A Novel Approach to Solve Unit Commitment and Economic Load Dispatch Problem using IDE-OBL

Size: px
Start display at page:

Download "A Novel Approach to Solve Unit Commitment and Economic Load Dispatch Problem using IDE-OBL"

Transcription

1 Journal of Scientific & Industrial Research Vol. 74, July 2015, pp A Novel Approach to Solve Unit Commitment and Economic Load Dispatch Problem using IDE-OBL P Surekha 1 * and S Sumathi 2 *1,2 Department of Electrical and Electronics Engg, PSG College of Technology, Coimbatore , India Received 1 September 2014; revised 6 March 2015; accepted 28 May 2015 The non-convex and combinatorial nature of the UC-ELD problems requires the application of heuristic algorithms to generate optimal schedules. In studies reported so far, the Unit Commitment and the Economic Load Dispatch problems are solved as separate problems. In the addressed work, the commitment and de-commitment of generating units is obtained using a Genetic Algorithm (GA), and the optimal load distribution of the scheduled units is obtained using Improved Differential Evolution with Opposition Based Learning (IDE-OBL). The power demand is varied for 24 hours to determine the schedule in the IEEE 30 bus system including transmission losses, power balance and generator capacity constraints. Optimal distribution of load among generating units, fuel cost per hour, power loss, total power and computational time are computed for each of the test systems using the intelligent algorithms. From the comparative analysis, it can be concluded that GA-IDE-OBL is a better approach for solving UC-ELD problems in terms of optimal solution, robustness, and computational efficiency. Keywords: Genetic Algorithm, Improved Differential Evolution, Opposition based learning, UC-ELD, optimal fuel cost, computational time Introduction Computational Intelligence (CI) techniques has attracted several research engineers, decision makers and practicing researchers in recent years for solving unlimited number of complex real-world problems particularly related to research area of optimization. Due to the non-convex and combinatorial nature of UC and ELD problems, it is difficult to obtain a solution using conventional programming methods like Lambda iteration method 1, dynamic programming 2, mixed integer programming 3, and Newton s method 4. UC and ELD are nonlinear optimization problems whose solutions can be obtained through CI paradigms since these are an efficient alternative over analytical methods that suffer from premature convergence, local optimal trapping and curse of dimensionality. In this work, Differential Evolution 5 combined with the concept of opposition based learning 7 is proposed for solving the ELD problem. The initial population is generated through the concept of opposition based learning, and the algorithm uses only one population set throughout the optimization process, thus improving the rate of convergence. A jumping factor is added to the generation phase, thus improving the stability in obtaining optimal solutions. Author for correspondence surekha_3000@yahoo.com GA for UC Genetic algorithms are adaptive search techniques based on the principles and mechanisms of natural selection and survival of the fittest from biological evolution 5. In this application, the unit commitment problem is solved using Genetic Algorithm that generates the on/off status of the generating units. The step by step procedure involved in the implementation of GA for UC problem is explained below: Step 1: Input data Specify generator cost coefficients, generation power limits for each unit and transmission loss coefficients (B-matrix) for the test system. Read hourly load profile of the generators for the test system. Initialize parameters of GA such as number of chromosomes, population size, number of generations, selection type, crossover type, mutation type, crossover probability and mutation probability to suitable values. Step 2: Initialize GA s population Initialize population of the GA randomly, where each gene of the chromosomes represents commitment of a dispatchable generating unit. The first step is to encode the commitment space for the UC problem based on the load curve from the load profile.

2 396 J SCI IND RES VOL 74 JULY 2015 Step 3: Computation of total cost The total generation cost for each chromosome is computed as the sum of individual unit fuel cost. Step 4: Computation of cost function and fitness function The augmented cost function for each chromosomes of population is computed using the sum of startup cost, running cost and shut down cost. Step 5: Application of genetic operators In two point crossover, the offspring are evaluated for fitness and the best one is retained while the worst is discarded from the population. The flip-bit mutation operation is performed by selecting a chromosome with specified probability. Step 6: The algorithm terminates after a specified number of generations have reached. If the termination condition is not satisfied then go to Step 3. IDE-OBL for ELD Though Standard Differential Evolution (SDE) has emerged as one of the most popular technique for solving optimization problem, it has been observed that the convergence rate of SDE does not meet the expectations in case of multi-objective problems. Hence, certain modifications using the concept of opposition based learning are performed on the SDE. The proposed IDE-OBL varies from the basic SDE in terms of the following factors: IDE-OBL uses the concept of opposition based learning in the initialization phase while SDE uses the uniform random numbers for initialization of population. During algorithmic run, an opposition based generation phase is added in IDE-OBL with a jumping factor to determine fitter opposite points. SDE uses two sets of population current population and an advanced population for next generation individuals. IDE-OBL uses only one population set throughout the optimization process, which is updated in successive generations with the best individuals found in each generation. The steps of the proposed algorithm for implementing ELD are explained below: Initialization The basic step in the IDE-OBL optimization is to create an initial population of candidate solutions by assigning random values to each decision parameter of each individual of the population. A population P consisting of individuals is constructed in a random manner such that the values lie within the feasible bounds and of the decision variable, according to, where represents a uniform random number in the interval [0,1], and are the lower and upper bounds for the j th component respectively, D is the number of decision variables. Each individual member of the population consists of an N-dimensional vector where the i th element of the i th generating unit. An opposite population represents the power output of is constructed by, where denotes the points of population P. The new population for the proposed approach is formed by combining the best individuals of both populations P and as. Mutation Next generation offspring are introduced into the population through the mutation process. Mutation is performed by choosing three individuals from the population in a random manner. Let, and represent three random individuals such that, upon which mutation is performed during the G th generation according to whe re is the perturbed mutated individual and represents the best individual among three random individuals. The difference of the remaining two individuals is scaled by a factor F, which controls the amplification of the difference between two individuals so as to avoid search stagnation and to improve convergence. Crossover New offspring members are reproduced through the crossover operation based on binomial distribution. The members of the current population (target vector) and the members of the mutated individual are subject to crossover operation thus producing a trial vector

