GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao

Size: px
Start display at page:

Download "GAMES Webinar: Rendering Tutorial 2. Monte Carlo Methods. Shuang Zhao"

Transcription

1 GAMES Webinar: Rendering Tutorial 2 Monte Carlo Methods Shuang Zhao Assistant Professor Computer Science Department University of California, Irvine GAMES Webinar Shuang Zhao 1

2 Outline 1. Monte Carlo integration A powerful numerical tool for estimating complex integrals 2. Rendering equation The physical framework governing light transport 3. Path tracing Basically, Path integral formulation 5. Advanced methods GAMES Webinar Shuang Zhao 2

3 Monte Carlo Integration GAMES Webinar: Rendering Tutorial 2 GAMES Webinar Shuang Zhao 3

4 Why Monte Carlo? The gold standard approach to solve the RTE Advantages: Provides estimates with quantifiable uncertainty Adaptable to systems with complex geometries GAMES Webinar Shuang Zhao 4

5 Monte Carlo Integration A powerful framework for computing integrals Numerical Nondeterministic (i.e., using randomness) Scalable to high-dimensional problems GAMES Webinar Shuang Zhao 5

6 Random Variables (Discrete) random variable X Possible outcomes: x 1, x 2,, x n with probability masses p 1, p 2,, p n such that E.g., fair coin Outcomes: x 1 = head, x 2 = tail Probabilities: p 1 = p 2 = ½ GAMES Webinar Shuang Zhao 6

7 Random Variables (Continuous) random variable X Possible outcomes: with probability density function (PDF) p(x) satisfying Cumulative density function (CDF) P(x) given by GAMES Webinar Shuang Zhao 7

8 Strong Law of Large Numbers Let x 1, x 2,, x n be n independent observations (aka. samples) of X Sample mean Actual mean GAMES Webinar Shuang Zhao 8

9 Example: Evaluating π Unit circle S Let X be a point uniformly distributed in the square Let, then Circle area = π Square area = 4 GAMES Webinar Shuang Zhao 9

10 Example: Evaluating π Unit circle S Simple solution for computing π: Generate n samples x 1,, x n independently Circle area = π Square area = 4 Compute Live demo GAMES Webinar Shuang Zhao 10

11 Example: Evaluating π GAMES Webinar Shuang Zhao 11

12 Integral f(x): one-dimensional scalar function GAMES Webinar Shuang Zhao 12

13 Deterministic Integration Quadrature rule: Scales poorly with high dimensionality: Needs n m bins for a m-dimensional problem We have a high-dimensional problem! GAMES Webinar Shuang Zhao 13

14 Monte Carlo Integration: Overview Goal: Estimating Idea: Constructing random variable Such that is called an unbiased estimator of But how? GAMES Webinar Shuang Zhao 14

15 Monte Carlo Integration Let p() be any probability density function over [a, b] and X be a random variable with density p Let, then: To estimate : strong law of large numbers GAMES Webinar Shuang Zhao 15

16 Monte Carlo Integration Goal: to estimate Pick a probability density function Generate n independent samples: Evaluate for j = 1, 2,, n Return sample mean: GAMES Webinar Shuang Zhao 16

17 How to pick density function p()? In theory (Almost) anything In practice: Uniform distributions (almost) always work As long as the domain is bounded Choice of p() greatly affects the effectiveness (i.e., convergence rate) of the resulting estimator GAMES Webinar Shuang Zhao 17

18 Monte Carlo Integration Hello, World! Estimating Algorithm: Draw i.i.d x 1, x 2,, x n uniformly from [0, 1) Return Live demo GAMES Webinar Shuang Zhao 18

19 Monte Carlo Integration Hello, World! Estimating GAMES Webinar Shuang Zhao 19

20 Multiple Importance Sampling To estimate Assume there are n probability densities p 1, p 2,, p n to sample x. Then, is an unbiased estimator of for all x with whenever as long as: GAMES Webinar Shuang Zhao 20

21 Weighting Functions The balance heuristic Then, How good is the new estimator? As long as there exists a good estimator for, will also be good GAMES Webinar Shuang Zhao 21

22 Example: MIS Consider the problem of evaluating: denotes the indicator function with two probability densities f: normal distribution with mean 0 and variance σ 2 g: uniform distribution between a and b GAMES Webinar Shuang Zhao 22

