1

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

OPENGL RENDERING PIPELINE

OPENGL RENDERING PIPELINE CPSC 314 03 SHADERS, OPENGL, & JS UGRAD.CS.UBC.CA/~CS314 Textbook: Appendix A* (helpful, but different version of OpenGL) Alla Sheffer Sep 2016 OPENGL RENDERING PIPELINE 1 OPENGL RENDERING PIPELINE Javascript

More information

Levy: Constraint Texture Mapping, SIGGRAPH, CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon

Levy: Constraint Texture Mapping, SIGGRAPH, CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon Levy: Constraint Texture Mapping, SIGGRAPH, 2001 CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon Instructor: Justin Solomon Email: justin.solomon@stanford.edu Office: Clark

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Shader Programming. Daniel Wesslén, Stefan Seipel, Examples

Shader Programming. Daniel Wesslén, Stefan Seipel, Examples Shader Programming Daniel Wesslén, dwn@hig.se Stefan Seipel, ssl@hig.se Examples 1 Per-pixel lighting Texture convolution filtering 2 Post-processing, animated procedural textures Vertex displacement mapping

More information

GPU Memory Model. Adapted from:

GPU Memory Model. Adapted from: GPU Memory Model Adapted from: Aaron Lefohn University of California, Davis With updates from slides by Suresh Venkatasubramanian, University of Pennsylvania Updates performed by Gary J. Katz, University

More information

GPGPU. Peter Laurens 1st-year PhD Student, NSC

GPGPU. Peter Laurens 1st-year PhD Student, NSC GPGPU Peter Laurens 1st-year PhD Student, NSC Presentation Overview 1. What is it? 2. What can it do for me? 3. How can I get it to do that? 4. What s the catch? 5. What s the future? What is it? Introducing

More information

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 Objectives Simple Shaders - Vertex shader - Fragment shaders Programming shaders with

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

Supplement to Lecture 22

Supplement to Lecture 22 Supplement to Lecture 22 Programmable GPUs Programmable Pipelines Introduce programmable pipelines - Vertex shaders - Fragment shaders Introduce shading languages - Needed to describe shaders - RenderMan

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Johan S. Seland Center of Mathematics for Applications University of Oslo INF3320 22. November 2006 Programmable Graphics Hardware Programmable Graphics Hardware = GPU (Graphical

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

BCA611 Video Oyunları için 3B Grafik

BCA611 Video Oyunları için 3B Grafik BCA611 Video Oyunları için 3B Grafik WebGL - Shader Programming Zümra Kavafoğlu Canvas element The HTML element is used to draw graphics on a web page. Create canvas with id, width and height

More information

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)!

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! ! The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 4! stanford.edu/class/ee267/! Updates! for 24h lab access:

More information

GPU Architecture and Function. Michael Foster and Ian Frasch

GPU Architecture and Function. Michael Foster and Ian Frasch GPU Architecture and Function Michael Foster and Ian Frasch Overview What is a GPU? How is a GPU different from a CPU? The graphics pipeline History of the GPU GPU architecture Optimizations GPU performance

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing GPGPU general-purpose

More information

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Architectures Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Overview of today s lecture The idea is to cover some of the existing graphics

More information

Automatic Tuning Matrix Multiplication Performance on Graphics Hardware

Automatic Tuning Matrix Multiplication Performance on Graphics Hardware Automatic Tuning Matrix Multiplication Performance on Graphics Hardware Changhao Jiang (cjiang@cs.uiuc.edu) Marc Snir (snir@cs.uiuc.edu) University of Illinois Urbana Champaign GPU becomes more powerful

More information

Programmable Graphics Hardware

Programmable Graphics Hardware CSCI 480 Computer Graphics Lecture 14 Programmable Graphics Hardware [Ch. 9] March 2, 2011 Jernej Barbic University of Southern California OpenGL Extensions Shading Languages Vertex Program Fragment Program

More information

12.2 Programmable Graphics Hardware

12.2 Programmable Graphics Hardware Fall 2018 CSCI 420: Computer Graphics 12.2 Programmable Graphics Hardware Kyle Morgenroth http://cs420.hao-li.com 1 Introduction Recent major advance in real time graphics is the programmable pipeline:

More information

3D Graphics and OpenGl. First Steps

3D Graphics and OpenGl. First Steps 3D Graphics and OpenGl First Steps Rendering of 3D Graphics Objects defined in (virtual/mathematical) 3D space. Rendering of 3D Graphics Objects defined in (virtual/mathematical) 3D space. We see surfaces

More information

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter

More information

CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Timetable 00:00~00:10 Introduction (English) 00:10~00:50 Topic 1 (English) 00:50~00:60 Q&A (English, Korean) 01:00~01:40 Topic

More information

OpenGL Programmable Shaders

OpenGL Programmable Shaders h gpup 1 Topics Rendering Pipeline Shader Types OpenGL Programmable Shaders sh gpup 1 OpenGL Shader Language Basics h gpup 1 EE 4702-X Lecture Transparency. Formatted 9:03, 20 October 2014 from shaders2.

More information

CS 179: GPU Programming

CS 179: GPU Programming CS 179: GPU Programming Introduction Lecture originally written by Luke Durant, Tamas Szalay, Russell McClellan What We Will Cover Programming GPUs, of course: OpenGL Shader Language (GLSL) Compute Unified

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd.

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd. PROFESSIONAL WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB Andreas Anyuru WILEY John Wiley & Sons, Ltd. INTRODUCTION xxl CHAPTER 1: INTRODUCING WEBGL 1 The Basics of WebGL 1 So Why Is WebGL So Great?

More information

Ciril Bohak. - INTRODUCTION TO WEBGL

Ciril Bohak. - INTRODUCTION TO WEBGL 2016 Ciril Bohak ciril.bohak@fri.uni-lj.si - INTRODUCTION TO WEBGL What is WebGL? WebGL (Web Graphics Library) is an implementation of OpenGL interface for cmmunication with graphical hardware, intended

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico 0 Objectives Shader Basics Simple Shaders Vertex shader Fragment shaders 1 Vertex

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU Real-time Graphics 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

Basics of GPU-Based Programming

Basics of GPU-Based Programming Module 1: Introduction to GPU-Based Methods Basics of GPU-Based Programming Overview Rendering pipeline on current GPUs Low-level languages Vertex programming Fragment programming High-level shading languages

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL 1995-2015 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 31 Advances in Hardware 3D acceleration is a common feature in

More information

Graphics Pipeline & APIs

Graphics Pipeline & APIs Graphics Pipeline & APIs CPU Vertex Processing Rasterization Fragment Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

More information

CS770/870 Fall 2015 Advanced GLSL

CS770/870 Fall 2015 Advanced GLSL Expanded Graphics Pipeline CS770/870 Fall 2015 Advanced GLSL Geometry definition Shaders can actually be inserted in more places in pipeline Vertex and fragment shaders are most important Vertex shader

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics jintaeks@gmail.com Division of Digital Contents, DongSeo University. April 2016 Long time ago Before Windows, DOS was the most popular

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

What s New with GPGPU?

What s New with GPGPU? What s New with GPGPU? John Owens Assistant Professor, Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Microprocessor Scaling is Slowing

More information