Common Neighborhood Product of Graphs

Size: px
Start display at page:

Download "Common Neighborhood Product of Graphs"

Transcription

1 Volume 114 No , ISSN: (printed version); ISSN: (on-line version) url: ijpam.eu Common Neighborhood Product of Graphs A Babu 1 and J Baskar Babujee 2 1,2 Department of mathematics, Anna University, MIT Campus, Chennai , India. 1 subashbabu18@gmail.com 2 baskarjee@annauniv.edu February 28, 2017 Abstract In this paper we introduce the Common Neighborhood Product of any two arbitrary graphs and analyze characterization of this graph product. AMS Subject Classification: 05C76 Key Words and Phrases:Common Neighborhood Graphs, Common Neighborhood Graph Products. 1 Introduction The concepts of visualising graph product was stimulated from a biological model proposed by Wagner and Stadler [3] that provided a impression concerning the topological theory of the relationships between genotypes and phenotypes. A visualization for graph products is needed that can effectively communicate the quality of results by emphasizing the regularity of graph structure through regularity of layout. Other areas where graph products play vital role can be found in design and analysis of networks, computational engineering. For example the formation of finite element models or construction of localized self-equilibrating systems in computational engineering, see [6], [7], [8]. Typical tasks in scientic computing, like solving discretized partial differential equations,need 203 1

2 computational meshes. Many Graph products have been studied like Cartesian product, tensor product, Strong product of graphs, Rooted product of graphs, etc, and also studied their characteristic like connectivity,diameter, minimum degree, maximum degree, Chromatic number, energy etc,. Let G be a simple graph with vertex set V (G) and edge set E(G). The common neighborhood graph (congraph) of G denoted by con(g) is the graph with V (con(g)) = V (G), in which two vertices of con(g) adjacent if they have common neighbor in G. A. Alwadi et al introduced the common neighborhood graphs from the motivation on theory of graph energy [1],[2]. Some basic properties of congraphs have been studied in [4] are given below. Theorem 1. The common neighborhood graphs con(g) is connected if and only if the parent graph G is connected and nonbipartite. Corollary 2. if G is a connected bipartite graph, then con(g) has exactly two components. Theorem 3. If G has degree sequence d 1, d 2,...d n and m is the number of edges of con(g), then m n ( di ) i=1 2 and equality holds if and only if G is quadrangle free. A strongly regular graph with parameters (n, k, s, t) is a k- regular graph with n vertices, such that any two adjacent vertices have s common neighbors and any two non-adjacent vertices have t common neighbors. The congraph of any strongly regular graph with s 0 is the complete graph K n Theorem 4. The congraph of all strongly regular graphs with parameter (n, k, 0, t) except of C 5 are hyperenergetic In this paper we define a new graph product called common neighborhood product and study some basic properties of the common neighborhood product of graphs

3 2 Main Results All graphs we consider are simple and finite. Readers can follow basic graph theoretical terminology and notation from [5] which is not defined here. Definition 5. Let G and H be two graphs. The Common neighborhood product of graphs denoted by GΘH has vertex set V (GΘH) = V (G) V (H) and two vertices (a,b) (c,d) are adjacent in GΘH if a adjacent to c in G and vertices b and d have common neighbor in H or b adjacent to d in H and vertices a and c have common neighbor in G. v 3 u3 u2 v 1 v 2 G H u1 ( v1, u1) ( v1, u2) ( v1, u3) ( v2, u1) ( v2, u2) ( v2, u3) ( v3, u1) ( v3, u2) ( v3, u3) Figure 1: Common Neighbourhood Product of G and H Clearly GΘH and HΘG are naturally isomorphic, but it is not commutative as an operation on labeled graphs. GΘH is also associative as the graphs (F ΘG)ΘH and F Θ(GΘH) are isomorphic to each other and GΘH is n-partite graph. Theorem 6. If m and n are number of edges of G and H respectively, then number of edges of GΘH = 2(m E(con(H) )

