It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

Size: px
Start display at page:

Download "It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements"

Transcription

1 It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008

2 Outline Hyperplane Arrangements Counting Regions The Intersection Poset Finite Field Method

3 Hyperplane Arrangements Hyperplane Arrangements Begin with R n = {(x 1, x 2,..., x n ) : x i R}. An affine hyperplane is the set of points in R n satisfying an equation of the form a 1 x a n x n = b. A hyperplane arrangement is simply a collection of affine hyperplanes.

4 Hyperplane Arrangements A Hyperplane Arrangement An arrangement of four lines in the plane

5 Hyperplane Arrangements Another Hyperplane Arrangement An arrangement of three planes in three space

6 Counting Regions Regions A region of the arrangement A is a connected component of the complement R n H A H Regions can be bounded or unbounded. The total number of regions is r(a), and the number of bounded regions is b(a).

7 Counting Regions Region Counting r(a) = 10 b(a) = 2 (shaded)

8 Counting Regions Deletion and Restriction Is there a better way to count regions? Yes! Definition Let A be an arrangement and H A a hyperplane. A = A\H is called the deleted arrangement. A = {K H : K A } is called the restricted arrangement. (A, A, A ) is called a triple of arrangements.

9 Counting Regions A Triple (A, A, A ) of Arrangements A and H A A

10 Counting Regions Region Counting Recurrence Theorem (Zaslavsky, 1975) r(a) = r(a ) + r(a )

11 Counting Regions Proof by Example (Don t try this at home!) A and H r(a) = 11 = A r(a ) = 7 + A r(a ) = 4

12 Counting Regions Arrangements in General Position Let s apply this result. An arrangement A is in general position if you can move the hyperplanes slightly and not change the number of regions.

13 Counting Regions Two Arrangements in general position not in general position

14 Counting Regions Counting Regions of General Position Line Arrangements Start with an arrangement A of k lines in general position in the plane, and choose a particular line H. By hypothesis, H meets A in k 1 points, which divide H into k regions. So r(a ) = k. Hence r(a) = r(a ) + k, where A contains k 1 lines. By continuing to delete lines in this way, we get r(a) = r( ) (k 1) + k. When no lines are present there is one region, so r( ) = 1. Hence, for a general position line arrangement we have r(a) = 1 + k i = 1 + i=1 k(k + 1) 2 = 1 + k + ( ) k. 2

15 Counting Regions Counting Regions of a General Position Line Arrangement r(a) = 1 + k + ( ) k 2 = ( ) 4 2 = 11

16 The Intersection Poset The Number of Regions in an Arbitrary Arrangement We can use the recurrence (and induction) to show that ( ) ( ) ( ) k k k r(a) = 1 + k n for k hyperplanes in general position in n dimensional space. (Ludwig Schläfli, 1901) But what if the hyperplanes are not in general position? Zaslavsky developed a powerful tool to compute r(a) in general. To describe this, we must take a long detour...

17 The Intersection Poset Partially Ordered Sets A partially ordered set (poset) is a set P and a relation satisfying the following axioms (for all x, y, and z in P ): 1. (reflexivity) x x. 2. (antisymmetry) x y and y x implies x = y. 3. (transitivity) x y and y z implies x z. 4. Posets are represented by their (Hasse) diagrams.

18 The Intersection Poset Hasse Diagrams Some posets

19 The Intersection Poset The Intersection Poset of an Arrangement The intersection poset L(A) of the arrangement A has as its elements all the intersections of all the hyperplanes. It is ordered (for good reason) by reverse inclusion, so A B A B. The minimum element is the ambient space R n.

