# Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Size: px
Start display at page:

Download "Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009."

## Transcription

1 Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton of the problem. 2. Defne all the varables, ncludng nputs and outputs. 3. Provde an FFT soluton. 4. Analyze the run tme. 5. Gve 2 eamples, wth specfc values for the varables, showng each step of the algorthm. 6. Implement a software smulaton (any programmng language). a) user nputs values for the ntal varables (or read from a fle). b) soluton s prnted out. c) dscusson of the plausblty of the solutons (are they correct?). d) graphc dsplay (etra credt). 1. Concse descrpton of the problem. Polynomal: p ( = n general p( = a p( 1 n 1 = or = + a + a 2 a 2 + L+ a n 1 n 1 Horner s Rule: Gven coeffcents (a,a 1,a 2,,a n-1 ), defnng polynomal

2 p( n = 1 = a Gven, we can evaluate p( n O(n) tme usng the equaton p( = a + ( a + 1 ( a + 2 L + ( a + n 2 an 1) L)) Gven coeffcents (a,a 1,a 2,,a n-1 ) and (b,b 1,b 2,,b n-1 ) defnng two polynomals, p() and q(), and number, compute p(q(. Horner s rule doesn t help, snce p( q( n = 1 = c Where c = j= a b j j A straghtforward evaluaton would take O(n 2 ) tme. The magcal FFT wll do t n O(n log n) tme Gven a set of n ponts n the plane wth dstnct -coordnates, there s eactly one (n-1)-degree polynomal gong through all these ponts. Alternate approach to computng p(q(: Calculate p() on 2n -values,, 1,, 2n-1. Calculate q() on the same 2n values. Fnd the (2n-1)-degree polynomal that goes through the ponts {(,p( )q( )), ( 1,p( 1 )q( 1 )),, ( 2n-1,p( 2n-1 )q( 2n-1 ))}. Unfortunately, a straghtforward evaluaton would stll take O(n 2 ) tme, as we would need to apply an O(n)-tme Horner s Rule evaluaton to 2n dfferent ponts. The magcal FFT wll do t n O(n log n) tme, by pckng 2n ponts that are easy to evaluate. Cooley-Tukey FFT algorthm The Cooley-Tukey algorthm, named after J.W. Cooley and John Tukey, s the most common fast Fourer transform (FFT) algorthm. It re-epresses the dscrete Fourer transform (DFT) of an arbtrary composte sze N = N1N2 n terms of smaller DFTs of szes N1 and N2, recursvely, n order to reduce the computaton tme to O(N log N) for hghly-composte N (smooth numbers). Because the Cooley-Tukey algorthm breaks the DFT nto smaller DFTs, t can be combned arbtrarly wth any other algorthm for the DFT. The rad-2 DIT case A rad-2 decmaton-n-tme (DIT) FFT s the smplest and most common form of the Cooley-Tukey algorthm. Rad-2 DIT dvdes a DFT of sze N nto two nterleaved DFTs (hence the name "rad-2") of sze N/2 wth each recursve stage.

3 The DFT s defned by the formula: where k s an nteger rangng from to N 1. Rad-2 DIT frst computes the Fourer transforms of the even-ndeed numbers ( ) and of the odd-ndeed numbers ( ), and then combnes those two results to produce the Fourer transform of the whole sequence. Ths dea can then be performed recursvely to reducee the overall runtme to O(N log N). Ths smplfed form assumes that N s a power of two; snce the number of sample ponts N can usually be chosen freely by the applcaton, ths s often not an mportant restrcton. More eplctly, let us wrte M = N / 2 and denote the DFT of the even-ndeed numbers 2m by E j and the DFT of the odd-ndeed numbers 2m + 1 by O j (m =,...,M 1, j =,...,M 1). Then t follows: Here we have used the crtcal fact that E k + M = E k and O k + M = O k, so that these DFTs, n addton to havng only M sample ponts, need only be evaluated for M values of k. The orgnal DFT has thus been dvded nto two DFTs of sze N/2. Ths process s an eample of the general technque of dvde and conquer algorthms; n many tradtonal mplementatons, however, the eplct recurson s avoded, and nstead one traverses the computatonal tree n breadth-frst fashon. The above re-epresson of a sze-nn DFT as two sze-n/2 DFTs s sometmes called the Danelson-Lanczos lemma, snce the dentty was noted by those two. They appled ther lemma n a "backwards" recursve fashon, repeatedly doublng the DFT sze untl the transform spectrum converged. The Danelson- (possbly Lanczos work predated wdespreadd avalablty of computers and requred hand calculaton wth mechancal ads such as addng machnes); they reported a computaton tme of 14 mnutes for a sze-64 DFT operatng on real nputs to 3-5 sgnfcant dgts. Cooley and Tukey's 1965 paper reported a runnng tme of.2 mnutes for a sze-248 comple DFT on an IBM 794 (probably n 36-bt sngle precson, ~8 dgts). Rescalng the tme by the number of operatons, ths corresponds roughly to a speedup factor of around 8,. (14 mnutes for sze 64 may sound lke a long tme, but t corresponds to an average of at most 16 seconds per floatng-pont operaton, around 2% of whch are multplcatons...ths s a farly mpressve rate for a human beng to sustan for over two hours.

