On step fixed-charge hub location problem

Size: px
Start display at page:

Download "On step fixed-charge hub location problem"

Transcription

1 On step fixed-charge hub location problem Marcos Roberto Silva DEOP - Departamento de Engenharia Operacional Patrus Transportes Urgentes Ltda , Guarulhos, SP marcos.roberto.silva@uol.com.br Keywords: mathematical modeling, hub location, fixed-charge, step function, tabu search Abstract: In this paper we introduce the on step fixed-charge hub location problem. We believe that this problem was never studied before, where the hub location problem has a step objective function, and fixed cost is imposed for every arc of the hub-and-spoke network. A mathematical model, and a solution approach based on tabu search heuristic is proposed, showing promising results, considering the potential of practical application in different areas, such as transportation and telecommunication network design. 1 Introduction In this paper we study the problem of configuring a hub-and-spoke network where fixed cost is incurred for every arc that is used in the network. The step fixed-charge hub location problem is a variation of the hub location problem, where the fixed cost is in the form of a step function dependent on the load in a given route. Hubs are special facilities that serve as switching, transshipment and sorting points in manyto-many distribution systems. Instead of serving each origin-destination pair directly, hub facilities concentrate flows in order to take advantage of economies of scale. Flows from the same origin with different destinations are consolidated on their route to the hub and are combined with flows that have different origins but the same destination. The consolidation is on the route from the origin to the hub and from the hub to the destination as well as between hubs [1]. A recent survey of hub location problems is presented in [6]. The Uncapacitated Single Allocation p-hub Median Problem (USApHMP), first introduced by [13], was chosen to be used as a case study in this paper, with the inclusion of fixed costs in the arcs of the hub-and-spoke network. The USApHMP was largely studied in the literature with more than 20 papers published until 2008 [1], with exact and heuristic solution methods proposed, including branch-and-bound [4], tabu search [16], simulated annealing [3], Lagrangean relaxation heuristic [14], local search [10], to name a few. We believe that this is the first work that studies the fixed-charge hub location problem where the objetive function is a step function. This problem has various application areas in transportation (air passenger, cargo) and telecommunication network design. In less-than-truckload (LTL) trucking transportation, when a route between terminals is opened, it is necessary to define the kind of vehicle to use, depending on the flow, incurring on different fixed costs for different models of vehicles. In the telecommunications industry, it represents the design of private networks that use digital transmission facilities (called T1 circuits) to carry voice and data traffic between locations. Given an organization s forecast for data and voice traffic between its various locations, the 660

2 problem consists of defining the configuration of transmission facilities between the locations (nodes) providing the necessary link capacities to carry this traffic at minimum cost [12]. In Section 2 we present the mathematical formulation of the problem. In Section 3 the computational results are presented, and in Section 4 the conclusions and some further directions are outlined. 2 Mathematical formulation The on step fixed-charge hub location problem was formulated based on the approach used by [5] for the capacitated single allocation hub location problem (CSAHLP) and in [11] for the on step fixed-charge transportation problem. Let N be the set of nodes, C ij be the transportation cost per unit flow between nodes i and j, and W ij be the amount of flow from origin i to destination j. The path from an origin spoke node i to a destination spoke node j includes three components: collection from spoke node i to its designated hub k, transfer between hubs k and l, and distribution from hub l to destination spoke j. The cost per unit flow along this route (i k l j) is given by χc ik + αc kl + δc lj, where χ, α and δ denote cost multipliers on the collection, transfer and distribution, respectively. Usually α is much smaller than χ and δ due to volume discount on inter-hub links. A factor α < 1 was originally proposed by [13] to represent an economy of scale on the transportation cost between hubs; the two other factors, χ and δ, were later introduced by [3] to properly represent the reality of postal services costs, especially different modes that can be used in mail collection and distribution. We define the variable Ykl i as the total amount of flow of commodity i (i.e. traffic emanating from node i) that is routed between hubs k and l. The variable Z ik equals one if node i is assigned to hub k and zero otherwise. The amount of flow from origin i to destination j is given by W ij, while O i, D i represents the total amount of flow originated and destined at node i, respectively. Thus, the on step fixed charge hub location problem can be formulated as the following mathematical programming problem: min Z = ( ) C ik Z ik χo i + δd i i N k N + αc kl Ykl i i N k N l N + Z ik U ik + N kl V kl i N k N k N l N (1) Subject to: where l N Z ik = 1, i N (2) k N Z kk = p, (3) k N Z ik Z kk, i N, k N (4) Ykl i Ylk i l N = O i Z ik W ij Z jk, j N i N, k N (5) Z ik {0, 1}, i N, k N (6) Ykl i 0, i N, k N, l N (7) 661