23 Example: MIS σ = 1; a = 1.9, b = 2.0 GAMES Webinar Shuang Zhao 23

24 Example: MIS σ = 0.05; a = -3.0, b = 3.0 GAMES Webinar Shuang Zhao 24

25 The Rendering Equation GAMES Webinar: Rendering Tutorial 2 GAMES Webinar Shuang Zhao 25

26 Radiance Radiant energy at x in direction ω: A 5D function per projected surface area per solid angle : Power GAMES Webinar Shuang Zhao 26

27 Light Transport Goal Describe steady-state radiance distribution in virtual scenes Assumptions Geometric optics Achieves steady state instantaneously GAMES Webinar Shuang Zhao 27

28 Radiance at Equilibrium Radiance values at all points in the scene and in all directions expresses the equilibrium 5D Light-field We only consider radiance on surfaces (4D) Assuming no volumetric scattering or absorption GAMES Webinar Shuang Zhao 28

29 Rendering Equation (RE) RE describes the distribution of radiance at equilibrium RE involves: Scene geometry Light source info. Surface reflectance info. Radiance values at all surface points in all directions (Known) (Unknown) GAMES Webinar Shuang Zhao 29

30 Rendering Equation (RE) = + = + GAMES Webinar Shuang Zhao 30

31 Rendering Equation Incoming radiance GAMES Webinar Shuang Zhao 31

32 Rendering Equation (Invariant of radiance along lines) GAMES Webinar Shuang Zhao 32

33 Monte Carlo Path Tracing GAMES Webinar: Rendering Tutorial 2 GAMES Webinar Shuang Zhao 33

34 Path Tracing (Version 0) Estimating L r using MC integration: Draw ω i uniformly at random p(ω i ) = 1/(2π) GAMES Webinar Shuang Zhao 34

35 Path Tracing (Version 0) Light source Light path GAMES Webinar Shuang Zhao 35

36 Challenge Small light source leads to high noise Because the probability for a light path to hit the light source is small 64 samples per pixel GAMES Webinar Shuang Zhao 36

37 Idea: Separating Direct & Indirect Indirect Direct GAMES Webinar Shuang Zhao 37

38 Direct Illumination Direct GAMES Webinar Shuang Zhao 38

39 Indirect Illumination Indirect GAMES Webinar Shuang Zhao 39

40 Summary: Direct + Indirect L = L e + L r Non-recursive This idea is usually called next-event estimation Recursion GAMES Webinar Shuang Zhao 40

41 Estimating Direct Illumination Idea: sampling the light source Solid angle integral area integral Change of measure GAMES Webinar Shuang Zhao 41

42 Path Tracing (with NEE) Light source Shadow ray Shadow ray Light path GAMES Webinar Shuang Zhao 42

43 Path Integral Formulation GAMES Webinar: Rendering Tutorial 2 GAMES Webinar Shuang Zhao 43

44 Path Integral Formulation (Preview) Goal: rewriting the measurement equation as an integral of the form where form denotes individual light paths for the GAMES Webinar Shuang Zhao 44

45 Benefits Express the measurement I as an integral instead of an integral equation Provide a unified framework for deriving advanced estimators of I GAMES Webinar Shuang Zhao 45

46 Recap: Change of Measure From solid angle to area: We now apply this idea to the RE as well as the measurement equation GAMES Webinar Shuang Zhao 46

47 Path Integral Formulation of the RE By repeatedly expanding L, we get: where for any : GAMES Webinar Shuang Zhao 47

48 Applying the Path Integral Formulation The path integral can be estimated via Monte Carlo integration framework: What density p to use? How to draw a sample path from p? GAMES Webinar Shuang Zhao 48

49 Recap: Local Path Sampling Path tracing Without next-event estimation One transport path at a time With next-event estimation Multiple transport paths at a time GAMES Webinar Shuang Zhao 49

50 Advanced Methods GAMES Webinar: Rendering Tutorial 2 GAMES Webinar Shuang Zhao 50

51 Advanced Methods Bidirectional path tracing (BDPT) Metropolis light transport (MLT) GAMES Webinar Shuang Zhao 51

52 Bidirectional Path Tracing Build light transport paths by connecting two sub-paths starting from the light source and the sensor, respectively [Veach 1997] Use multiple importance sampling (MIS) to properly weight each path GAMES Webinar Shuang Zhao 52