20 The Intersection Poset An Arrangement and Its Intersection Poset A labeled arrangement A R 2 Its intersection poset L(A)

21 The Intersection Poset The Möbius Function for Posets The (closed) interval [x, y] of a poset is the set of all points between x and y, including endpoints: [x, y] = {z : x z y}. The Möbius function µ(x, y) is defined (recursively) on the interval [x, y] by the two properties: 1. µ(x, x) = x < y z [x,y] µ(x, z) = 0

22 The Intersection Poset Some Möbius Function Values The values of the Möbius functions µ(ˆ0, x)

23 The Intersection Poset The Characteristic Polynomial We define the characteristic polynomial associated to the arrangement A by. χ(a, q) = x L(A) µ(ˆ0, x)q dim(x)

24 The Intersection Poset The Characteristic Polynomial of an Arrangement χ(a, q) = x L(A) µ(ˆ0, x)q dim(x) = q 2 4q + 5.

25 The Intersection Poset Zaslavsky s Theorem Theorem (Zaslavsky, 1975) With the definitions above r(a) = µ(ˆ0, x) = χ(a, 1) b(a) = x L(A) x L(A) µ(ˆ0, x) = χ(a, 1)

26 The Intersection Poset Zaslavsky s Theorem continued Idea of Proof. One can show that, for any triple (A, A, A ) of arrangements, χ(a, q) = χ(a, q) χ(a, q), from which it follows that χ(a, 1) and r(a) satisfy the same recurrence. As they agree on the empty set, the claim follows. A similar argument works for b(a).

27 The Intersection Poset Counting Regions via Zaslavsky s Theorem χ(a, q) = q 2 4q r(a) = χ(a, 1) = 10 b(a) = χ(a, 1) = 2

28 Finite Field Method Finite Field Method Recall that the defining equation of a hyperplane can be written a 1 x 1 + a n x n = b for some real numbers {a 1, a 2,..., a n, b}. In many cases of interest the numbers a 1, a 2,..., a n, b are integers. When this holds there is a particularly nice way to compute the characteristic polynomial. For any positive integer q let A q denote the hyperplane arrangement A with defining equations reduced mod q. Then we have the following result.

29 Finite Field Method The Characteristic Polynomial for Integral Arrangements Theorem (Crapo and Rota (1971), Orlik and Terao (1992), Athanasiadis (1996), Björner and Ekedahl (1996)) For q a sufficiently large prime χ(a, q) = # F n q H A q H where F n q denotes the vector space of dimension n over the finite field with q elements.

30 Finite Field Method Remarks Identifying F n q with {0, 1,..., q 1} n = [0, q 1] n, χ(a, q) is the number of points in [0, q 1] n that do not satisfy modulo q the defining equations of any of the hyperplanes in A. We need large q to avoid lowering the rank of the defining matrix, but as both sides are polynomials in q, the two sides will agree for all q.

31 Finite Field Method Reflection Arrangements Consider the following families of arrangements: A n = {x i x j = 0 1 i j n} D n = A n {x i + x j = 0 1 i j n} B n = D n {x i = 0 1 i n} These are examples of reflection arrangements associated to finite Coxeter groups of types A n 1, D n, and B n, respectively.

32 Finite Field Method Computing the Characteristic Polynomial I What is χ(a n )? According to the finite field method, we want the number of points in [0, q 1] n satisfying x i x j for all 1 i j n. This is the same thing as asking for vectors (x 1, x 2,..., x n ) all of whose entries are distinct mod q. Well, we can pick x 1 in q ways, then x 2 in q 1 ways, and so on. Thus χ(a n, q) = q(q 1)(q 2) (q n + 1). It follows that r(a n ) = n! (and b(a n ) = 0).

33 Finite Field Method Computing the Characteristic Polynomial II What is χ(b n )? Now we want to count the points satisfying x i x j, x i x j, and x i 0. Since we do not allow 0, there are only q 1 (nonzero) choices for the first entry, q 3 nonzero choices for the second entry (because we must avoid the first entry and its negative), etc.. Thus χ(b n, q) = (q 1)(q 3) (q 2n + 1). It follows that r(b n ) = 2 n n! (and b(b n ) = 0).