3 SUREKHA & SUMATHI: A NOVEL APPROACH TO SOLVE UNIT COMMITMENT 397, where is the crossover constant that controls the diversity of the population and prevents the algorithm from getting trapped into the local optima. The crossover constant must be in the range of [0 1]. C r =1 implies the trial vector will be composed entirely of the mutant vector members and C r =0 implies that the trial vector individuals are composed of the members of parent vector. Selection Selection procedure is performed with the trial vector and the target vector to choose the best set of individuals for the next generation. In this proposed approach, only one population set is maintained and hence the best individuals replace the target individuals in the current population. The objective values of the trial vector and the target vector are evaluated and compared. For minimization problems like ELD, if the trial vector has better value, the target vector is replaced with the trial vector as The fittest individuals are selected from the new population set as the current population. Experimental Results The effectiveness of the proposed IDE-OBL is tested on IEEE 30 bus system 9 with 6 generating units. The ON/OFF commitment status through GA is implemented in Turbo C while the optimal dispatch is executed using MATLAB R2008b on Intel i3 CPU, 2.53GHz, 4GB RAM PC. Parameters of GA The control parameters for Genetic Algorithm are initialized as follows: No. of chromosomes: No. of generators Chromosome size: 24 (Hours) x No. of generators No. of generations: 500 Selection method: Roulette wheel Crossover Type: Two point crossover Crossover rate: 0.6 Mutation Type: Flip bit Mutation Rate: Table 1 Commitment of units using GA for six unit test system Fitness evaluation The objective function for the ELD problem based on the fuel cost and power balance constraints is framed as, (1) where k is the penalty factor associated with the power balance constraint, is the i th generator cost function for output power, N is the number of generating units, is the total active power demand and represents the transmission losses. For ELD problems without transmission losses, setting k=0 is most rational, while for ELD including transmission losses, the value of k is set to 1. Generation jumping The maximum and minimum values of each variable in current population are used to calculate opposite points instead of using the predefined interval boundaries of the variables according to Hour Demand Combination of Units P1 P2 P3 P4 P5 P6 CT (s) ON OFF ON ON OFF ON ON OFF ON ON ON ON ON OFF ON ON ON ON ON ON ON ON ON OFF ON ON ON ON ON OFF ON ON ON ON ON OFF ON ON ON ON ON OFF ON ON ON ON ON OFF ON ON ON ON OFF OFF ON ON ON OFF OFF OFF ON ON OFF OFF OFF OFF ON ON OFF OFF OFF OFF ON ON OFF OFF OFF OFF ON ON OFF OFF OFF OFF ON ON OFF OFF OFF OFF ON ON ON OFF OFF OFF ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF ON ON ON ON OFF OFF OFF 1.26

4 398 J SCI IND RES VOL 74 JULY 2015 UC using GA The on/off status and the computational time (CT) of the six generating units for 24 hours load demand is determined using GA and tabulated in Table 1. From the results, it is clear that the unit P1 is ON (binary 1) for 24 hours because this unit generates power with minimum fuel cost as the value of coefficient A is minimum for this unit. Units P5 and P6 is OFF (binary 0) for most of the hours because the value of fuel cost coefficient is the maximum for these two units and hence the fuel cost to generate power using these units is expensive when compared to other units. Parameters of IDE-OBL The parameters of IDE-OBL with their settings are listed below. No. of members in population: [20,100] Vector of lower bounds for initial population: [-2,-2] Vector of upper bounds for initial population: [2,2] No. of iterations: 200 Dimension: Problem dependant Crossover Rate: [0,1] Step size: [1,2] Strategy parameter: DE/rand/1/bin Jumping rate: 0.37 Refresh parameter: 10 Value to Reach: 1.e -6 ELD using IDE-OBL The committed schedules obtained through GA are dispatched using IDE-OBL based on the 24 hour load demand. The results are evaluated in terms of power dispatched to the 6 units (P 1 to P 6 ), fuel cost (FC), power loss (P L ), total power generated (P T ), and computational time (CT) as shown in Table 2. Comparative Analysis The results obtained by the IDE-OBL algorithm are compared with those available in literature namely Lambda Iteration Method (LIM) 1, Evolutionary Programming (EP) 8, Pattern Search (PS) 9, Hybrid GA and PS (GA-PS) 9, GA 10, Ant Colony Optimization (ACO) 11, Artificial Bee Colony (ABC) 12, Hybrid Genetic Algorithm (HGA) 13, Slow GA 14, Fast GA 14, Self-adaptive Differential Evolution (SADE) 15, and Weight-Improved Particle Swarm Optimization (WIPSO) 16 as shown in Table 5. For a demand of MW, the minimum fuel cost obtained by the HOUR P D Table 2 ELD results using IDE-OBL for six unit system Power generated / unit P1 P2 P3 P4 P5 P6 FC ($/hr) P L P T CT (s)