3 N kl = { 1 : if Ylk i > 0, i N, k N, l N 0 : otherwise Formulation of U ik : Assume that a fixed cost to open a route from i to k is u ik,1 if the flow is less than or equal to A ik, and u ik,2 when the flow is higher than A ik. Thus, U ik which is the total fixed charge associated with the route from spoke node i, i N, to the hub k, k N, is: where U ik = b ik,1 u ik,1 + b ik,2 u ik,2 (8) b ik,1 = 1 if Z ik = 1, = 0 otherwise; b ik,2 = 1 if max {O i, D i }Z ik > A ik, = 0 otherwise. Similarly, V kl is the total fixed charge associated with the route between hubs k and l, k N, l N, having two levels of fixed costs: v kl,1 and v kl,2. where V kl = e kl,1 v kl,1 + e kl,2 v kl,2 (9) e kl,1 = 1 if Ykl i i N = 0 otherwise; e kl,2 = 1 if Ykl i kl, i N = 0 otherwise; In the above formulation, constraints (2) impose that each node i is assigned to exactly one hub, while constraints (3) ensure that exactly p hubs needs to be opened. Constrains (4) ensure that no node is assigned to a location unless a hub is opened at that site. Constraints (5) represent the divergence equations for each commodity i at node k in a complete graph, where the demand and supply at the nodes is determined by the allocation variables Z ik. Note that U ik and V kl are step functions, which in this special case has two steps. It could have multiple steps, depending on the problem structure. 3 Preliminary computational experiments Given the nature and complexity of the problem, we opted to develop a tabu search heuristic based on [15] and [16] to solve the on step fixed-charge hub location problem. In both the works, the tabu search heuristic was shown to be effective in solving the hub location problems, being capable of finding the optimal solution in all problems tested. The problem solved in [16] was the USApHMP, and in [15] the uncapacitated single allocation hub location problem (USAHLP). Tabu search (TS) is a local search procedure that uses memory structures to guide the movements from one feasible solution to another, aiming to explore regions of the search space that would be otherwise left unexplored in order to escape local optima. After a move is made, it is classified as tabu (i.e., forbidden) for a certain number of iterations in order to prevent cycling. The fundamental principles underlying TS are fully explained in [7], [8] and in [9]. 662

4 The data used for the computational experiments was the CAB (Civil Aeronautics Board) data set, first introduced by [13], and this set has been extensively used in the literature as a benchmark for evaluating algorithms for different hub location problems. This data set is based on the airline passenger interactions between 25 US cities in 1970 evaluated by the Civil Aeronautics Board (CAB). The CAB data set is available in the OR Library [2]. We solved problems of four different sizes: the first 10 nodes, the first 15, the first 20 and the full CAB data set with 25 nodes. The number of hubs to be located was tested with p = {2, 3, 4}, and with the discount factor α = {0.2, 0.4, 0.6, 0.8, 1.0}, resulting in 60 problems solved. Since there is no fixed-charge costs provided in the CAB data set, we arbitrarily defined values for U ik and V kl : u ik,1 = 1.0, i N, k N; u ik,2 = 2.0, i N, k N; v kl,1 = 1.0, k N, l N; v kl,2 = 2.0, k N, l N. The values of A ik and F kl were also defined arbitrarily, based on the flow values of the problem at hand. These values are presented in Table 1. The values of A ik were defined as the same for all i N and for all k N, and named only as A for short. The same for F kl, with only one value for all k N and for all l N, also named as F for short. The F value was also defined in function of the number of hubs to be located (p). F n A p = 2 p = 3 p = Table 1: Values used for A ik and F kl for the experiments with the CAB data set All the experiments were performed on a laptop equipped with 2.4 GHz Intel Core i5 processor (only one processor was used for the experiments), with 4GB of RAM, running under Mac OS X , and the tabu search heuristic was coded using Fortran programming language. We implemented the tabu search method only with short-term memory. The tabu tenure and the maximum number of iterations was set to five and ten respectively, for both the locational and allocational part of the problem, regardless of their sizes. These values are the same used in [15]. In Table 2 we present the results obtained with tabu search heuristic on solving the set of problems with n = 25 nodes. As can be seen in this table, the CPU time increases as the number of hubs increases (column CPUt(s) ), and the objective function value (column Obj.func. ) decreases because of the lower variable costs. 4 Conclusions and further research In this paper we introduced the on step fixed-charge hub location problem and we proposed a mathematical model for the special case when the objective function has two steps, and the hub location problem chosen as a case study was the uncapacitated single allocation p-hub median problem (USApHMP). We believe that this is the first work that has studied the fixed-charge hub location problem where the objetive function is a step function, imposing fixed costs at every arc in the hub-and-spoke network. We developed a tabu search heuristic to solve a set 663