4 More generally, Cooley-Tukey algorthms recursvely re-epress a DFT of a composte sze N = N 1 N 2 as: 1. Perform N 1 DFTs of sze N 2. Multply by comple roots of unty called twddle factors. 2. Perform N 2 DFTs of sze N 1. Typcally, ether N 1 or N 2 s a small factor (not necessarly prme), called the rad (whch can dffer between stages of the recurson). If N 1 s the rad, t s called a decmaton n tme (DIT) algorthm, whereas f N 2 s the rad, t s decmaton n frequency (DIF, also called the Sande-Tukey algorthm). The verson presented above was a rad-2 DIT algorthm; n the fnal epresson, the phase multplyng the odd transform s the twddle factor, and the +/- combnaton (butterfly) of the even and odd transforms s a sze-2 DFT. (The rad's small DFT s sometmes known as a butterfly, so-called because of the shape of the dataflow dagram for the rad-2 case.) 2.Defne all the varables, ncludng nputs and outputs.3. Provde an FFT soluton.4. Analyze the run tme.5. Gve 2 eamples, wth specfc values for the varables, showng each step of the algorthm. Inputs: length N comple sequence. Or we can say compute the FFT of [], assumng ts length s a power of 2 outputs : y = fft( the followng mplementaton runs n O(N log N) tme Eample 1: N=4 fft of even terms Comple[] even = new Comple[N/2]; for (nt k = ; k < N/2; k++) { even[k] = [2*k]; } Comple[] q = fft(even);

5 fft of odd terms Comple[] odd = even; // reuse the array for (nt k = ; k < N/2; k++) { odd[k] = [2*k + 1]; } Comple[] r = fft(odd); combne Comple[] y = new Comple[N]; for (nt k = ; k < N/2; k++) { double kth = -2 * k * Math.PI / N; Comple wk = new Comple(Math.cos(kth), Math.sn(kth)); y[k] = q[k].plus(wk.tmes(r[k])); y[k + N/2] = q[k].mnus(wk.tmes(r[k])); Eample 2: For second eample we can take N=8 because ths algorthm works only for N s a power of two. 6. Implement a software smulaton (any programmng language).a) user nputs values for the ntal varables (or read from a fle).b) soluton s prnted out.c) dscusson of the plausblty of the solutons (are they correct?).d) graphc dsplay (etra credt). Please see java fles n the folder FFT on my web page. For N= Absoulte Mnmum = 1.E y = fft( Absoulte Mnmum = 1.E We can check our soluton by takng fft

6 z = fft(y) Absoulte Mnmum = 1.E References: webhome.csc.uvc.ca/~ruskey/classes/326/sldes/chpt1fft.ppt

### Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

### Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

### High level vs Low Level. What is a Computer Program? What does gcc do for you? Program = Instructions + Data. Basic Computer Organization

What s a Computer Program? Descrpton of algorthms and data structures to acheve a specfc ojectve Could e done n any language, even a natural language lke Englsh Programmng language: A Standard notaton

### Problem Set 3 Solutions

Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

### CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Qucksort Comparson Sortng Bound Steve Setz Wnter 2009 Qucksort Qucksort uses a dvde and conquer strategy, but does not requre the O(N) extra space that MergeSort does. Here s the

### Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

### Programming in Fortran 90 : 2017/2018

Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

### CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Qucksort Comparson Sortng Bound Bran Curless Sprng 2008 Announcements (5/14/08) Homework due at begnnng of class on Frday. Secton tomorrow: Graded homeworks returned More dscusson

### Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

### CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

### A Binarization Algorithm specialized on Document Images and Photos

A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

### CE 221 Data Structures and Algorithms

CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

### Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

### CMPS 10 Introduction to Computer Science Lecture Notes

CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

### Mathematics 256 a course in differential equations for engineering students

Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the

### Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

### Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

### Machine Learning: Algorithms and Applications

14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

### GSLM Operations Research II Fall 13/14

GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

### Array transposition in CUDA shared memory

Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

### Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions

Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) In-place Merge Sort T(n) = Θ(n lg(n)) Not n-place Selecton Sort (from homework) T(n) = Θ(n 2 ) In-place

### S1 Note. Basis functions.

S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

### For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

### Sorting. Sorting. Why Sort? Consistent Ordering

Sortng CSE 6 Data Structures Unt 15 Readng: Sectons.1-. Bubble and Insert sort,.5 Heap sort, Secton..6 Radx sort, Secton.6 Mergesort, Secton. Qucksort, Secton.8 Lower bound Sortng Input an array A of data

### Parallel matrix-vector multiplication

Appendx A Parallel matrx-vector multplcaton The reduced transton matrx of the three-dmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more

### Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

### Optimization Methods: Integer Programming Integer Linear Programming 1. Module 7 Lecture Notes 1. Integer Linear Programming

Optzaton Methods: Integer Prograng Integer Lnear Prograng Module Lecture Notes Integer Lnear Prograng Introducton In all the prevous lectures n lnear prograng dscussed so far, the desgn varables consdered

### The Codesign Challenge

ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

### Algorithm To Convert A Decimal To A Fraction

Algorthm To Convert A ecmal To A Fracton by John Kennedy Mathematcs epartment Santa Monca College 1900 Pco Blvd. Santa Monca, CA 90405 jrkennedy6@gmal.com Except for ths comment explanng that t s blank

### CHAPTER 2 DECOMPOSITION OF GRAPHS

CHAPTER DECOMPOSITION OF GRAPHS. INTRODUCTION A graph H s called a Supersubdvson of a graph G f H s obtaned from G by replacng every edge uv of G by a bpartte graph,m (m may vary for each edge by dentfyng

### CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman)

CS: Algorthms and Data Structures Prorty Queues and Heaps Alan J. Hu (Borrowng sldes from Steve Wolfman) Learnng Goals After ths unt, you should be able to: Provde examples of approprate applcatons for

### CHAPTER 10: ALGORITHM DESIGN TECHNIQUES

CHAPTER 10: ALGORITHM DESIGN TECHNIQUES So far, we have been concerned wth the effcent mplementaton of algorthms. We have seen that when an algorthm s gven, the actual data structures need not be specfed.

### Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach

Angle Estmaton and Correcton of Hand Wrtten, Textual and Large areas of Non-Textual Document Images: A Novel Approach D.R.Ramesh Babu Pyush M Kumat Mahesh D Dhannawat PES Insttute of Technology Research

Condtonal Speculatve Decmal Addton Alvaro Vazquez and Elsardo Antelo Dep. of Electronc and Computer Engneerng Unv. of Santago de Compostela, Span Ths work was supported n part by Xunta de Galca under grant

### Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array

Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then

### Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some materal adapted from Mohamed Youns, UMBC CMSC 611 Spr 2003 course sldes Some materal adapted from Hennessy & Patterson / 2003 Elsever Scence Performance = 1 Executon tme Speedup = Performance (B)

### Parallel Inverse Halftoning by Look-Up Table (LUT) Partitioning

Parallel Inverse Halftonng by Look-Up Table (LUT) Parttonng Umar F. Sddq and Sadq M. Sat umar@ccse.kfupm.edu.sa, sadq@kfupm.edu.sa KFUPM Box: Department of Computer Engneerng, Kng Fahd Unversty of Petroleum

### News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example

Unversty of Brtsh Columba CPSC, Intro to Computaton Jan-Apr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt

### Exercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005

Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed

### 6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

### The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

//00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

### Data Representation in Digital Design, a Single Conversion Equation and a Formal Languages Approach

Data Representaton n Dgtal Desgn, a Sngle Converson Equaton and a Formal Languages Approach Hassan Farhat Unversty of Nebraska at Omaha Abstract- In the study of data representaton n dgtal desgn and computer

### Computer models of motion: Iterative calculations

Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum

### ELEC 377 Operating Systems. Week 6 Class 3

ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

### Review of approximation techniques

CHAPTER 2 Revew of appromaton technques 2. Introducton Optmzaton problems n engneerng desgn are characterzed by the followng assocated features: the objectve functon and constrants are mplct functons evaluated

### NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics

Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson

### AP PHYSICS B 2008 SCORING GUIDELINES

AP PHYSICS B 2008 SCORING GUIDELINES General Notes About 2008 AP Physcs Scorng Gudelnes 1. The solutons contan the most common method of solvng the free-response questons and the allocaton of ponts for

### Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process

### Introduction to Geometrical Optics - a 2D ray tracing Excel model for spherical mirrors - Part 2

Introducton to Geometrcal Optcs - a D ra tracng Ecel model for sphercal mrrors - Part b George ungu - Ths s a tutoral eplanng the creaton of an eact D ra tracng model for both sphercal concave and sphercal

### Intro. Iterators. 1. Access

Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy

### AMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain

AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versons of Jacob teraton Gauss-Sedel and SOR teratve methods Next week: More MPI Debuggng and totalvew GPU computng Read: Class notes and references

### Hermite Splines in Lie Groups as Products of Geodesics

Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

### R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

### F Geometric Mean Graphs

Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 2 (December 2015), pp. 937-952 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) F Geometrc Mean Graphs A.

### 9. BASIC programming: Control and Repetition

Am: In ths lesson, you wll learn: H. 9. BASIC programmng: Control and Repetton Scenaro: Moz s showng how some nterestng patterns can be generated usng math. Jyot [after seeng the nterestng graphcs]: Usng

### 2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements

Module 3: Element Propertes Lecture : Lagrange and Serendpty Elements 5 In last lecture note, the nterpolaton functons are derved on the bass of assumed polynomal from Pascal s trangle for the fled varable.

### An Optimal Algorithm for Prufer Codes *

J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

### Classification / Regression Support Vector Machines

Classfcaton / Regresson Support Vector Machnes Jeff Howbert Introducton to Machne Learnng Wnter 04 Topcs SVM classfers for lnearly separable classes SVM classfers for non-lnearly separable classes SVM

### ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE

Yordzhev K., Kostadnova H. Інформаційні технології в освіті ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Some aspects of programmng educaton

### Specifications in 2001

Specfcatons n 200 MISTY (updated : May 3, 2002) September 27, 200 Mtsubsh Electrc Corporaton Block Cpher Algorthm MISTY Ths document shows a complete descrpton of encrypton algorthm MISTY, whch are secret-key

### User Authentication Based On Behavioral Mouse Dynamics Biometrics

User Authentcaton Based On Behavoral Mouse Dynamcs Bometrcs Chee-Hyung Yoon Danel Donghyun Km Department of Computer Scence Department of Computer Scence Stanford Unversty Stanford Unversty Stanford, CA

### Machine Learning 9. week

Machne Learnng 9. week Mappng Concept Radal Bass Functons (RBF) RBF Networks 1 Mappng It s probably the best scenaro for the classfcaton of two dataset s to separate them lnearly. As you see n the below

### Smoothing Spline ANOVA for variable screening

Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

### On Some Entertaining Applications of the Concept of Set in Computer Science Course

On Some Entertanng Applcatons of the Concept of Set n Computer Scence Course Krasmr Yordzhev *, Hrstna Kostadnova ** * Assocate Professor Krasmr Yordzhev, Ph.D., Faculty of Mathematcs and Natural Scences,

### Improving Low Density Parity Check Codes Over the Erasure Channel. The Nelder Mead Downhill Simplex Method. Scott Stransky

Improvng Low Densty Party Check Codes Over the Erasure Channel The Nelder Mead Downhll Smplex Method Scott Stransky Programmng n conjuncton wth: Bors Cukalovc 18.413 Fnal Project Sprng 2004 Page 1 Abstract