4 n E(con(G) ). Proof. Let G and H be two graphs with m and n edges respectively. Consider {v 1, v 2 } V (G) and {u 1, u 2 } V (H). Then each (v 1, u 1 )(v 2, u 2 ) E(GΘH) if v 1 adjacent to v 2 in G and the vertices u 1 and u 2 have common neighbor in H. Each vertex v i adjacent to v j in G and each vertex pair u k and u l having common neighbor in H will contribute m E(con(H) edges to GΘH. Then v 2 also adjacent to v 1 in G therefore (v 2, u 1 )(v 1, u 2 ) E(GΘH). Hence m edges of G contribute 2m E(conH) to GΘH. Similarly n edges of H and edges of con(g) contribute 2n E(conG) edges to GΘH. Which conclude the proof. Corollary 7. multiple of four. Number of odd degree vertices in GΘH is always Theorem 8. If m and n are number of vertices of the G and H respectively, then (GΘH) mn (m + n) + 1. Proof. Consider the graph G and H which has m and n vertices respectively, therefore V (GΘH) = mn. Since G and H are simple and no two vertices of {(v k, u i ), (v k, u j )}; 1 k m and 1 i, j n of GΘH are adjacent. Therefore m vertices of GΘH are never adjacent in GΘH even u i and u j have common neighbor in H. similarly no two vertices {(v i, u k ), (v j, u k )}; 1 i, j m and 1 k n of GΘH is adjacent. Therefore n vertices of GΘH are never adjacent in GΘH. Clearly there are m+n 1 vertices never adjacent to each other in GΘH. Hence (GΘH) mn (m + n) + 1. Theorem 9. If GΘH is connected then δ(gθh) 2 Proof. Since GΘH is connected therefore G and H must be connected and number of vertices of G and H are greater than or equal to three therefore there exist atleast one pair of vertices have common neighbour in G and H respectively. Consider the vertex (u i, v j ) V (GΘH). Each u i is adjacent to some vertex of G and H has atleast one pair of vertices has common neighbor therefore (u i, v j ) must adjacent to atleast one of the vertices of GΘH. Similarly each v j is adjacent to some vertex of H and G is having atleast one common neighbour therefore (u 1, v 1 ) is adjacent to one of vertices of (u i, v j ). Hence every vertex of GΘH has atleast 206 4

5 two connected. Theorem 10. If GΘH is connected then the dia(gθh) 2. Proof. Since GΘH is connected therefore every vertex of GΘH is connected by a path. Let (u i, v j ) V (G) and no two vertices of (u i, v j ) and (u i, v k ) are adjacent in GΘH. Similarly no two vertices of (u i, v j ) and (u k, v j ) are adjacent ingθh. Therefore there exist a path connecting these vertices whose length is greater than one. Theorem 11. {dia(g), dia(h)}. If GΘH is connected then dia(gθh) max Proof. Suppose d G (a, c) = m and d H (b, d) = n. Let P 1 = a = x 0, x 1...x m = c and P 2 = b = y 0, y 1...y m = d therefore there exist the following paths between a to c with length m that is (x 0, y 0 ), (x 1, y 2 ), (x 2, y 0 ),..., (x m, y 0 ), (x m, y 2 ) (x 0, y 1 ), (x 1, y 3 ), (x 2, y 1 ),..., (x m, y 1 ), (x m, y 3 ),..., (x 0, y n 1 ), (x 1, y n ), (x 2, y n 1 ),..., (x m, y n 1 ), (x m, y n ) Similarly, there exist the following paths between b to d with length n that is (x 0, y 1 ), (x 2, y 2 ), (x 0, y 3 ),..., (x 0, y n 1 ), (x 2, y n ) (x 1, y 0 ), (x 3, y 1 ), (x 1, y 2 ),..., (x 1, y n 1 ), (x 3, y n ),..., (x n 1, y 0 ), (x n, y 1 ), (x n 1, y 2 ),..., (x n 1, y n 1 ), (x n, y n ) therefore distance between any two vertices in GΘH is not more than m or n. Hence dia(gθh) max {dia(g), dia(h)} Lemma 12. Suppose G and H are connected graphs with at least three vertices then GΘH has atmost two components. Theorem 13. If GΘH is connected then δ(gθh) δ(g) + δ(h). Proof. Let δ(g) = m and δ(h) = n and each vertices of G has degree atleast m. Let (u i, v j ) GΘH and u i be a vertex of G which has degree atleast m therefore u i must be adjacent to m vertices of G. Since GΘH is connected, there exist atleast one pair of vertices has common neighbour in H. Therefore the vertex (u i, v j ) must be connected to m vertices. Similarly, each vertices of H has degree atleast n and atleast one pair of vertices has common neighbor. Therefore the vertex (u i, v j ) must adjacent to some n 207 5