34 Finite Field Method The Catalan Arrangement C n = {x i x j = 1, 0, +1 1 i j n} C 3 (projected)

35 Finite Field Method The Catalan Arrangement Using the finite field method you can show that χ(c n, q) = q(q n 1)(q n 2) (q 2n + 1) Hence where r(c n ) = n!c n and b(c n ) = n!c n 1 is the n th Catalan number. C n = 1 n + 1 ( ) 2n As of April 1, 2008, Richard Stanley has listed 164 combinatorial interpretations of C n on his website. n

36 Finite Field Method Fundamental Open Question When does the characteristic polynomial factor completely over the integers?

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs MIT PRIMES Conference Nicholas Guo Mentor: Guangyi Yue May 21, 2016 Nicholas Guo (Mentor: Guangyi Yue) PRIMES Presentation

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

On Valuations, the Characteristic Polynomial, and Complex Subspace Arrangements

On Valuations, the Characteristic Polynomial, and Complex Subspace Arrangements Advances in Mathematics 134, 3242 (1998) Article No. AI971693 On Valuations, the Characteristic Polynomial, and Complex Subspace Arrangements Richard Ehrenborg and Margaret A. Readdy Department of Mathematics,

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms:

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms: Math 3181 Name: Dr. Franz Rothe January 30, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Homework 1 Definition

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

The Dowling Transform of Subspace Arrangements

The Dowling Transform of Subspace Arrangements Journal of Combinatorial Theory, Series A 91, 322333 (2000) doi:10.1006jcta.2000.3098, available online at http:www.idealibrary.com on The Dowling Transform of Subspace Arrangements Richard Ehrenborg Department

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Exploring Hyperplane Arrangements and their Regions

Exploring Hyperplane Arrangements and their Regions Exploring Hyperplane Arrangements and their Regions Jonathan Haapala Abstract This paper studies the Linial, Coxeter, Shi, and Nil hyperplane arrangements and explores ideas of how to count their regions.

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA Communications in Algebra, 34: 1049 1053, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500442005 STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M.

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

Ying Gao. May 18th, rd Annual PRIMES Conference. Depths of Posets Ordered by Refinement. Ying Gao. Mentored by Sergei Bernstein.

Ying Gao. May 18th, rd Annual PRIMES Conference. Depths of Posets Ordered by Refinement. Ying Gao. Mentored by Sergei Bernstein. of of 3rd Annual PRIMES Conference May 18th, 2013 of Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation. of Partially-ordered sets, or posets, are

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

The important function we will work with is the omega map ω, which we now describe.

The important function we will work with is the omega map ω, which we now describe. 20 MARGARET A. READDY 3. Lecture III: Hyperplane arrangements & zonotopes; Inequalities: a first look 3.1. Zonotopes. Recall that a zonotope Z can be described as the Minkowski sum of line segments: Z

More information

Topological properties of convex sets

Topological properties of convex sets Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 5: Topological properties of convex sets 5.1 Interior and closure of convex sets Let

More information

4 Fractional Dimension of Posets from Trees

4 Fractional Dimension of Posets from Trees 57 4 Fractional Dimension of Posets from Trees In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets We start with a few simple definitions to develop the language

More information

Figure 1: Two polygonal loops

Figure 1: Two polygonal loops Math 1410: The Polygonal Jordan Curve Theorem: The purpose of these notes is to prove the polygonal Jordan Curve Theorem, which says that the complement of an embedded polygonal loop in the plane has exactly

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

Solutions to Some Examination Problems MATH 300 Monday 25 April 2016

Solutions to Some Examination Problems MATH 300 Monday 25 April 2016 Name: s to Some Examination Problems MATH 300 Monday 25 April 2016 Do each of the following. (a) Let [0, 1] denote the unit interval that is the set of all real numbers r that satisfy the contraints that

More information

Lecture 5: More Examples/Applications of Quasirandom Graphs

Lecture 5: More Examples/Applications of Quasirandom Graphs Random and Quasirandom Graphs Instructor: Padraic Bartlett Lecture 5: More Examples/Applications of Quasirandom Graphs Week 4 Mathcamp 2012 In our last class, we saw that the Paley graphs were an example

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

4 Generating functions in two variables

4 Generating functions in two variables 4 Generating functions in two variables (Wilf, sections.5.6 and 3.4 3.7) Definition. Let a(n, m) (n, m 0) be a function of two integer variables. The 2-variable generating function of a(n, m) is F (x,

More information

It is important that you show your work. There are 134 points available on this test.