53 Building Transport Paths For any, create light sub-path and sensor sub-path (using local path sampling) The full path two pieces: is obtained by concatenating these GAMES Webinar Shuang Zhao 53

54 Building Transport Paths Remark: there is more than one sampling technique for each path length (k + 1) techniques for paths with k vertices [Veach 1997] GAMES Webinar Shuang Zhao 54

55 Building Transport Paths For each s and t, the construction of a probability density Similar to the unidirectional case, equals the product of densities of sampling both sub-paths gives GAMES Webinar Shuang Zhao 55

56 Building Transport Paths Using multiple importance sampling, we can combine all these path sampling schemes, resulting in: where w s,t is the weighting function Balance heuristic GAMES Webinar Shuang Zhao 56

57 Example: Modified Cornell Box Area light facing up The scene is lit largely indirectly Cornell Box Mirrored ball Camera facing a mirrored ball The scene is observed indirectly Difficult to render with unidirectional path tracing GAMES Webinar Shuang Zhao 57

58 Example: Modified Cornell Box (Rendered in equal-time) Path tracing Bidirectional path tracing GAMES Webinar Shuang Zhao 58

59 Metropolis light transport (MLT) A Markov Chain Monte Carlo (MCMC) framework implementing the Metropolis- Hasting method first proposed by Veach and Guibas in 1997 Capable of efficiently constructing difficult transport paths Lots of ongoing research along this direction GAMES Webinar Shuang Zhao 59

60 Metropolis-Hasting Method A Markov-Chain Monte Carlo technique Given a non-negative function f, generate a chain of (correlated) samples X 1, X 2, X 3, that follow a probability density proportional to f Main advantage: f does not have to be a PDF (i.e., unnormalized) GAMES Webinar Shuang Zhao 60

61 Metropolis-Hasting Method Input Non-negative function f Probability density g(y x) suggesting a candidate for the next sample value x, given the previous sample value y The algorithm: given current sample X i 1. Sample X from g(x i X ) 2. Let 3. Set X i+1 to X with prob. a; otherwise, set X i+1 to X i Start with arbitrary initial state X 0 GAMES Webinar Shuang Zhao 61

62 Path Mutations The key step of the MLT Given a transport path, we need to define a transition probability to allow sampling mutated paths based on Given this transition density, the acceptance probability is then given by GAMES Webinar Shuang Zhao 62

63 Desirable Mutation Properties High acceptance probability should be large with high probability Large changes to the path Ergodicity (never stuck in some-region of the path space) should be non-zero for all with Low cost GAMES Webinar Shuang Zhao 63

64 Path Mutation Strategies [Veach & Guibas 1997] Bidirectional mutation Path perturbations Lens sub-path mutation [Jakob & Marschner 2012] Manifold exploration [Li et al. 2015] Hamiltonian Monte Carlo GAMES Webinar Shuang Zhao 64

65 Bidirectional Path Mutations Basic idea Given a path the vertices l and m satisfies, pick l, m and replace with Image plane Image plane GAMES Webinar Shuang Zhao 65

66 Path Perturbation Slightly modify the direction x m x m-1 (at random) Trace a ray from x m with this new direction to form the new sub-path Center of projection Image plane Specular interface Diffuse surface GAMES Webinar Shuang Zhao 66

67 Results BDPT [Veach 1997] MLT (equal-time) GAMES Webinar Shuang Zhao 67

68 Results BDPT [Veach 1997] MLT (equal-time) GAMES Webinar Shuang Zhao 68

69 Summary Physics-based rendering is a rich field Things we have covered Light transport model Rendering equation (reflection and refraction) Monte Carlo solutions Path tracing Bidirectional path tracing Metropolis light transport GAMES Webinar Shuang Zhao 69

70 Topics we have not covered Radiative transfer (sub-surface scattering) Unbiased methods Primary sample space & multiplexed MLT Gradient-domain PT/MLT Biased methods Photon mapping Lightcuts Monte Carlo denoising Diffusion approximations GAMES Webinar Shuang Zhao 70

Metropolis Light Transport

Metropolis Light Transport Metropolis Light Transport CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Announcements Final presentation June 13 (Tuesday)

More information

Bidirectional Path Tracing

Bidirectional Path Tracing Bidirectional Path Tracing CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Last Lecture Path integral formulation II Light path