6 vertices. Hence each vertices of degree atleast m + n. Theorem 14. κ(g) + κ(h). For connected graph G and H κ(gθh) Proof. Let δ(g) = m and δ(g) = n. The whitney inequality states that κ(g) λ δ(g) previous lemma shows that δ(gθh) δ(g) + δ(h). Hence we can conclude that κ(gθh) κ(g) + κ(h) References [1] A. Alwardi, N.D. Sonar, I.Gutman, N.M. M de Avreu Complete common neighborhood graphs, Bull Acad.Serbe Sci. Art(Cl. Sci. Math)(2011), [2] A. Alwardi, B. Arsic, I. Gutman, N. D. Sonar, The common neighborhood graph and its energy, Iran. J. Math. Inf. (2012) 7(2) 1-8. [3] G. D. Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing. Prentice Hall, [4] A. S. Boniffacia, R. R. Rosa, I. Gutman, N. M. M. De Abreu, Complete common neighborhood graphs, proceedings of Congreso Latino-Ibroamericano de Investigation Operativa and Simposia Brasilerio de pesquisa operacional, (2012) [5] J. A. Bondy and U. S. R. Murthy, Graph Theory with Application, London and Basingstoke, macmillan Press Ltd [6] A. Kaveh and H. Rahami. An efcient method for decomposition of regular structures using graph products. Intern. J. for Numer. Methods in Engineering,(2004) 61(11) [7] A. Kaveh and K. Koohestani. Graph products for conguration processing of space structures. Comput. Struct.,(2008) 86(11-12) [8] A. Kaveh and R. Mirzaie. Minimal cycle basis of graph products for the force method of frame analysis. Communications in Numerical Methods in Engineering,(2008) 24(8)

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA Inter national Journal of Pure and Applied Mathematics Volume 113 No. 10 2017, 334 342 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Abstract: CLASSES

More information

Complementary nil vertex edge dominating sets

Complementary nil vertex edge dominating sets Proyecciones Journal of Mathematics Vol. 34, N o 1, pp. 1-13, March 2015. Universidad Católica del Norte Antofagasta - Chile Complementary nil vertex edge dominating sets S. V. Siva Rama Raju Ibra College

More information

PAijpam.eu TOTAL CO-INDEPENDENT DOMINATION OF JUMP GRAPH

PAijpam.eu TOTAL CO-INDEPENDENT DOMINATION OF JUMP GRAPH International Journal of Pure and Applied Mathematics Volume 110 No. 1 2016, 43-48 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v110i1.4

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES

LOCAL CONNECTIVE CHROMATIC NUMBER OF DIRECT PRODUCT OF PATHS AND CYCLES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 303-4874, ISSN (o) 303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 561-57 DOI: 10.751/BIMVI1703561Ç Former BULLETIN OF THE