### CS1100 Introduction to Programming

Factoral (n) Recursve Program fact(n) = n*fact(n-) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact

### A Fast Visual Tracking Algorithm Based on Circle Pixels Matching

A Fast Vsual Trackng Algorthm Based on Crcle Pxels Matchng Zhqang Hou hou_zhq@sohu.com Chongzhao Han czhan@mal.xjtu.edu.cn Ln Zheng Abstract: A fast vsual trackng algorthm based on crcle pxels matchng

### Motivation. EE 457 Unit 4. Throughput vs. Latency. Performance Depends on View Point?! Computer System Performance. An individual user wants to:

4.1 4.2 Motvaton EE 457 Unt 4 Computer System Performance An ndvdual user wants to: Mnmze sngle program executon tme A datacenter owner wants to: Maxmze number of Mnmze ( ) http://e-tellgentnternetmarketng.com/webste/frustrated-computer-user-2/

### Cluster Analysis of Electrical Behavior

Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

### K-means and Hierarchical Clustering

Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

### Solving Route Planning Using Euler Path Transform

Solvng Route Plannng Usng Euler Path ransform Y-Chong Zeng Insttute of Informaton Scence Academa Snca awan ychongzeng@s.snca.edu.tw Abstract hs paper presents a method to solve route plannng problem n

### A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

Proceedngs of the Wnter Smulaton Conference M E Kuhl, N M Steger, F B Armstrong, and J A Jones, eds A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Mark W Brantley Chun-Hung

### Module Management Tool in Software Development Organizations

Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

### MATHEMATICS FORM ONE SCHEME OF WORK 2004

MATHEMATICS FORM ONE SCHEME OF WORK 2004 WEEK TOPICS/SUBTOPICS LEARNING OBJECTIVES LEARNING OUTCOMES VALUES CREATIVE & CRITICAL THINKING 1 WHOLE NUMBER Students wll be able to: GENERICS 1 1.1 Concept of

### Floating-Point Division Algorithms for an x86 Microprocessor with a Rectangular Multiplier

Floatng-Pont Dvson Algorthms for an x86 Mcroprocessor wth a Rectangular Multpler Mchael J. Schulte Dmtr Tan Carl E. Lemonds Unversty of Wsconsn Advanced Mcro Devces Advanced Mcro Devces Schulte@engr.wsc.edu

### Solutions to Programming Assignment Five Interpolation and Numerical Differentiation

College of Engneerng and Coputer Scence Mechancal Engneerng Departent Mechancal Engneerng 309 Nuercal Analyss of Engneerng Systes Sprng 04 Nuber: 537 Instructor: Larry Caretto Solutons to Prograng Assgnent

### Notes on Organizing Java Code: Packages, Visibility, and Scope

Notes on Organzng Java Code: Packages, Vsblty, and Scope CS 112 Wayne Snyder Java programmng n large measure s a process of defnng enttes (.e., packages, classes, methods, or felds) by name and then usng

### A SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES

A SYSOLIC APPROACH O LOOP PARIIONING AND MAPPING INO FIXED SIZE DISRIBUED MEMORY ARCHIECURES Ioanns Drosts, Nektaros Kozrs, George Papakonstantnou and Panayots sanakas Natonal echncal Unversty of Athens

### Using Delayed Addition Techniques to Accelerate Integer and Floating-Point Calculations in Configurable Hardware

Draft submtted for publcaton. Please do not dstrbute Usng Delayed Addton echnques to Accelerate Integer and Floatng-Pont Calculatons n Confgurable Hardware Zhen Luo, Nonmember and Margaret Martonos, Member,

### Wishing you all a Total Quality New Year!

Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

### Optimizing Document Scoring for Query Retrieval

Optmzng Document Scorng for Query Retreval Brent Ellwen baellwe@cs.stanford.edu Abstract The goal of ths project was to automate the process of tunng a document query engne. Specfcally, I used machne learnng

### Outline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014

Mdterm Revew March 4, 4 Mdterm Revew Larry Caretto Mechancal Engneerng 9 Numercal Analyss of Engneerng Systems March 4, 4 Outlne VBA and MATLAB codng Varable types Control structures (Loopng and Choce)