5 SUREKHA & SUMATHI: A NOVEL APPROACH TO SOLVE UNIT COMMITMENT 399 Algorithm Table 3 Comparative Analysis Fuel Cost ($/hr) Total power Power loss CPU time LIM EP NA PS NA GA-PS NA GA ACO ABC NA 8.94 HGA NA SGA FGA SADE NA WIPSO IDE-OBL proposed IDE-OBL is $ (Table 3), is comparatively less than the optimal fuel cost produced by other methods. The minimum fuel cost reported in literature so far is $/hr and IDE- OBL has proved to generate optimal economic dispatch with a difference of 3.2%. Conclusion In this paper, IDE-OBL is proposed for solving the UC-ELD problem. The UC problem is solved using GA to determine the ON/OFF schedule for a 24 hour time horizon. Based on the GA committed/decommitted schedule, the power is dispatched economically for corresponding load requirement using IDE-OBL. In the IDE-OBL algorithm, the concept of opposition based learning is applied in the initialization phase to accelerate the standard differential evolution algorithm with a motive of achieving optimal solutions with faster convergence characteristics. Likewise, the concept of OBL is also applied in the generation phase to ensure stability in convergence. From the results observed, it can be concluded that GA-IDE-OBL has shown significant improvements in the perspective of optimal fuel cost, power loss and computational time. In future, new optimization techniques like stud genetic algorithm, population-based incremental learning, intelligent water drop algorithm, bio-geography based algorithm and hybrid combination of these paradigms can also be applied to obtain optimal solution of UC-ELD problems. References 1 Wadhwa C L, Electrical Power Systems, (New Age International (P) Limited Publishers, New Delhi) Lowery P G, Generation unit commitment by dynamic programming, IEEE Trans Power App Syst, 102 (1983) Wilson J A & Muckstadt R C, An application of mixedinteger programming duality to scheduling thermal generating systems, IEEE Trans Power App Syst, 87 (1968) Park J B, Lee K S, Shin J R & Lee K Y, A particle swarm optimization for economic dispatch with non smooth cost functions, IEEE Trans Power Syst, 8 (1993) Price K V, Storn R M & Lampinen J A, Differential Evolution: A Practical Approach to Global Optimization, (Springer, Heidelberg) Goldberg D E, Genetic Algorithms in Search Optimization and Machine Learning, (Addison Wesley Longman Publishing, USA) Rahnamayan S, Tizhoosh H R & Salama M M A, Opposition based differential evolution, IEEE Trans Evol Comp, 12 (2008) Yuryevich J & Wong K P, Evolutionary Programming Based Optimal Power Flow Algorithm, IEEE Trans Power Syst, 14 (1999) Labbi Y & Ben Attous D, A hybrid GA PS method to solve the economic load dispatch problem", J Theor App Inf Tech, 15 (2010) Tarek Bouktir, Linda Slimani & Belkacemi M, A Genetic Algorithm for Solving the Optimal Power Flow Problem, Leonardo J Sci, 4 (2004) Allaoua B & Laoufi A, Optimal Power Flow Solution Using Ant Manners for Electrical Network, Adv Electri Comp Eng, 9 (2009) Sumpavakup I S & Chusanapiputt S, A solution to the Optimal Power Flow using Artificial Bee Colony algorithm, IEEE Proc Int Conf Power Syst Tech (Hangzhou), (2010) Mary N & Thenmozhi D, Economic emission load dispatch using hybrid Genetic Algorithm, IEEE Proc Region 10 Conf TENCON (Chiang Mai, Thailand), (2004) Sailaja Kumari M & Sydulu M, A Fast Computational Genetic Algorithm for Economic Load Dispatch, Int J Recent Trends Eng, 1 (2009) Thitithamrongchai B & Eua-arporn, Self-adaptive Differential Evolution Based Optimal Power Flow for Units with Non-smooth Fuel Cost Functions, J Electri Syst, 3 (2007) PhanTu Vu, DinhLuong Le, NgocDieu VO & Tlusty Josef, A novel weight-improved particle swarm optimization algorithm for optimal power flow and economic load dispatch problem, in IEEE Trans Distrib Conf Expos (LA, USA) April 2010.