5 n p α Obj.func. CPUt(s) n p α Obj.func. CPUt(s) Table 2: Results for the CAB data set of problems created using the CAB (Civil Aeronautics Board) data set. The results obtained showed that this approach can be useful in solving step fixed-charge hub location problems. Real world hub location problems are much larger than those presented in this paper. So, further research must concentrate on solving larger problems, and also on modeling and developing new solution methods to solve different variations of hub location problems. References [1] Alumur, S., and Kara, B. Y. Network hub location problems: The state of the art. European Journal of Operational Research 190, 1 (2008), [2] Beasley, J. E. OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41 (1990), [3] Ernst, A. T., and Krishnamoorthy, M. Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science 4, 3 (1996), Hub Location. [4] Ernst, A. T., and Krishnamoorthy, M. Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. European Journal of Operational Research 104, 1 (1998),

6 [5] Ernst, A. T., and Krishnamoorthy, M. Solution algorithms for the capacitated single allocation hub location problem. Annals of Operations Research 86 (1999), [6] Farahani, R. Z., Hekmatfar, M., Arabani, A. B., and Nikbakhsh, E. Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering 64, 4 (2013), [7] Glover, F. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13, 5 (1986), [8] Glover, F. Tabu search, part I. ORSA Journal on Computing 1, 3 (Summer 1989), [9] Glover, F. Tabu search, part II. ORSA Journal on Computing 2, 1 (Winter 1990), [10] Klincewicz, J. G. Heuristics for the p-hub location problem. European Journal of Operational Research 53, 1 (1991), [11] Kowalski, K., and Lev, B. On step fixed-charge transportation problem. Omega 36, 1 (2008), [12] Magnanti, T. L., Mirchandani, P., and Vachani, R. The convex hull of two core capacitated network design problems. Mathematical Programming 60 (1993), [13] O Kelly, M. E. A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research 32, 3 (December 1987), [14] Pirkul, H., and Schilling, D. A. An efficient procedure for designing single allocation hub and spoke systems. Management Science 42, 12 (1998), [15] Silva, M. R., and Cunha, C. B. New simple and efficient heuristics for the uncapacitated single allocation hub location problem. Computers & Operations Research 36, 12 (2009), [16] Skorin-Kapov, D., and Skorin-Kapov, J. On tabu search for the location of interacting hub facilities. European Journal of Operational Research 73, 3 (March 1994),

Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm

Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm Faculty of Mathematics University of Belgrade Studentski trg 16/IV 11 000, Belgrade, Serbia (e-mail: zoricast@matf.bg.ac.yu)

More information

Using Decomposition Techniques for Solving Large-Scale Capacitated Hub Location Problems with Single Assignment

Using Decomposition Techniques for Solving Large-Scale Capacitated Hub Location Problems with Single Assignment Using Decomposition Techniques for Solving Large-Scale Capacitated Hub Location Problems with Single Assignment Ivan Contreras*, Elena Fernández Department of Statistics and Operations Research Technical

More information

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Amir Salehipour School of Mathematical and Physical Sciences, The University of Newcastle, Australia

More information

LOCATING HUBS IN TRANSPORT NETWORKS: AN ARTIFICIAL INTELLIGENCE APPROACH

LOCATING HUBS IN TRANSPORT NETWORKS: AN ARTIFICIAL INTELLIGENCE APPROACH DOI: http://dx.doi.org/10.7708/ijtte.2014.4(3).04 UDC: 656.022.5 LOCATING HUBS IN TRANSPORT NETWORKS: AN ARTIFICIAL INTELLIGENCE APPROACH Dušan Teodorović 1, Milica Šelmić 21, Ivana Vukićević 3 1, 2, 3

More information

Complete / Incomplete Hierarchical Hub Center Single Assignment Network Problem

Complete / Incomplete Hierarchical Hub Center Single Assignment Network Problem Journal of Optimization in Industrial Engineering 14 (2014) 1-12 Complete / Incomplete Hierarchical Hub Center Single Assignment Network Problem Alireza Arshadi Khamseh a,*, Mohammad Doost Mohamadi b a

More information

On the Computational Behavior of a Dual Network Exterior Point Simplex Algorithm for the Minimum Cost Network Flow Problem

On the Computational Behavior of a Dual Network Exterior Point Simplex Algorithm for the Minimum Cost Network Flow Problem On the Computational Behavior of a Dual Network Exterior Point Simplex Algorithm for the Minimum Cost Network Flow Problem George Geranis, Konstantinos Paparrizos, Angelo Sifaleras Department of Applied

More information

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 Solving Capacitated P-Median Problem by Hybrid K-Means Clustering

More information

Capacitated Single-Assignment Hub Covering Location Problem under Fuzzy Environment

Capacitated Single-Assignment Hub Covering Location Problem under Fuzzy Environment Capacitated Single-Assignment Hub Covering Location Problem under Fuzzy Environment Abbas Mirakhorli Abstract- This paper studies capacitated single-allocation hub covering location problem with fuzzy