It is important that you show your work. There are 134 points available on this test. Math 1165 Discrete Math Test April 4, 001 Your name It is important that you show your work There are 134 points available on this test 1 (10 points) Show how to tile the punctured chess boards below with

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

FACE ENUMERATION FOR LINE ARRANGEMENTS IN A 2-TORUS

FACE ENUMERATION FOR LINE ARRANGEMENTS IN A 2-TORUS Indian J. Pure Appl. Math., 48(3): 345-362, September 2017 c Indian National Science Academy DOI: 10.1007/s13226-017-0234-7 FACE ENUMERATION FOR LINE ARRANGEMENTS IN A 2-TORUS Karthik Chandrasekhar and

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields?

Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields? Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields? General Theme There exist strong theorems for matroids representable over finite fields, but it all turns

More information

Projection Volumes of Hyperplane Arrangements

Projection Volumes of Hyperplane Arrangements Discrete Comput Geom (2011) 46:417 426 DOI 10.1007/s00454-011-9363-7 Projection Volumes of Hyperplane Arrangements Caroline J. Klivans Ed Swartz Received: 11 February 2010 / Revised: 25 April 2011 / Accepted:

More information

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014 Writing proofs Misha Lavrov ARML Practice 3/2/2014 Warm-up / Review 1 (From my research) If x n = 2 1 x n 1 for n 2, solve for x n in terms of x 1. (For a more concrete problem, set x 1 = 2.) 2 (From this

More information

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides?

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides? Coloring Radhika Gupta 1 Coloring of A N Let A N be the arc graph of a polygonal disc with N sides, N > 4 Problem 1 What is the chromatic number of the arc graph of a polygonal disc of N sides? Or we would

More information

William Linz 1 Department of Mathematics, Texas A&M University, College Station, Texas

William Linz 1 Department of Mathematics, Texas A&M University, College Station, Texas #A59 INTEGERS 16 (016) r-completeness OF SEQUENCES OF POSITIVE INTEGERS William Linz 1 Department of Mathematics, Texas A&M University, College Station, Texas willdomath@tamu.edu Edna Jones Department

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

Classification of Ehrhart quasi-polynomials of half-integral polygons

Classification of Ehrhart quasi-polynomials of half-integral polygons Classification of Ehrhart quasi-polynomials of half-integral polygons A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Cyclic base orders of matroids

Cyclic base orders of matroids Cyclic base orders of matroids Doug Wiedemann May 9, 2006 Abstract This is a typewritten version, with many corrections, of a handwritten note, August 1984, for a course taught by Jack Edmonds. The purpose

More information

36 Modular Arithmetic

36 Modular Arithmetic 36 Modular Arithmetic Tom Lewis Fall Term 2010 Tom Lewis () 36 Modular Arithmetic Fall Term 2010 1 / 10 Outline 1 The set Z n 2 Addition and multiplication 3 Modular additive inverse 4 Modular multiplicative

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs

A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs A Bijection from Shi Arrangement Regions to Parking Functions via Mixed Graphs Michael Dairyko Pomona College Schuyler Veeneman San Francisco State University July 28, 2012 Claudia Rodriguez Arizona State

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Math 102A Hw 3 P a (2 points)

Math 102A Hw 3 P a (2 points) Math 102 Hw 3 P.93 12 a (2 points) If any pair of these lines are equal, the conclusion is immediate, so assume that we have three distinct lines such that l m and m n. Suppose, on the contrary, that l