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - TO SOLVE ECONOMIC DISPATCH PROBLEM USING SFLA P. Sowmya* & Dr. S. P. Umayal** * PG Scholar, Department Electrical and Electronics Engineering, Muthayammal Engineering College, Rasipuram, Tamilnadu ** Dean

More information

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm

Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Optimal Reactive Power Dispatch Using Hybrid Loop-Genetic Based Algorithm Md Sajjad Alam Student Department of Electrical Engineering National Institute of Technology, Patna Patna-800005, Bihar, India

More information

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Chapter 5 A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Graph Matching has attracted the exploration of applying new computing paradigms because of the large number of applications

More information

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM

CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 20 CHAPTER 2 CONVENTIONAL AND NON-CONVENTIONAL TECHNIQUES TO SOLVE ORPD PROBLEM 2.1 CLASSIFICATION OF CONVENTIONAL TECHNIQUES Classical optimization methods can be classified into two distinct groups:

More information

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms

Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Topological Machining Fixture Layout Synthesis Using Genetic Algorithms Necmettin Kaya Uludag University, Mechanical Eng. Department, Bursa, Turkey Ferruh Öztürk Uludag University, Mechanical Eng. Department,

More information

Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization

Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization Solving Economic Load Dispatch Problems in Power Systems using Genetic Algorithm and Particle Swarm Optimization Loveleen Kaur 1, Aashish Ranjan 2, S.Chatterji 3, and Amod Kumar 4 1 Asst. Professor, PEC

More information

Dynamic Economic Dispatch for Power Generation Using Hybrid optimization Algorithm

Dynamic Economic Dispatch for Power Generation Using Hybrid optimization Algorithm Dynamic Economic Dispatch for Power Generation Using Hybrid optimization Algorithm G.Karthika 1, Mr.M.Vigneshwaran, M.E., 2 PG Scholar, M. Kumarasamy College of Engineering, Karur, Tamilnadu, India 1 Assistant

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 7, February 2013) Performance Analysis of GA and PSO over Economic Load Dispatch Problem Sakshi Rajpoot sakshirajpoot1988@gmail.com Dr. Sandeep Bhongade sandeepbhongade@rediffmail.com Abstract Economic Load dispatch problem

More information

Using CODEQ to Train Feed-forward Neural Networks

Using CODEQ to Train Feed-forward Neural Networks Using CODEQ to Train Feed-forward Neural Networks Mahamed G. H. Omran 1 and Faisal al-adwani 2 1 Department of Computer Science, Gulf University for Science and Technology, Kuwait, Kuwait omran.m@gust.edu.kw

More information

An Introduction to Evolutionary Algorithms

An Introduction to Evolutionary Algorithms An Introduction to Evolutionary Algorithms Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi http://users.jyu.fi/~kasindhy/

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS NABEEL AL-MILLI Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa'

More information

Using Genetic Algorithms to optimize ACS-TSP

Using Genetic Algorithms to optimize ACS-TSP Using Genetic Algorithms to optimize ACS-TSP Marcin L. Pilat and Tony White School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada {mpilat,arpwhite}@scs.carleton.ca

More information

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AUTOMATIC TEST CASE GENERATION FOR PERFORMANCE ENHANCEMENT OF SOFTWARE THROUGH GENETIC ALGORITHM AND RANDOM TESTING Bright Keswani,

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES SHIHADEH ALQRAINY. Department of Software Engineering, Albalqa Applied University. E-mail:

More information

Center-Based Sampling for Population-Based Algorithms

Center-Based Sampling for Population-Based Algorithms Center-Based Sampling for Population-Based Algorithms Shahryar Rahnamayan, Member, IEEE, G.GaryWang Abstract Population-based algorithms, such as Differential Evolution (DE), Particle Swarm Optimization

More information

Partial Opposition-based Learning Using Current Best Candidate Solution

Partial Opposition-based Learning Using Current Best Candidate Solution Partial Opposition-based Learning Using Current Best Candidate Solution Sedigheh Mahdavi Department of Electrical, Computer, and Software Engineering University of Ontario Institute of Technology (UOIT)

More information

Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems

Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems Dervis Karaboga and Bahriye Basturk Erciyes University, Engineering Faculty, The Department of Computer

More information

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding e Scientific World Journal, Article ID 746260, 8 pages http://dx.doi.org/10.1155/2014/746260 Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding Ming-Yi

More information

Automated Test Data Generation and Optimization Scheme Using Genetic Algorithm

Automated Test Data Generation and Optimization Scheme Using Genetic Algorithm 2011 International Conference on Software and Computer Applications IPCSIT vol.9 (2011) (2011) IACSIT Press, Singapore Automated Test Data Generation and Optimization Scheme Using Genetic Algorithm Roshni

More information

Chapter 14 Global Search Algorithms

Chapter 14 Global Search Algorithms Chapter 14 Global Search Algorithms An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Introduction We discuss various search methods that attempts to search throughout the entire feasible set.