More information

Branch-and-Price for Large-Scale Capacitated Hub Location Problems with Single Assignment

Branch-and-Price for Large-Scale Capacitated Hub Location Problems with Single Assignment Branch-and-Price for Large-Scale Capacitated Hub Location Problems with Single Assignment Ivan Contreras 1, Juan A. Díaz 2, Elena Fernández 1 1 Dpt. d Estadística i Investigació Operativa, Universitat

More information

CLUSTER-BASED OPTIMIZATION OF URBAN TRANSIT HUB LOCATIONS: METHODOLOGY AND CASE STUDY IN CHINA

CLUSTER-BASED OPTIMIZATION OF URBAN TRANSIT HUB LOCATIONS: METHODOLOGY AND CASE STUDY IN CHINA Yu, Liu, Chang and Yang 1 CLUSTER-BASED OPTIMIZATION OF URBAN TRANSIT HUB LOCATIONS: METHODOLOGY AND CASE STUDY IN CHINA Jie Yu Department of Civil Engineering The University of Maryland, College Par,

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

SOLVING A NEW PRIORITY M/M/C QUEUE MODEL FOR A MULTI- MODE HUB COVERING LOCATION PROBLEM BY MULTI- OBJECTIVE PARALLEL SIMULATED ANNEALING

SOLVING A NEW PRIORITY M/M/C QUEUE MODEL FOR A MULTI- MODE HUB COVERING LOCATION PROBLEM BY MULTI- OBJECTIVE PARALLEL SIMULATED ANNEALING Samaneh SEDEHZADEH, M.Sc. Student School of Industrial Engineering, South Tehran Branch Islamic Azad University, Tehran, Iran E-mail: mehrdadmohamadi@ut.ac.ir Professor Reza TAVAKKOLI-MOGHADDAM, PhD School

More information

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-1, January 2016 Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems Kemal Alaykiran,

More information

Benders decomposition for the uncapacitated multiple allocation hub location problem

Benders decomposition for the uncapacitated multiple allocation hub location problem Computers & Operations Research 35 (2008) 1047 1064 www.elsevier.com/locate/cor Benders decomposition for the uncapacitated multiple allocation hub location problem R.S. de Camargo a,,1, G. Miranda Jr.

More information

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 6. Tabu Search 6.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Tabu Search: Part 1 Introduction Illustrative Problems Search Space Neighborhood Structure Tabus Aspiration Criteria Termination

More information

Discrete Covering. Location. Problems. Louis. Luangkesorn. Housekeeping. Dijkstra s Shortest Path. Discrete. Covering. Models.

Discrete Covering. Location. Problems. Louis. Luangkesorn. Housekeeping. Dijkstra s Shortest Path. Discrete. Covering. Models. Network Design Network Design Network Design Network Design Office Hours Wednesday IE 079/079 Logistics and Supply Chain Office is closed Wednesday for building renovation work. I will be on campus (or

More information

A Tabu Search solution algorithm

A Tabu Search solution algorithm Chapter 5 A Tabu Search solution algorithm The TS examines a trajectory sequence of solutions and moves to the best neighbor of the current solution. To avoid cycling, solutions that were recently examined

More information

HEURISTICS FOR THE NETWORK DESIGN PROBLEM

HEURISTICS FOR THE NETWORK DESIGN PROBLEM HEURISTICS FOR THE NETWORK DESIGN PROBLEM G. E. Cantarella Dept. of Civil Engineering University of Salerno E-mail: g.cantarella@unisa.it G. Pavone, A. Vitetta Dept. of Computer Science, Mathematics, Electronics

More information

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Eduardo Uchoa Túlio A.M. Toffolo Mauricio C. de Souza Alexandre X. Martins + Departamento

More information

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming Samuel Souza Brito and Haroldo Gambini Santos 1 Dep. de Computação, Universidade Federal de Ouro Preto - UFOP

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

A Benders decomposition approach for the robust shortest path problem with interval data

A Benders decomposition approach for the robust shortest path problem with interval data A Benders decomposition approach for the robust shortest path problem with interval data R. Montemanni, L.M. Gambardella Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA) Galleria 2,

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Graph Coloring via Constraint Programming-based Column Generation

Graph Coloring via Constraint Programming-based Column Generation Graph Coloring via Constraint Programming-based Column Generation Stefano Gualandi Federico Malucelli Dipartimento di Elettronica e Informatica, Politecnico di Milano Viale Ponzio 24/A, 20133, Milan, Italy

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

Metaheuristic Algorithms for Hybrid Flow-Shop Scheduling Problem with Multiprocessor Tasks