More information

Rendering Equation & Monte Carlo Path Tracing I

Rendering Equation & Monte Carlo Path Tracing I Rendering Equation & Monte Carlo Path Tracing I CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Announcements Homework 1 due

More information

rendering equation camera all

rendering equation camera all 1 Even the most recent existing methods are either not good at or not capable of handling complex illumination, such as reflected caustics on the floor. In this work we will show how to combine the strengths

More information

Choosing the Right Algorithm & Guiding

Choosing the Right Algorithm & Guiding Choosing the Right Algorithm & Guiding PHILIPP SLUSALLEK & PASCAL GRITTMANN Topics for Today What does an implementation of a high-performance renderer look like? Review of algorithms which to choose for

More information

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple

In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple 1 In the real world, light sources emit light particles, which travel in space, reflect at objects or scatter in volumetric media (potentially multiple times) until they are absorbed. On their way, they

More information

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping

Advanced Graphics. Path Tracing and Photon Mapping Part 2. Path Tracing and Photon Mapping Advanced Graphics Path Tracing and Photon Mapping Part 2 Path Tracing and Photon Mapping Importance Sampling Combine importance sampling techniques Reflectance function (diffuse + specular) Light source

More information

The Rendering Equation and Path Tracing

The Rendering Equation and Path Tracing The Rendering Equation and Path Tracing Louis Feng April 22, 2004 April 21, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics The rendering equation Original form Meaning of the terms Integration Path

More information

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes

Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Virtual Spherical Lights for Many-Light Rendering of Glossy Scenes Miloš Hašan Jaroslav Křivánek * Bruce Walter Kavita Bala Cornell University * Charles University in Prague Global Illumination Effects

More information

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016

Variance Reduction. Computer Graphics CMU /15-662, Fall 2016 Variance Reduction Computer Graphics CMU 15-462/15-662, Fall 2016 Last time: Rendering Equation Recursive description of incident illumination Difficult to integrate; tour de force of numerical integration

More information

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate?

Monte-Carlo Ray Tracing. Antialiasing & integration. Global illumination. Why integration? Domains of integration. What else can we integrate? Monte-Carlo Ray Tracing Antialiasing & integration So far, Antialiasing as signal processing Now, Antialiasing as integration Complementary yet not always the same in particular for jittered sampling Image

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome!

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome! INFOMAGR Advanced Graphics Jacco Bikker - February April 2016 Welcome! I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Today s Agenda: Introduction Stratification Next Event Estimation Importance Sampling

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

Metropolis Light Transport

Metropolis Light Transport Chapter 11 Metropolis Light Transport We propose a new Monte Carlo algorithm for solving the light transport problem, called Metropolis light transport (MLT. It is inspired by the Metropolis sampling method

More information

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation).

In this part, I will mostly talk about the vertex merging technique (a.k.a. kernel estimation). 1 As it was thoroughly discussed by the previous course speakers, photon mapping methods are good at handling such difficult light transport methods, as caustics and reflected caustics. However, on the

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Monte Carlo Simulation 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Curtis Mobley Monte Carlo Simulation Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017 by Curtis

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016 The Rendering Equation Computer Graphics CMU 15-462/15-662, Fall 2016 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area

More information

Global Illumination. COMP 575/770 Spring 2013

Global Illumination. COMP 575/770 Spring 2013 Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:

More information

Lecture 7: Monte Carlo Rendering. MC Advantages

Lecture 7: Monte Carlo Rendering. MC Advantages Lecture 7: Monte Carlo Rendering CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC Advantages Convergence rate of O( ) Simple Sampling Point evaluation Can use black boxes General

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis Bidirectional Path Tracing & Reciprocity Karol Myszkowski Gurprit Singh Path Sampling Techniques Different techniques of sampling paths from both sides Numbers in parenthesis

More information

Interactive Methods in Scientific Visualization

Interactive Methods in Scientific Visualization Interactive Methods in Scientific Visualization GPU Volume Raycasting Christof Rezk-Salama University of Siegen, Germany Volume Rendering in a Nutshell Image Plane Eye Data Set Back-to-front iteration

More information

Monte Carlo Integration

Monte Carlo Integration Lecture 11: Monte Carlo Integration Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Reminder: Quadrature-Based Numerical Integration f(x) Z b a f(x)dx x 0 = a x 1 x 2 x 3 x 4 = b E.g.