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

A Modified Genetic Algorithm for Process Scheduling in Distributed System

A Modified Genetic Algorithm for Process Scheduling in Distributed System A Modified Genetic Algorithm for Process Scheduling in Distributed System Vinay Harsora B.V.M. Engineering College Charatar Vidya Mandal Vallabh Vidyanagar, India Dr.Apurva Shah G.H.Patel College of Engineering

More information

Network Routing Protocol using Genetic Algorithms

Network Routing Protocol using Genetic Algorithms International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:0 No:02 40 Network Routing Protocol using Genetic Algorithms Gihan Nagib and Wahied G. Ali Abstract This paper aims to develop a

More information

ABSTRACT I. INTRODUCTION. J Kanimozhi *, R Subramanian Department of Computer Science, Pondicherry University, Puducherry, Tamil Nadu, India

ABSTRACT I. INTRODUCTION. J Kanimozhi *, R Subramanian Department of Computer Science, Pondicherry University, Puducherry, Tamil Nadu, India ABSTRACT 2018 IJSRSET Volume 4 Issue 4 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section : Engineering and Technology Travelling Salesman Problem Solved using Genetic Algorithm Combined Data

More information

The movement of the dimmer firefly i towards the brighter firefly j in terms of the dimmer one s updated location is determined by the following equat

The movement of the dimmer firefly i towards the brighter firefly j in terms of the dimmer one s updated location is determined by the following equat An Improved Firefly Algorithm for Optimization Problems Amarita Ritthipakdee 1, Arit Thammano, Nol Premasathian 3, and Bunyarit Uyyanonvara 4 Abstract Optimization problem is one of the most difficult

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

Discussion of Various Techniques for Solving Economic Load Dispatch

Discussion of Various Techniques for Solving Economic Load Dispatch International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 4 Issue 7, July-2015 Discussion of Various Techniques for Solving Economic Load Dispatch Veerpal Kaur

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Advanced Topics in Image Analysis and Machine Learning Introduction to Genetic Algorithms Week 3 Faculty of Information Science and Engineering Ritsumeikan University Today s class outline Genetic Algorithms

More information

Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems

Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems 4 The Open Cybernetics and Systemics Journal, 008,, 4-9 Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems K. Kato *, M. Sakawa and H. Katagiri Department of Artificial

More information

APPLICATION OF PATTERN SEARCH METHOD TO POWER SYSTEM ECONOMIC LOAD DISPATCH

APPLICATION OF PATTERN SEARCH METHOD TO POWER SYSTEM ECONOMIC LOAD DISPATCH APPLICATION OF PATTERN SEARCH METHOD TO POWER SYSTEM ECONOMIC LOAD DISPATCH J S Alsumait, J K Sykulski A K Alothman University of Southampton Electronics and Computer Sience School Electrical Power Engineering

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

A Genetic Algorithm for Solving the Optimal Power Flow Problem

A Genetic Algorithm for Solving the Optimal Power Flow Problem A Genetic Algorithm for Solving the Optimal Power Flow Problem Tarek BOUKTIR a, Linda SLIMANI a, M. BELKACEMI b a Department of Electrical Engineering, University of Oum El Bouaghi,04000, Algeria. Email:tbouktir@lycos.com;

More information

Genetic-PSO Fuzzy Data Mining With Divide and Conquer Strategy

Genetic-PSO Fuzzy Data Mining With Divide and Conquer Strategy Genetic-PSO Fuzzy Data Mining With Divide and Conquer Strategy Amin Jourabloo Department of Computer Engineering, Sharif University of Technology, Tehran, Iran E-mail: jourabloo@ce.sharif.edu Abstract

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow

Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow Hybrid Real coded Genetic Algorithm - Differential Evolution for Optimal Power Flow C.N. Ravi 1, G. Selvakumar 2, C. Christober Asir Rajan 3 1 Research Scholar, Sathyabama University, Chennai, Tamil Nadu,

More information

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

More information

Khushboo Arora, Samiksha Agarwal, Rohit Tanwar

Khushboo Arora, Samiksha Agarwal, Rohit Tanwar International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016 1014 Solving TSP using Genetic Algorithm and Nearest Neighbour Algorithm and their Comparison Khushboo Arora,

More information

Towards Automatic Recognition of Fonts using Genetic Approach

Towards Automatic Recognition of Fonts using Genetic Approach Towards Automatic Recognition of Fonts using Genetic Approach M. SARFRAZ Department of Information and Computer Science King Fahd University of Petroleum and Minerals KFUPM # 1510, Dhahran 31261, Saudi

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

Grid Scheduling Strategy using GA (GSSGA)

Grid Scheduling Strategy using GA (GSSGA) F Kurus Malai Selvi et al,int.j.computer Technology & Applications,Vol 3 (5), 8-86 ISSN:2229-693 Grid Scheduling Strategy using GA () Dr.D.I.George Amalarethinam Director-MCA & Associate Professor of Computer

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Hybrid of Genetic Algorithm and Continuous Ant Colony Optimization for Optimum Solution