Metaheuristic Algorithms for Hybrid Flow-Shop Scheduling Problem with Multiprocessor Tasks MIC 2001-4th Metaheuristics International Conference 477 Metaheuristic Algorithms for Hybrid Flow-Shop Scheduling Problem with Multiprocessor Tasks Ceyda Oğuz Adam Janiak Maciej Lichtenstein Department

More information

Principles of Network Economics

Principles of Network Economics Hagen Bobzin Principles of Network Economics SPIN Springer s internal project number, if known unknown Monograph August 12, 2005 Springer Berlin Heidelberg New York Hong Kong London Milan Paris Tokyo Contents

More information

MODELING AND HEURISTIC APPROACHES FOR THE HUB COVERING PROBLEM OVER INCOMPLETE HUB NETWORKS

MODELING AND HEURISTIC APPROACHES FOR THE HUB COVERING PROBLEM OVER INCOMPLETE HUB NETWORKS MODELING AND HEURISTIC APPROACHES FOR THE HUB COVERING PROBLEM OVER INCOMPLETE HUB NETWORKS A THESIS SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND THE INSTITUTE OF ENGINEERING AND SCIENCE OF

More information

Reliable capacitated single allocation hub network design under hub failure: a scenario based approach

Reliable capacitated single allocation hub network design under hub failure: a scenario based approach Reliable capacitated single allocation hub network design under hub failure: a scenario based approach Zahra Booyavi Department of Industrial Engineering Science and Culture University Tehran, Iran sh.booyavi@gmail.com

More information

A NEW SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM

A NEW SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM A NEW SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM KARAGIANNIS PANAGIOTIS PAPARRIZOS KONSTANTINOS SAMARAS NIKOLAOS SIFALERAS ANGELO * Department of Applied Informatics, University of

More information

A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with Balancing Requirements

A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with Balancing Requirements Annals of Operations Research 122, 193 217, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. A Tabu Search with Slope Scaling for the Multicommodity Capacitated Location Problem with

More information

A Computational Study of Bi-directional Dynamic Programming for the Traveling Salesman Problem with Time Windows

A Computational Study of Bi-directional Dynamic Programming for the Traveling Salesman Problem with Time Windows A Computational Study of Bi-directional Dynamic Programming for the Traveling Salesman Problem with Time Windows Jing-Quan Li California PATH, University of California, Berkeley, Richmond, CA 94804, jingquan@path.berkeley.edu

More information

TRANSPORTATION AND ASSIGNMENT PROBLEMS

TRANSPORTATION AND ASSIGNMENT PROBLEMS TRANSPORTATION AND ASSIGNMENT PROBLEMS Transportation problem Example P&T Company produces canned peas. Peas are prepared at three canneries (Bellingham, Eugene and Albert Lea). Shipped by truck to four

More information

Reload Cost Trees and Network Design

Reload Cost Trees and Network Design Reload Cost Trees and Network Design Ioannis Gamvros, ILOG, Inc., 1080 Linda Vista Avenue, Mountain View, CA 94043, USA Luis Gouveia, Faculdade de Ciencias da Universidade de Lisboa, Portugal S. Raghavan,

More information

Exact approach to the tariff zones design problem in public transport

Exact approach to the tariff zones design problem in public transport Exact approach to the tariff zones design problem in public transport Michal Koháni 1 1 Introduction Abstract. An integrated transport system is the way how to provide transport service in the region by

More information

A Bi-directional Resource-bounded Dynamic Programming Approach for the Traveling Salesman Problem with Time Windows

A Bi-directional Resource-bounded Dynamic Programming Approach for the Traveling Salesman Problem with Time Windows Submitted manuscript A Bi-directional Resource-bounded Dynamic Programming Approach for the Traveling Salesman Problem with Time Windows Jing-Quan Li California PATH, University of California, Berkeley,

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

SPATIAL OPTIMIZATION METHODS

SPATIAL OPTIMIZATION METHODS DELMELLE E. (2010). SPATIAL OPTIMIZATION METHODS. IN: B. WHARF (ED). ENCYCLOPEDIA OF HUMAN GEOGRAPHY: 2657-2659. SPATIAL OPTIMIZATION METHODS Spatial optimization is concerned with maximizing or minimizing

More information

Variable Neighborhood Search for Solving the Balanced Location Problem

Variable Neighborhood Search for Solving the Balanced Location Problem TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Variable Neighborhood Search for Solving the Balanced Location Problem Jozef Kratica, Markus Leitner, Ivana Ljubić Forschungsbericht

More information

A Diversified Multi-Start Algorithm for Unconstrained Binary Quadratic Problems Leveraging the Graphics Processor Unit

A Diversified Multi-Start Algorithm for Unconstrained Binary Quadratic Problems Leveraging the Graphics Processor Unit A Diversified Multi-Start Algorithm for Unconstrained Binary Quadratic Problems Leveraging the Graphics Processor Unit Mark Lewis Missouri Western State University, Saint Joseph, Missouri 64507, USA mlewis14@missouriwestern.edu