More information

The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path graph

The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path graph Volume No. 0, 9 ISSN: -00 (printed version); ISSN: -9 (on-line version) url: http://www.ijpam.eu ijpam.eu The Achromatic and b- Chromatic Colouring of Central Graph of Book Graph and Shadow graph of Path

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

On the extending of k-regular graphs and their strong defining spectrum

On the extending of k-regular graphs and their strong defining spectrum On the extending of k-regular graphs and their strong defining spectrum Doost Ali Mojdeh Department of Mathematics University of Mazandaran P. O. Box 47416-1467 Babolsar Iran Abstract In a given graph

More information

Equitable Colouring of Certain Double Vertex Graphs

Equitable Colouring of Certain Double Vertex Graphs Volume 118 No. 23 2018, 147-154 ISSN: 1314-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu Equitable Colouring of Certain Double Vertex Graphs Venugopal P 1, Padmapriya N 2, Thilshath A 3 1,2,3

More information

Vertex, Edge and Total Coloring. in Spider Graphs

Vertex, Edge and Total Coloring. in Spider Graphs Applied Mathematical Sciences, Vol. 3, 2009, no. 18, 877-881 Vertex, Edge and Total Coloring in Spider Graphs Sadegh Rahimi Sharebaf Department of Mathematics Shahrood University of Technology, Shahrood,

More information

Triple Connected Complementary Tree Domination Number Of A Graph V. Murugan et al.,

Triple Connected Complementary Tree Domination Number Of A Graph V. Murugan et al., International Journal of Power Control Signal and Computation (IJPCSC) Vol.5 No. 2,2013-Pp:48-57 gopalax journals,singapore ISSN:0976-268X Paper Received :04-03-2013 Paper Published:14-04-2013 Paper Reviewed

More information

Triple Connected Domination Number of a Graph

Triple Connected Domination Number of a Graph International J.Math. Combin. Vol.3(2012), 93-104 Triple Connected Domination Number of a Graph G.Mahadevan, Selvam Avadayappan, J.Paulraj Joseph and T.Subramanian Department of Mathematics Anna University:

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

Triple Domination Number and it s Chromatic Number of Graphs

Triple Domination Number and it s Chromatic Number of Graphs Triple Domination Number and it s Chromatic Number of Graphs A.Nellai Murugan 1 Assoc. Prof. of Mathematics, V.O.Chidambaram, College, Thoothukudi-628 008, Tamilnadu, India anellai.vocc@gmail.com G.Victor

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Bar k-visibility Graphs

Bar k-visibility Graphs Bar k-visibility Graphs Alice M. Dean Department of Mathematics Skidmore College adean@skidmore.edu William Evans Department of Computer Science University of British Columbia will@cs.ubc.ca Ellen Gethner

More information

Strong Triple Connected Domination Number of a Graph

Strong Triple Connected Domination Number of a Graph Strong Triple Connected Domination Number of a Graph 1, G. Mahadevan, 2, V. G. Bhagavathi Ammal, 3, Selvam Avadayappan, 4, T. Subramanian 1,4 Dept. of Mathematics, Anna University : Tirunelveli Region,

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

PETAL GRAPHS. Vellore, INDIA

PETAL GRAPHS. Vellore, INDIA International Journal of Pure and Applied Mathematics Volume 75 No. 3 2012, 269-278 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu PETAL GRAPHS V. Kolappan 1, R. Selva Kumar 2 1,2

More information

Component connectivity of crossed cubes

Component connectivity of crossed cubes Component connectivity of crossed cubes School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Abstract: Let G = (V, E) be a connected graph. A r-component

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

ON WIENER INDEX OF GRAPH COMPLEMENTS. Communicated by Alireza Abdollahi. 1. Introduction

ON WIENER INDEX OF GRAPH COMPLEMENTS. Communicated by Alireza Abdollahi. 1. Introduction Transactions on Combinatorics ISSN (print): 51-8657, ISSN (on-line): 51-8665 Vol. 3 No. (014), pp. 11-15. c 014 University of Isfahan www.combinatorics.ir www.ui.ac.ir ON WIENER INDEX OF GRAPH COMPLEMENTS