More information

Monte Carlo Path Tracing. The Rendering Equation

Monte Carlo Path Tracing. The Rendering Equation Monte Carlo Path Tracing Today Path tracing starting from the eye Path tracing starting from the lights Which direction is best? Bidirectional ray tracing Random walks and Markov chains Next Irradiance

More information

Importance Sampling of Area Lights in Participating Media

Importance Sampling of Area Lights in Participating Media Importance Sampling of Area Lights in Participating Media Christopher Kulla Marcos Fajardo Outline Previous Work Single Scattering Equation Importance Sampling for Point Lights Importance Sampling for

More information

Milton. Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam

Milton. Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam Milton Travis Fischer 09 Advised by Professors John Hughes and Andy van Dam A Thesis submitted in partial fulfillment of the requirements for Honors in the Brown University Department of Computer Science

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

Lecture 12: Photon Mapping. Biased Methods

Lecture 12: Photon Mapping. Biased Methods Lecture 12: Photon Mapping CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC problems Biased Methods Biased methods: store information (caching) Better type of noise: blurring Greg

More information

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 557 Autumn 2017

Anti-aliasing and Monte Carlo Path Tracing. Brian Curless CSE 557 Autumn 2017 Anti-aliasing and Monte Carlo Path Tracing Brian Curless CSE 557 Autumn 2017 1 Reading Required: Marschner and Shirley, Section 13.4 (online handout) Pharr, Jakob, and Humphreys, Physically Based Ray Tracing:

More information

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination

Global Illumination. Why Global Illumination. Pros/Cons and Applications. What s Global Illumination Global Illumination Why Global Illumination Last lecture Basic rendering concepts Primitive-based rendering Today: Global illumination Ray Tracing, and Radiosity (Light-based rendering) What s Global Illumination

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Anti-aliasing and Monte Carlo Path Tracing

Anti-aliasing and Monte Carlo Path Tracing Reading Required: Anti-aliasing and Monte Carlo Path Tracing Brian Curless CSE 557 Autumn 2017 Marschner and Shirley, Section 13.4 (online handout) Pharr, Jakob, and Humphreys, Physically Based Ray Tracing:

More information

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation: Monte Carlo Path Tracing. Sampling and Reconstruction of Visual Appearance. Monte Carlo Path Tracing. Monte Carlo Path Tracing Sampling and Reconstruction of Visual Appearance CSE 274 [Winter 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Key application area for sampling/reconstruction Core method

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Physically Realistic Ray Tracing

Physically Realistic Ray Tracing Physically Realistic Ray Tracing Reading Required: Watt, sections 10.6,14.8. Further reading: A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.] Robert L. Cook, Thomas Porter,

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California

More information

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light

Korrigeringar: An introduction to Global Illumination. Global Illumination. Examples of light transport notation light An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Korrigeringar: Intel P4 (200): ~42M transistorer Intel P4 EE (2004): 78M

More information

Single Scattering in Refractive Media with Triangle Mesh Boundaries

Single Scattering in Refractive Media with Triangle Mesh Boundaries Single Scattering in Refractive Media with Triangle Mesh Boundaries Bruce Walter Shuang Zhao Nicolas Holzschuch Kavita Bala Cornell Univ. Cornell Univ. Grenoble Univ. Cornell Univ. Presented at SIGGRAPH

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Last time Interpolatory Quadrature Review formulation; error analysis Newton-Cotes Quadrature Midpoint, Trapezoid, Simpson s Rule Error analysis for trapezoid, midpoint

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Distribution Ray Tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Distribution Ray Tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Distribution Ray Tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 10.6,14.8. Further reading: A. Glassner. An Introduction to Ray

More information

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination

More information

Assignment 3: Path tracing

Assignment 3: Path tracing Assignment 3: Path tracing EDAN30 April 2, 2011 In this assignment you will be asked to extend your ray tracer to support path tracing. In order to pass the assignment you need to complete all tasks. Make

More information

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Global Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Foley, van Dam (better): Chapter 16.7-13 Angel: Chapter 5.11, 11.1-11.5 2 Limitation of local illumination A concrete

More information

Reading. 8. Distribution Ray Tracing. Required: Watt, sections 10.6,14.8. Further reading:

Reading. 8. Distribution Ray Tracing. Required: Watt, sections 10.6,14.8. Further reading: Reading Required: Watt, sections 10.6,14.8. Further reading: 8. Distribution Ray Tracing A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.] Robert L. Cook, Thomas Porter,