More information

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Rita Macedo Cláudio Alves J. M. Valério de Carvalho Centro de Investigação Algoritmi, Universidade do Minho Escola de Engenharia, Universidade

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Optimal network flow allocation

Optimal network flow allocation Optimal network flow allocation EE384Y Project intermediate report Almir Mutapcic and Primoz Skraba Stanford University, Spring 2003-04 May 10, 2004 Contents 1 Introduction 2 2 Background 2 3 Problem statement

More information

Journal of Business & Economics Research November, 2009 Volume 7, Number 11

Journal of Business & Economics Research November, 2009 Volume 7, Number 11 Alternate Solutions Analysis For Transportation Problems Veena Adlakha, University of Baltimore, USA Krzysztof Kowalski, Connecticut Department of Transportation, USA ABSTRACT The constraint structure

More information

The Job-Shop Problem: Old and New Challenges

The Job-Shop Problem: Old and New Challenges Invited Speakers The Job-Shop Problem: Old and New Challenges Peter Brucker Universität Osnabrück, Albrechtstr. 28a, 49069 Osnabrück, Germany, pbrucker@uni-osnabrueck.de The job-shop problem is one of

More information

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems Journal of Scientific & Industrial Research ESWARAMURTHY: NEW ALGORITHM FOR ANALYZING PERFORMANCE OF NEIGHBORHOOD STRATEGIES 579 Vol. 67, August 2008, pp. 579-588 New algorithm for analyzing performance

More information

A tabu search approach for makespan minimization in a permutation flow shop scheduling problems

A tabu search approach for makespan minimization in a permutation flow shop scheduling problems A tabu search approach for makespan minimization in a permutation flow shop scheduling problems Sawat Pararach Department of Industrial Engineering, Faculty of Engineering, Thammasat University, Pathumthani

More information

LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM

LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM LOCAL SEARCH FOR THE MINIMUM FUNDAMENTAL CYCLE BASIS PROBLEM Abstract E.Amaldi, L.Liberti, N.Maculan, F.Maffioli DEI, Politecnico di Milano, I-20133 Milano amaldi,liberti,maculan,maffioli @elet.polimi.it

More information

Optimization Model for a Distribution System based on Location-Routing with Distance and forbidden route

Optimization Model for a Distribution System based on Location-Routing with Distance and forbidden route International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 3(March 2014), PP.32-40 Optimization Model for a Distribution System based on

More information

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints Sohaib Afifi 1, Duc-Cuong Dang 1,2, and Aziz Moukrim 1 1 Université de Technologie de Compiègne

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem

Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem Outline: Finish uncapacitated simplex method Negative cost cycle algorithm The max-flow problem Max-flow min-cut theorem Uncapacitated Networks: Basic primal and dual solutions Flow conservation constraints

More information

Multiple Depot Vehicle Routing Problems on Clustering Algorithms

Multiple Depot Vehicle Routing Problems on Clustering Algorithms Thai Journal of Mathematics : 205 216 Special Issue: Annual Meeting in Mathematics 2017 http://thaijmath.in.cmu.ac.th ISSN 1686-0209 Multiple Depot Vehicle Routing Problems on Clustering Algorithms Kanokon

More information

A COMPUTATIONAL STUDY OF THE CONSTRAINED MAXIMUM FLOW PROBLEM

A COMPUTATIONAL STUDY OF THE CONSTRAINED MAXIMUM FLOW PROBLEM COMPUTTIONL STUDY OF THE CONSTRINED MXIMUM FLOW PROBLEM Cenk Çalışkan, Woodbury School of Business, Utah Valley University, 800 W. University Pkwy, Orem, UT 84058, (801) 863-6487, cenk.caliskan@uvu.edu

More information

Efficient Edge-Swapping Heuristics for the Reload Cost Spanning Tree Problem

Efficient Edge-Swapping Heuristics for the Reload Cost Spanning Tree Problem Efficient Edge-Swapping Heuristics for the Reload Cost Spanning Tree Problem S. Raghavan and Mustafa Sahin Smith School of Business & Institute for Systems Research, University of Maryland, College Park,

More information

Vehicle Routing Heuristic Methods

Vehicle Routing Heuristic Methods DM87 SCHEDULING, TIMETABLING AND ROUTING Outline 1. Construction Heuristics for VRPTW Lecture 19 Vehicle Routing Heuristic Methods 2. Local Search 3. Metaheuristics Marco Chiarandini 4. Other Variants

More information

A NETWORK SIMPLEX ALGORITHM FOR SOLVING THE MINIMUM DISTRIBUTION COST PROBLEM. I-Lin Wang and Shiou-Jie Lin. (Communicated by Shu-Cherng Fang)