Hybrid of Genetic Algorithm and Continuous Ant Colony Optimization for Optimum Solution International Journal of Computer Networs and Communications Security VOL.2, NO.1, JANUARY 2014, 1 6 Available online at: www.cncs.org ISSN 2308-9830 C N C S Hybrid of Genetic Algorithm and Continuous

More information

ABC Analysis For Economic operation of power system

ABC Analysis For Economic operation of power system ABC Analysis For Economic operation of power system 1 Prachi Shukla, 2.Alka Thakur 1 M.tech Schlor, Electrical Department, SSSUTMS, M.P.India 2 Associate Professor, Electrical Department, SSSUTMS, M.P.India

More information

CHAPTER 4 GENETIC ALGORITHM

CHAPTER 4 GENETIC ALGORITHM 69 CHAPTER 4 GENETIC ALGORITHM 4.1 INTRODUCTION Genetic Algorithms (GAs) were first proposed by John Holland (Holland 1975) whose ideas were applied and expanded on by Goldberg (Goldberg 1989). GAs is

More information

A study of hybridizing Population based Meta heuristics

A study of hybridizing Population based Meta heuristics Volume 119 No. 12 2018, 15989-15994 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A study of hybridizing Population based Meta heuristics Dr.J.Arunadevi 1, R.Uma 2 1 Assistant Professor,

More information

Reconfiguration Optimization for Loss Reduction in Distribution Networks using Hybrid PSO algorithm and Fuzzy logic

Reconfiguration Optimization for Loss Reduction in Distribution Networks using Hybrid PSO algorithm and Fuzzy logic Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 4 [9] August 2015: 115-120 2015 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

A Hybrid Fireworks Optimization Method with Differential Evolution Operators

A Hybrid Fireworks Optimization Method with Differential Evolution Operators A Fireworks Optimization Method with Differential Evolution Operators YuJun Zheng a,, XinLi Xu a, HaiFeng Ling b a College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou,

More information

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization J.Venkatesh 1, B.Chiranjeevulu 2 1 PG Student, Dept. of ECE, Viswanadha Institute of Technology And Management,

More information

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest

Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Preprocessing of Stream Data using Attribute Selection based on Survival of the Fittest Bhakti V. Gavali 1, Prof. Vivekanand Reddy 2 1 Department of Computer Science and Engineering, Visvesvaraya Technological

More information

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les Chaotic Crossover Operator on Genetic Algorithm Hüseyin Demirci Computer Engineering, Sakarya University, Sakarya, 54187, Turkey Ahmet Turan Özcerit Computer Engineering, Sakarya University, Sakarya, 54187,

More information

Solving Sudoku Puzzles with Node Based Coincidence Algorithm

Solving Sudoku Puzzles with Node Based Coincidence Algorithm Solving Sudoku Puzzles with Node Based Coincidence Algorithm Kiatsopon Waiyapara Department of Compute Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand kiatsopon.w@gmail.com

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 10: Genetic Algorithm Basics Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic

More information

Genetic Algorithms Variations and Implementation Issues

Genetic Algorithms Variations and Implementation Issues Genetic Algorithms Variations and Implementation Issues CS 431 Advanced Topics in AI Classic Genetic Algorithms GAs as proposed by Holland had the following properties: Randomly generated population Binary

More information

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization 2017 2 nd International Electrical Engineering Conference (IEEC 2017) May. 19 th -20 th, 2017 at IEP Centre, Karachi, Pakistan Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic

More information

Role of Genetic Algorithm in Routing for Large Network

Role of Genetic Algorithm in Routing for Large Network Role of Genetic Algorithm in Routing for Large Network *Mr. Kuldeep Kumar, Computer Programmer, Krishi Vigyan Kendra, CCS Haryana Agriculture University, Hisar. Haryana, India verma1.kuldeep@gmail.com

More information

Genetic Algorithm for Job Shop Scheduling

Genetic Algorithm for Job Shop Scheduling Genetic Algorithm for Job Shop Scheduling Mr.P.P.Bhosale Department Of Computer Science and Engineering, SVERI s College Of Engineering Pandharpur, Solapur University Solapur Mr.Y.R.Kalshetty Department

More information

Optimal Analysis of Economic Load Dispatch using Artificial Intelligence Techniques

Optimal Analysis of Economic Load Dispatch using Artificial Intelligence Techniques Optimal Analysis of Economic Load Dispatch using Artificial Intelligence Techniques Vijay Kumar, Rakesh Kumar Abstract: Applications of artificial intelligence to economic load dispatch problems are discussed

More information

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001 41 Brief Papers An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization Yiu-Wing Leung, Senior Member,

More information

V.Petridis, S. Kazarlis and A. Papaikonomou

V.Petridis, S. Kazarlis and A. Papaikonomou Proceedings of IJCNN 93, p.p. 276-279, Oct. 993, Nagoya, Japan. A GENETIC ALGORITHM FOR TRAINING RECURRENT NEURAL NETWORKS V.Petridis, S. Kazarlis and A. Papaikonomou Dept. of Electrical Eng. Faculty of

More information

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS BERNA DENGIZ AND FULYA ALTIPARMAK Department of Industrial Engineering Gazi University, Ankara, TURKEY 06570 ALICE E.