More information

AMO - Advanced Modeling and Optimization, Volume 16, Number 2, 2014 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS

AMO - Advanced Modeling and Optimization, Volume 16, Number 2, 2014 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS AMO - Advanced Modeling and Optimization, Volume 6, Number, 4 PRODUCT CORDIAL LABELING FOR SOME BISTAR RELATED GRAPHS S K Vaidya Department of Mathematics, Saurashtra University, Rajkot-6 5, GUJARAT (INDIA).

More information

On the Rainbow Neighbourhood Number of Set-Graphs

On the Rainbow Neighbourhood Number of Set-Graphs On the Rainbow Neighbourhood Number of Set-Graphs Johan Kok, Sudev Naduvath arxiv:1712.02324v1 [math.gm] 6 Dec 2017 Centre for Studies in Discrete Mathematics Vidya Academy of Science & Technology Thalakkottukara,

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

A PRIME FACTOR THEOREM FOR A GENERALIZED DIRECT PRODUCT

A PRIME FACTOR THEOREM FOR A GENERALIZED DIRECT PRODUCT Discussiones Mathematicae Graph Theory 26 (2006 ) 135 140 A PRIME FACTOR THEOREM FOR A GENERALIZED DIRECT PRODUCT Wilfried Imrich Department of Mathematics and Information Technology Montanuniversität

More information

Efficient Triple Connected Domination Number of a Graph

Efficient Triple Connected Domination Number of a Graph International Journal of Computational Engineering Research Vol, 03 Issue, 6 Efficient Triple Connected Domination Number of a Graph G. Mahadevan 1 N. Ramesh 2 Selvam Avadayappan 3 T. Subramanian 4 1 Dept.

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

Sharp lower bound for the total number of matchings of graphs with given number of cut edges

Sharp lower bound for the total number of matchings of graphs with given number of cut edges South Asian Journal of Mathematics 2014, Vol. 4 ( 2 ) : 107 118 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Sharp lower bound for the total number of matchings of graphs with given number of cut

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

On the packing chromatic number of some lattices

On the packing chromatic number of some lattices On the packing chromatic number of some lattices Arthur S. Finbow Department of Mathematics and Computing Science Saint Mary s University Halifax, Canada BH C art.finbow@stmarys.ca Douglas F. Rall Department

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

A generalization of zero divisor graphs associated to commutative rings

A generalization of zero divisor graphs associated to commutative rings Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:9 https://doi.org/10.1007/s12044-018-0389-0 A generalization of zero divisor graphs associated to commutative rings M. AFKHAMI 1, A. ERFANIAN 2,, K. KHASHYARMANESH

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Some bounds on chromatic number of NI graphs

Some bounds on chromatic number of NI graphs International Journal of Mathematics and Soft Computing Vol.2, No.2. (2012), 79 83. ISSN 2249 3328 Some bounds on chromatic number of NI graphs Selvam Avadayappan Department of Mathematics, V.H.N.S.N.College,

More information

Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness

Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness Alice M. Dean, William Evans, Ellen Gethner 3,JoshuaD.Laison, Mohammad Ali Safari 5, and William T. Trotter 6 Department

More information

Zagreb Radio Indices of Graphs

Zagreb Radio Indices of Graphs Volume 118 No. 10 018, 343-35 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i10.75 ijpam.eu Zagreb Radio Indices of Graphs Joseph Varghese

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

International Journal of Mathematical Archive-7(9), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(9), 2016, Available online through  ISSN International Journal of Mathematical Archive-7(9), 2016, 189-194 Available online through wwwijmainfo ISSN 2229 5046 TRIPLE CONNECTED COMPLEMENTARY ACYCLIC DOMINATION OF A GRAPH N SARADHA* 1, V SWAMINATHAN

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

Chromatic Transversal Domatic Number of Graphs

Chromatic Transversal Domatic Number of Graphs International Mathematical Forum, 5, 010, no. 13, 639-648 Chromatic Transversal Domatic Number of Graphs L. Benedict Michael Raj 1, S. K. Ayyaswamy and I. Sahul Hamid 3 1 Department of Mathematics, St.