A NETWORK SIMPLEX ALGORITHM FOR SOLVING THE MINIMUM DISTRIBUTION COST PROBLEM. I-Lin Wang and Shiou-Jie Lin. (Communicated by Shu-Cherng Fang) JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2009.5.929 MANAGEMENT OPTIMIZATION Volume 5, Number 4, November 2009 pp. 929 950 A NETWORK SIMPLEX ALGORITHM FOR SOLVING THE MINIMUM DISTRIBUTION COST PROBLEM

More information

Arc Perturbation Algorithms for Optical Network Design

Arc Perturbation Algorithms for Optical Network Design Applied Mathematical Sciences, Vol. 1, 2007, no. 7, 301-310 Arc Perturbation Algorithms for Optical Network Design Zbigniew R. Bogdanowicz Armament Research, Development and Engineering Center Building

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd. da Granja. CEP São José dos Campos S.P.

Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd. da Granja. CEP São José dos Campos S.P. XXXIV THE MINIMIZATION OF TOOL SWITCHES PROBLEM AS A NETWORK FLOW PROBLEM WITH SIDE CONSTRAINTS Horacio Hideki Yanasse Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd.

More information

Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem

Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem Felipe Arenales Santos Alexandre C. B. Delbem Keywords Grouping Genetic Algorithm Timetabling Problem

More information

Recursive column generation for the Tactical Berth Allocation Problem

Recursive column generation for the Tactical Berth Allocation Problem Recursive column generation for the Tactical Berth Allocation Problem Ilaria Vacca 1 Matteo Salani 2 Michel Bierlaire 1 1 Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland 2 IDSIA, Lugano,

More information

Multiple-choice Vector Bin Packing: Arc-flow Formulation with Graph Compression

Multiple-choice Vector Bin Packing: Arc-flow Formulation with Graph Compression Multiple-choice Vector Bin Packing: Arc-flow Formulation with Graph Compression Filipe Brandão fdabrandao@dcc.fc.up.pt arxiv:1312.3836v1 [math.oc] 13 Dec 2013 João Pedro Pedroso pp@fc.up.pt Technical Report

More information

Integer Programming and Network Modeis

Integer Programming and Network Modeis H.A. Eiselt C.-L. Sandblom Integer Programming and Network Modeis With Contributions by K. Spielberg, E. Richards, B.T. Smith, G. Laporte, B.T. Boffey With 165 Figures and 43 Tables &m Springer CONTENTS

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

Hierarchical Survivable Network Design Problems

Hierarchical Survivable Network Design Problems Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 52 (2016) 229 236 www.elsevier.com/locate/endm Hierarchical Survivable Network Design Problems Inmaculada Rodríguez-Martín

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Exploring Lin Kernighan neighborhoods for the indexing problem

Exploring Lin Kernighan neighborhoods for the indexing problem INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD INDIA Exploring Lin Kernighan neighborhoods for the indexing problem Diptesh Ghosh W.P. No. 2016-02-13 February 2016 The main objective of the Working Paper series

More information

Constrained Minimum Spanning Tree Algorithms

Constrained Minimum Spanning Tree Algorithms December 8, 008 Introduction Graphs and MSTs revisited Minimum Spanning Tree Algorithms Algorithm of Kruskal Algorithm of Prim Constrained Minimum Spanning Trees Bounded Diameter Minimum Spanning Trees

More information

Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach

Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach Building Ride-sharing and Routing Engine for Autonomous Vehicles: A State-space-time Network Modeling Approach Xuesong Zhou (xzhou7@asu.edu) Associate professor, School of Sustainable Engineering and the

More information

An Ant Colony Optimization Algorithm to Solve the Minimum Cost Network Flow Problem with Concave Cost Functions

An Ant Colony Optimization Algorithm to Solve the Minimum Cost Network Flow Problem with Concave Cost Functions An Ant Colony Optimization Algorithm to Solve the Minimum Cost Network Flow Problem with Concave Cost Functions Marta S. R. Monteiro Faculdade de Economia and LIAAD-INESC Porto L.A., Universidade do Porto

More information

Optimization of Process Plant Layout Using a Quadratic Assignment Problem Model

Optimization of Process Plant Layout Using a Quadratic Assignment Problem Model Optimization of Process Plant Layout Using a Quadratic Assignment Problem Model Sérgio. Franceira, Sheila S. de Almeida, Reginaldo Guirardello 1 UICAMP, School of Chemical Engineering, 1 guira@feq.unicamp.br

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

of optimization problems. In this chapter, it is explained that what network design

of optimization problems. In this chapter, it is explained that what network design CHAPTER 2 Network Design Network design is one of the most important and most frequently encountered classes of optimization problems. In this chapter, it is explained that what network design is? The

More information

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS NABEEL AL-MILLI Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa'