### Hierarchical clustering for gene expression data analysis

Herarchcal clusterng for gene expresson data analyss Gorgo Valentn e-mal: valentn@ds.unm.t Clusterng of Mcroarray Data. Clusterng of gene expresson profles (rows) => dscovery of co-regulated and functonally

### Lecture 3: Computer Arithmetic: Multiplication and Division

8-447 Lecture 3: Computer Arthmetc: Multplcaton and Dvson James C. Hoe Dept of ECE, CMU January 26, 29 S 9 L3- Announcements: Handout survey due Lab partner?? Read P&H Ch 3 Read IEEE 754-985 Handouts:

### A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

A Fast Content-Based Multmeda Retreval Technque Usng Compressed Data Borko Furht and Pornvt Saksobhavvat NSF Multmeda Laboratory Florda Atlantc Unversty, Boca Raton, Florda 3343 ABSTRACT In ths paper,

### Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort

Sortng: The Bg Pcture Gven n comparable elements n an array, sort them n an ncreasng (or decreasng) order. Smple algorthms: O(n ) Inserton sort Selecton sort Bubble sort Shell sort Fancer algorthms: O(n

### Random Kernel Perceptron on ATTiny2313 Microcontroller

Random Kernel Perceptron on ATTny233 Mcrocontroller Nemanja Djurc Department of Computer and Informaton Scences, Temple Unversty Phladelpha, PA 922, USA nemanja.djurc@temple.edu Slobodan Vucetc Department

### Optimal Workload-based Weighted Wavelet Synopses

Optmal Workload-based Weghted Wavelet Synopses Yoss Matas School of Computer Scence Tel Avv Unversty Tel Avv 69978, Israel matas@tau.ac.l Danel Urel School of Computer Scence Tel Avv Unversty Tel Avv 69978,

### Sorting and Algorithm Analysis

Unt 7 Sortng and Algorthm Analyss Computer Scence S-111 Harvard Unversty Davd G. Sullvan, Ph.D. Sortng an Array of Integers 0 1 2 n-2 n-1 arr 15 7 36 40 12 Ground rules: sort the values n ncreasng order

### Priority queues and heaps Professors Clark F. Olson and Carol Zander

Prorty queues and eaps Professors Clark F. Olson and Carol Zander Prorty queues A common abstract data type (ADT) n computer scence s te prorty queue. As you mgt expect from te name, eac tem n te prorty

### UNIT 2 : INEQUALITIES AND CONVEX SETS

UNT 2 : NEQUALTES AND CONVEX SETS ' Structure 2. ntroducton Objectves, nequaltes and ther Graphs Convex Sets and ther Geometry Noton of Convex Sets Extreme Ponts of Convex Set Hyper Planes and Half Spaces

### 2D Raster Graphics. Integer grid Sequential (left-right, top-down) scan. Computer Graphics

2D Graphcs 2D Raster Graphcs Integer grd Sequental (left-rght, top-down scan j Lne drawng A ver mportant operaton used frequentl, block dagrams, bar charts, engneerng drawng, archtecture plans, etc. curves

### Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

### Solving two-person zero-sum game by Matlab

Appled Mechancs and Materals Onlne: 2011-02-02 ISSN: 1662-7482, Vols. 50-51, pp 262-265 do:10.4028/www.scentfc.net/amm.50-51.262 2011 Trans Tech Publcatons, Swtzerland Solvng two-person zero-sum game by

### A mathematical programming approach to the analysis, design and scheduling of offshore oilfields

17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 A mathematcal programmng approach to the analyss, desgn and

### Accounting for the Use of Different Length Scale Factors in x, y and z Directions

1 Accountng for the Use of Dfferent Length Scale Factors n x, y and z Drectons Taha Soch (taha.soch@kcl.ac.uk) Imagng Scences & Bomedcal Engneerng, Kng s College London, The Rayne Insttute, St Thomas Hosptal,

### Lecture 5: Multilayer Perceptrons

Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

### USING GRAPHING SKILLS

Name: BOLOGY: Date: _ Class: USNG GRAPHNG SKLLS NTRODUCTON: Recorded data can be plotted on a graph. A graph s a pctoral representaton of nformaton recorded n a data table. t s used to show a relatonshp