More information

Monte Carlo Integration

Monte Carlo Integration Lecture 15: Monte Carlo Integration Computer Graphics and Imaging UC Berkeley Reminder: Quadrature-Based Numerical Integration f(x) Z b a f(x)dx x 0 = a x 1 x 2 x 3 x 4 = b E.g. trapezoidal rule - estimate

More information

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination 2 Fundamentals of Light Transport He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast. Leonardo Da Vinci, 1452 1519 THE

More information

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination

Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination Ian C. Doidge Mark W. Jones Benjamin Mora Swansea University, Wales Thursday 14 th June Computer Graphics International 2012

More information

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations

COMPUTER GRAPHICS COURSE. LuxRender. Light Transport Foundations COMPUTER GRAPHICS COURSE LuxRender Light Transport Foundations Georgios Papaioannou - 2015 Light Transport Light is emitted at the light sources and scattered around a 3D environment in a practically infinite

More information

Level-set MCMC Curve Sampling and Geometric Conditional Simulation

Level-set MCMC Curve Sampling and Geometric Conditional Simulation Level-set MCMC Curve Sampling and Geometric Conditional Simulation Ayres Fan John W. Fisher III Alan S. Willsky February 16, 2007 Outline 1. Overview 2. Curve evolution 3. Markov chain Monte Carlo 4. Curve

More information

Monte Carlo Path Tracing

Monte Carlo Path Tracing Page 1 Monte Carlo Path Tracing Today Path tracing Random wals and Marov chains Eye vs. light ray tracing Bidirectional ray tracing Next Irradiance caching Photon mapping Light Path Sx (, x) 0 1 f ( x,

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Scalable many-light methods

Scalable many-light methods Scalable many-light methods Jaroslav Křivánek Charles University in Prague Instant radiosity Approximate indirect illumination by 1. Generate VPLs 2. Render with VPLs 2 Instant radiosity with glossy surfaces

More information

13 Distribution Ray Tracing

13 Distribution Ray Tracing 13 In (hereafter abbreviated as DRT ), our goal is to render a scene as accurately as possible. Whereas Basic Ray Tracing computed a very crude approximation to radiance at a point, in DRT we will attempt

More information

Bidirectional Lightcuts

Bidirectional Lightcuts Bidirectional Lightcuts Bruce Walter Pramook Khungurn Kavita Bala Cornell University 1 Realistic Rendering Challenge Complex light sources Global illumination Wide range of materials Images: Autodesk 360

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture.

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture. Sampling and Reconstruction of Visual Appearance CSE 74 [Winter 8], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Monte Carlo Rendering Key application area for sampling/reconstruction

More information

Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs

Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs YU GUO, University of California, Irvine MILOŠ HAŠAN, Autodesk SHUANG ZHAO, University of California, Irvine (a) (b1) (c1) (d1) (e1) normal

More information

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University

A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global

More information

Implementation of Bidirectional Ray Tracing Algorithm

Implementation of Bidirectional Ray Tracing Algorithm Implementation of Bidirectional Ray Tracing Algorithm PÉTER DORNBACH jet@inf.bme.hu Technical University of Budapest, Department of Control Engineering and Information Technology, Mûegyetem rkp. 9, 1111

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Ground Truth. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 10: Ground Truth Welcome! Today s Agenda: Limitations of Whitted-style Ray Tracing Monte Carlo Path Tracing INFOGR Lecture 10 Ground Truth

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: April 11, 2011. Lecture 1: Introduction and Basic Terms Welcome to the course, time table, assessment, etc..

More information

Numerical Integration

Numerical Integration Lecture 12: Numerical Integration (with a focus on Monte Carlo integration) Computer Graphics CMU 15-462/15-662, Fall 2015 Review: fundamental theorem of calculus Z b f(x)dx = F (b) F (a) a f(x) = d dx

More information

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 5 Tour of Modern Offline Rendering To Do Project milestone (1-2 pages), final project proposal Due on Oct 27 Please get in touch with me if

More information

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G.