More information

Construction Heuristics and Local Search Methods for VRP/VRPTW

Construction Heuristics and Local Search Methods for VRP/VRPTW DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 31 Construction Heuristics and Local Search Methods for VRP/VRPTW Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

Methods and Models for Combinatorial Optimization Modeling by Linear Programming

Methods and Models for Combinatorial Optimization Modeling by Linear Programming Methods and Models for Combinatorial Optimization Modeling by Linear Programming Luigi De Giovanni, Marco Di Summa 1 Linear programming models Linear programming models are a special class of mathematical

More information

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem Benoît Laurent 1,2 and Jin-Kao Hao 2 1 Perinfo SA, Strasbourg, France 2 LERIA, Université d Angers, Angers, France blaurent@perinfo.com,

More information

Mixed-Integer Optimization for the Combined capacitated Facility Location-Routing Problem

Mixed-Integer Optimization for the Combined capacitated Facility Location-Routing Problem Mixed-Integer Optimization for the Combined capacitated Facility Location-Routing Problem Dimitri Papadimitriou 1, Didier Colle 2, Piet Demeester 2 dimitri.papadimitriou@nokia.com, didier.colle@ugent.be,

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles S. Halim, L. Yoanita Department of Industrial Engineering, Petra Christian University, Surabaya, Indonesia (halim@petra.ac.id)

More information

Variable Neighborhood Search for the Dial-a-Ride Problem

Variable Neighborhood Search for the Dial-a-Ride Problem Variable Neighborhood Search for the Dial-a-Ride Problem Sophie N. Parragh, Karl F. Doerner, Richard F. Hartl Department of Business Administration, University of Vienna, Bruenner Strasse 72, 1210 Vienna,

More information

Course Introduction. Scheduling: Terminology and Classification

Course Introduction. Scheduling: Terminology and Classification Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 1 Course Introduction. Scheduling: Terminology and Classification 1. Course Introduction 2. Scheduling Problem Classification Marco Chiarandini

More information

Heuristic solution methods for the Fiber To The Home cabling problem

Heuristic solution methods for the Fiber To The Home cabling problem Lecture Notes in Management Science (2014) Vol. 6: 198 206 6 th International Conference on Applied Operational Research, Proceedings Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca

More information

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling

More information

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM

A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM A SWEEP BASED ALGORITHM FOR THE FLEET SIZE AND MIX VEHICLE ROUTING PROBLEM Jacques Renaud and Fayez F. Boctor Centre de recherche sur les technologies de l organisation réseau (CENTOR) & Faculté des sciences

More information

A Computational Study on the Number of. Iterations to Solve the Transportation Problem

A Computational Study on the Number of. Iterations to Solve the Transportation Problem Applied Mathematical Sciences, Vol. 8, 2014, no. 92, 4579-4583 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46435 A Computational Study on the Number of Iterations to Solve the Transportation

More information

A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology

A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology Carlos A. S. OLIVEIRA CAO Lab, Dept. of ISE, University of Florida Gainesville, FL 32611, USA David PAOLINI

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

A comparison of two new exact algorithms for the robust shortest path problem

A comparison of two new exact algorithms for the robust shortest path problem TRISTAN V: The Fifth Triennal Symposium on Transportation Analysis 1 A comparison of two new exact algorithms for the robust shortest path problem Roberto Montemanni Luca Maria Gambardella Alberto Donati

More information

Improved K-Means Algorithm for Capacitated Clustering Problem

Improved K-Means Algorithm for Capacitated Clustering Problem Improved K-Means Algorithm for Capacitated Clustering Problem S. GEETHA 1 G. POONTHALIR 2 P. T. VANATHI 3 PSG College of Technology Tamil Nadu India 1 geet_shan@yahoo.com 2 thalirkathir@rediffmail.com

More information

SOME GREEDY BASED ALGORITHMS FOR MULTI PERIODS DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM

SOME GREEDY BASED ALGORITHMS FOR MULTI PERIODS DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM SOME GREEDY BASED ALGORITHMS FOR MULTI PERIODS DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM Wamiliana 1, Faiz A. M. Elfaki 2, Mustofa Usman 1 and M. Azram 2 1 Department of Mathematics, Faculty of

More information

Branch and Bound Method for Scheduling Precedence Constrained Tasks on Parallel Identical Processors

Branch and Bound Method for Scheduling Precedence Constrained Tasks on Parallel Identical Processors , July 2-4, 2014, London, U.K. Branch and Bound Method for Scheduling Precedence Constrained Tasks on Parallel Identical Processors N.S.Grigoreva Abstract The multiprocessor scheduling problem is one of

More information

A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem

A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem Mario Ruthmair and Günther R. Raidl Institute of Computer Graphics and Algorithms Vienna University of Technology,

More information