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM

A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM www.arpapress.com/volumes/vol31issue1/ijrras_31_1_01.pdf A THREAD BUILDING BLOCKS BASED PARALLEL GENETIC ALGORITHM Erkan Bostanci *, Yilmaz Ar & Sevgi Yigit-Sert SAAT Laboratory, Computer Engineering Department,

More information

Implementation of Genetic Algorithm for Combined Routing and Dimensioning for Dynamic WDM Networks

Implementation of Genetic Algorithm for Combined Routing and Dimensioning for Dynamic WDM Networks Implementation of Genetic Algorithm for Combined Routing and Dimensioning for Dynamic WDM Networks Bhuthesh H K 1, Triveni C L 2 1M.Tech student, Dept. Of ECE, MCE Hassan, Karnataka, India 2Assistant Professor,

More information

An Improved Genetic Algorithm for the Traveling Salesman Problem with Multi-Relations

An Improved Genetic Algorithm for the Traveling Salesman Problem with Multi-Relations Journal of Computer Science 7 (1): 70-74, 2011 ISSN 1549-3636 2011 Science Publications An Improved Genetic Algorithm for the Traveling Salesman Problem with Multi-Relations Supat Patvichaichod Department

More information

What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool

What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool Lecture 5: GOSET 1 What is GOSET? GOSET stands for Genetic Optimization System Engineering Tool GOSET is a MATLAB based genetic algorithm toolbox for solving optimization problems 2 GOSET Features Wide

More information

Clustering Analysis of Simple K Means Algorithm for Various Data Sets in Function Optimization Problem (Fop) of Evolutionary Programming

Clustering Analysis of Simple K Means Algorithm for Various Data Sets in Function Optimization Problem (Fop) of Evolutionary Programming Clustering Analysis of Simple K Means Algorithm for Various Data Sets in Function Optimization Problem (Fop) of Evolutionary Programming R. Karthick 1, Dr. Malathi.A 2 Research Scholar, Department of Computer

More information

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Bindu Student, JMIT Radaur binduaahuja@gmail.com Mrs. Pinki Tanwar Asstt. Prof, CSE, JMIT Radaur pinki.tanwar@gmail.com Abstract

More information

A Comparative Study on Nature Inspired Algorithms with Firefly Algorithm

A Comparative Study on Nature Inspired Algorithms with Firefly Algorithm International Journal of Engineering and Technology Volume 4 No. 10, October, 2014 A Comparative Study on Nature Inspired Algorithms with Firefly Algorithm M. K. A. Ariyaratne, T. G. I. Fernando Department

More information

A New Technique using GA style and LMS for Structure Adaptation

A New Technique using GA style and LMS for Structure Adaptation A New Technique using GA style and LMS for Structure Adaptation Sukesh Kumar Das and Nirmal Kumar Rout School of Electronics Engineering KIIT University, BHUBANESWAR, INDIA skd_sentu@rediffmail.com routnirmal@rediffmail.com

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

Exploration vs. Exploitation in Differential Evolution

Exploration vs. Exploitation in Differential Evolution Exploration vs. Exploitation in Differential Evolution Ângela A. R. Sá 1, Adriano O. Andrade 1, Alcimar B. Soares 1 and Slawomir J. Nasuto 2 Abstract. Differential Evolution (DE) is a tool for efficient

More information

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem

C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem Bethany Elvira 1, Yudi Satria 2, dan Rahmi Rusin 3 1 Student in Department of Mathematics, University of Indonesia,

More information

Genetic Approach to Parallel Scheduling

Genetic Approach to Parallel Scheduling IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 4 (Jul. - Aug. 2013), PP 20-29 Genetic Approach to Parallel Scheduling Prashant Sharma 1, Gurvinder

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Applying genetic algorithm on power system stabilizer for stabilization of power system

Applying genetic algorithm on power system stabilizer for stabilization of power system Applying genetic algorithm on power system stabilizer for stabilization of power system 1,3 Arnawan Hasibuan and 2,3 Syafrudin 1 Engineering Department of Malikussaleh University, Lhokseumawe, Indonesia;

More information

Evolutionary Computation Algorithms for Cryptanalysis: A Study

Evolutionary Computation Algorithms for Cryptanalysis: A Study Evolutionary Computation Algorithms for Cryptanalysis: A Study Poonam Garg Information Technology and Management Dept. Institute of Management Technology Ghaziabad, India pgarg@imt.edu Abstract The cryptanalysis

More information

A Binary Model on the Basis of Cuckoo Search Algorithm in Order to Solve the Problem of Knapsack 1-0

A Binary Model on the Basis of Cuckoo Search Algorithm in Order to Solve the Problem of Knapsack 1-0 22 International Conference on System Engineering and Modeling (ICSEM 22) IPCSIT vol. 34 (22) (22) IACSIT Press, Singapore A Binary Model on the Basis of Cuckoo Search Algorithm in Order to Solve the Problem