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G. Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation Vincent Pegoraro Carson Brownlee Peter S. Shirley Steven G. Parker Outline Motivation & Applications Monte Carlo Integration

More information

Lecture 7 - Path Tracing

Lecture 7 - Path Tracing INFOMAGR Advanced Graphics Jacco Bikker - November 2016 - February 2017 Lecture 7 - I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Welcome! Today s Agenda: Introduction Advanced Graphics 3 Introduction

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm

The Rendering Equation Philip Dutré. Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm The Rendering Equation Philip Dutré Course 4. State of the Art in Monte Carlo Global Illumination Sunday, Full Day, 8:30 am - 5:30 pm 1 Overview Rendering Equation Path tracing Path Formulation Various

More information

SOME THEORY BEHIND REAL-TIME RENDERING

SOME THEORY BEHIND REAL-TIME RENDERING SOME THEORY BEHIND REAL-TIME RENDERING Jaroslav Křivánek Charles University in Prague Off-line realistic rendering (not yet in rea-time) Ray tracing 3 4 Image created by Bertrand Benoit Rendered in Corona

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Integration in d Dimensions? One option: nested 1-D integration f(x,y) g(y) y f ( x, y) dx dy ( ) = g y dy x Evaluate the latter numerically, but each sample of g(y) is

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015

Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 Rendering Part I (Basics & Ray tracing) Lecture 25 December 1, 2015 What is rendering? Generating an image from a 3D scene model Ingredients Representation of 3D geometry Specification for camera & lights

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects Basic Ray Tracing Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as

More information

Photon Mapping. Michael Doggett Department of Computer Science Lund university

Photon Mapping. Michael Doggett Department of Computer Science Lund university Photon Mapping Michael Doggett Department of Computer Science Lund university Outline Photon Mapping (ch. 14 in textbook) Progressive Stochastic 2011 Michael Doggett How to make light sampling faster?

More information

Biased Monte Carlo Ray Tracing:

Biased Monte Carlo Ray Tracing: Biased Monte Carlo Ray Tracing: Filtering, Irradiance Caching and Photon Mapping Dr. Henrik Wann Jensen Stanford University May 24, 2001 Unbiased and consistent Monte Carlo methods Unbiased estimator:

More information

Photorealism: Ray Tracing

Photorealism: Ray Tracing Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any

More information

Representativity for Robust and Adaptive Multiple Importance Sampling

Representativity for Robust and Adaptive Multiple Importance Sampling IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, MONTH 9 1 Representativity for Robust and Adaptive Multiple Importance Sampling Anthony Pajot, Loïc Barthe, Mathias Paulin, and

More information

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics Announcements Assignment 4 will be out later today Problem Set 3 is due today or tomorrow by 9am in my mail box (4 th floor NSH) How are the machines working out? I have a meeting with Peter Lee and Bob

More information

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination

Philipp Slusallek Karol Myszkowski. Realistic Image Synthesis SS18 Instant Global Illumination Realistic Image Synthesis - Instant Global Illumination - Karol Myszkowski Overview of MC GI methods General idea Generate samples from lights and camera Connect them and transport illumination along paths

More information

Realistic Camera Model

Realistic Camera Model Realistic Camera Model Shan-Yung Yang November 2, 2006 Shan-Yung Yang () Realistic Camera Model November 2, 2006 1 / 25 Outline Introduction Lens system Thick lens approximation Radiometry Sampling Assignment

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

Global Illumination and Monte Carlo

Global Illumination and Monte Carlo Global Illumination and Monte Carlo MIT EECS 6.837 Computer Graphics Wojciech Matusik with many slides from Fredo Durand and Jaakko Lehtinen ACM. All rights reserved. This content is excluded from our

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient I Used Materials Disclaimer: Much of the material and slides for this lecture

More information

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ]

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ] CSCI 420 Computer Graphics Lecture 15 Ray Tracing Ray Casting Shadow Rays Reflection and Transmission [Ch. 13.2-13.3] Jernej Barbic University of Southern California 1 Local Illumination Object illuminations

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Illumination Algorithms

Illumination Algorithms Global Illumination Illumination Algorithms Digital Lighting and Rendering CGT 340 The goal of global illumination is to model all possible paths of light to the camera. Global Illumination Global illumination

More information

Stochastic Progressive Photon Mapping

Stochastic Progressive Photon Mapping Stochastic Progressive Photon Mapping Toshiya Hachisuka Henrik Wann Jensen UC San Diego Figure : Tools with a flashlight. The scene is illuminated by caustics from the flashlight, which cause SDS paths

More information