More information

On the Number of Tilings of a Square by Rectangles

On the Number of Tilings of a Square by Rectangles University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2012 On the Number of Tilings

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem Chapter 8 Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem 8.1 Shellings The notion of shellability is motivated by the desire to give an inductive

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

AN ALGORITHM FOR DERIVING CHARACTERISTIC POLYNOMIALS OF HYPERPLANE ARRANGEMENTS

AN ALGORITHM FOR DERIVING CHARACTERISTIC POLYNOMIALS OF HYPERPLANE ARRANGEMENTS AN ALGORITHM FOR DERIVING CHARACTERISTIC POLYNOMIALS OF HYPERPLANE ARRANGEMENTS A thesis presented to the faculty of San Francisco State University In partial fulfilment of The requirements for The degree

More information

Punctured Torus Groups

Punctured Torus Groups Punctured Torus Groups Talk by Yair Minsky August, 7 One of the simplest classes of examples of Kleinian surface groups is given by punctured torus groups. We define a punctured torus group to be a discrete

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

Geometric and Combinatorial Weighted Voting: Some Open Problems

Geometric and Combinatorial Weighted Voting: Some Open Problems Geometric and Combinatorial Weighted Voting: Some Open Problems Sarah K. Mason and R. Jason Parsley Winston Salem, NC Encuentro Colombiano de Combinatoria 2016 Types of voting In voting for most political

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Ambiguous Grammars and Compactification

Ambiguous Grammars and Compactification Ambiguous Grammars and Compactification Mridul Aanjaneya Stanford University July 17, 2012 Mridul Aanjaneya Automata Theory 1/ 44 Midterm Review Mathematical Induction and Pigeonhole Principle Finite Automata

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Freeness of Hyperplane Arrangements between Boolean Arrangements and Weyl Arrangements of Type B l

Freeness of Hyperplane Arrangements between Boolean Arrangements and Weyl Arrangements of Type B l Freeness of Hyperplane Arrangements between Boolean Arrangements and Weyl Arrangements of Type B l Michele Torielli, Shuhei Tsujie arxiv:1807.02432v1 [math.co] 6 Jul 2018 Every subarrangement ofweyl arrangements

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information

9 Bounds for the Knapsack Problem (March 6)

9 Bounds for the Knapsack Problem (March 6) 9 Bounds for the Knapsack Problem (March 6) In this lecture, I ll develop both upper and lower bounds in the linear decision tree model for the following version of the (NP-complete) Knapsack 1 problem:

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Today. Types of graphs. Complete Graphs. Trees. Hypercubes.

Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Complete Graph. K n complete graph on n vertices. All edges are present. Everyone is my neighbor. Each vertex is adjacent to every other vertex.

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Recap. Growth rates: Arrange the following functions in ascending order of growth rate: n 2 log n n log n 2 log n n/ log n n n Introduction Algorithm: A step-by-step way of solving a problem. Design of

More information

Combinatorics and topology of small arrangements

Combinatorics and topology of small arrangements Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF 20-th February 2017 Complex hyperplane arrangements Main definitions A complex hyperplane arrangement is a finite collection

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

Determining Resonance Varieties of Hyperplane Arrangements

Determining Resonance Varieties of Hyperplane Arrangements Determining Resonance Varieties of Hyperplane Arrangements Andres Perez aperez@hmc.edu Harvey Mudd College Claremont, CA 91711 January 6, 2009 Abstract This document discusses the research conducted by

More information

Hypergraphs With a Unique Perfect Matching

Hypergraphs With a Unique Perfect Matching Hypergraphs With a Unique Perfect Matching Aaron Spindel Under the direction of Dr. John S. Caughman February 26, 2012 Introduction This presentation discusses the paper On the maximum number of edges

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Tangencies between disjoint regions in the plane

Tangencies between disjoint regions in the plane June 16, 20 Problem Definition Two nonoverlapping Jordan regions in the plane are said to touch each other or to be tangent to each other if their boundaries have precisely one point in common and their

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information