More information

Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems

Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems Hamidullah Khan Niazi 1, Sun Hou-Fang 2, Zhang Fa-Ping 3, Riaz Ahmed 4 ( 1, 4 National University of Sciences and Technology

More information

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A. Zahmatkesh and M. H. Yaghmaee Abstract In this paper, we propose a Genetic Algorithm (GA) to optimize

More information

Solving ISP Problem by Using Genetic Algorithm

Solving ISP Problem by Using Genetic Algorithm International Journal of Basic & Applied Sciences IJBAS-IJNS Vol:09 No:10 55 Solving ISP Problem by Using Genetic Algorithm Fozia Hanif Khan 1, Nasiruddin Khan 2, Syed Inayatulla 3, And Shaikh Tajuddin

More information

THE MAIN purpose of optimal reactive power flow (ORPF)

THE MAIN purpose of optimal reactive power flow (ORPF) IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 3, AUGUST 2006 1163 A Hybrid Genetic Algorithm Interior Point Method for Optimal Reactive Power Flow Wei Yan, Fang Liu, C. Y. Chung, Member, IEEE, and K.

More information

Aero-engine PID parameters Optimization based on Adaptive Genetic Algorithm. Yinling Wang, Huacong Li

Aero-engine PID parameters Optimization based on Adaptive Genetic Algorithm. Yinling Wang, Huacong Li International Conference on Applied Science and Engineering Innovation (ASEI 215) Aero-engine PID parameters Optimization based on Adaptive Genetic Algorithm Yinling Wang, Huacong Li School of Power and

More information

Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms

Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms Generation of Ultra Side lobe levels in Circular Array Antennas using Evolutionary Algorithms D. Prabhakar Associate Professor, Dept of ECE DVR & Dr. HS MIC College of Technology Kanchikacherla, AP, India.

More information

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal.

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal. METAHEURISTIC Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca March 2015 Overview Heuristic Constructive Techniques: Generate

More information

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS Jim Gasvoda and Qin Ding Department of Computer Science, Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA {jmg289, qding}@psu.edu

More information

Available online at ScienceDirect. Procedia CIRP 44 (2016 )

Available online at  ScienceDirect. Procedia CIRP 44 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 44 (2016 ) 102 107 6th CIRP Conference on Assembly Technologies and Systems (CATS) Worker skills and equipment optimization in assembly

More information

The Binary Genetic Algorithm. Universidad de los Andes-CODENSA

The Binary Genetic Algorithm. Universidad de los Andes-CODENSA The Binary Genetic Algorithm Universidad de los Andes-CODENSA 1. Genetic Algorithms: Natural Selection on a Computer Figure 1 shows the analogy between biological i l evolution and a binary GA. Both start

More information

DIFFERENTIAL evolution (DE) is a simple yet powerful

DIFFERENTIAL evolution (DE) is a simple yet powerful 646 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 6, DECEMBER 2006 Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems Janez Brest,

More information

Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm

Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm Shinn-Ying Ho *, Chia-Cheng Liu, Soundy Liu, and Jun-Wen Jou Department of Information Engineering, Feng Chia University,

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

BAT OPTIMIZATION ALGORITHM WITH DIFFERENTIAL EVOLUTION STRATEGY

BAT OPTIMIZATION ALGORITHM WITH DIFFERENTIAL EVOLUTION STRATEGY OPTIMAL POWER FLOW SOLUTION THROUGHH HYBRID BAT OPTIMIZATION ALGORITHM WITH DIFFERENTIAL EVOLUTION STRATEGY S.ThangaRenuga Devi M.E Power System Engg. Francis Xavier Engg. College renugadevi2693@gmail.com

More information

Automata Construct with Genetic Algorithm

Automata Construct with Genetic Algorithm Automata Construct with Genetic Algorithm Vít Fábera Department of Informatics and Telecommunication, Faculty of Transportation Sciences, Czech Technical University, Konviktská 2, Praha, Czech Republic,

More information

An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks.

An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks. An Improved Genetic Algorithm based Fault tolerance Method for distributed wireless sensor networks. Anagha Nanoti, Prof. R. K. Krishna M.Tech student in Department of Computer Science 1, Department of

More information

NOVEL CONSTRAINED SEARCH-TACTIC FOR OPTIMAL DYNAMIC ECONOMIC DISPATCH USING MODERN META-HEURISTIC OPTIMIZATION ALGORITHMS

NOVEL CONSTRAINED SEARCH-TACTIC FOR OPTIMAL DYNAMIC ECONOMIC DISPATCH USING MODERN META-HEURISTIC OPTIMIZATION ALGORITHMS NOVEL CONSTRAINED SEARCH-TACTIC FOR OPTIMAL DYNAMIC ECONOMIC DISPATCH USING MODERN META-HEURISTIC OPTIMIZATION ALGORITHMS Authors: Fahad S. Abu-Mouti and M. E. El-Hawary OUTLINE Introduction Problem Formulation

More information