More information

Graceful and odd graceful labeling of graphs

Graceful and odd graceful labeling of graphs International Journal of Mathematics and Soft Computing Vol.6, No.2. (2016), 13-19. ISSN Print : 2249 3328 ISSN Online: 2319 5215 Graceful and odd graceful labeling of graphs Department of Mathematics

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

G G[S] G[D]

G G[S] G[D] Edge colouring reduced indierence graphs Celina M. H. de Figueiredo y Celia Picinin de Mello z Jo~ao Meidanis z Carmen Ortiz x Abstract The chromatic index problem { nding the minimum number of colours

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs

A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs Applied Mathematics E-Notes, 15(015), 9-37 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ A Note On The Sparing Number Of The Sieve Graphs Of Certain Graphs Naduvath

More information

S. K. Vaidya and Rakhimol V. Isaac

S. K. Vaidya and Rakhimol V. Isaac BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(2015), 191-195 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Double Vertex Graphs and Complete Double Vertex Graphs. Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007

Double Vertex Graphs and Complete Double Vertex Graphs. Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007 Double Vertex Graphs and Complete Double Vertex Graphs Jobby Jacob, Wayne Goddard and Renu Laskar Clemson University April, 2007 Abstract Let G = (V, E) be a graph of order n 2. The double vertex graph,

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs

Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs Ermelinda DeLaViña and Iride Gramajo Department of Computer and Mathematical Sciences University of Houston-Downtown Houston, Texas

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

Graph theory - solutions to problem set 1

Graph theory - solutions to problem set 1 Graph theory - solutions to problem set 1 1. (a) Is C n a subgraph of K n? Exercises (b) For what values of n and m is K n,n a subgraph of K m? (c) For what n is C n a subgraph of K n,n? (a) Yes! (you

More information

Domination and Irredundant Number of 4-Regular Graph

Domination and Irredundant Number of 4-Regular Graph Domination and Irredundant Number of 4-Regular Graph S. Delbin Prema #1 and C. Jayasekaran *2 # Department of Mathematics, RVS Technical Campus-Coimbatore, Coimbatore - 641402, Tamil Nadu, India * Department

More information

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction Vertex Colorings without Rainbow or Monochromatic Subgraphs Wayne Goddard and Honghai Xu Dept of Mathematical Sciences, Clemson University Clemson SC 29634 {goddard,honghax}@clemson.edu Abstract. This

More information

The Dual Neighborhood Number of a Graph

The Dual Neighborhood Number of a Graph Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 47, 2327-2334 The Dual Neighborhood Number of a Graph B. Chaluvaraju 1, V. Lokesha 2 and C. Nandeesh Kumar 1 1 Department of Mathematics Central College

More information

THE RAINBOW DOMINATION SUBDIVISION NUMBERS OF GRAPHS. N. Dehgardi, S. M. Sheikholeslami and L. Volkmann. 1. Introduction

THE RAINBOW DOMINATION SUBDIVISION NUMBERS OF GRAPHS. N. Dehgardi, S. M. Sheikholeslami and L. Volkmann. 1. Introduction MATEMATIQKI VESNIK 67, 2 (2015), 102 114 June 2015 originalni nauqni rad research paper THE RAINBOW DOMINATION SUBDIVISION NUMBERS OF GRAPHS N. Dehgardi, S. M. Sheikholeslami and L. Volkmann Abstract.

More information

Star-in-Coloring of Some New Class of Graphs

Star-in-Coloring of Some New Class of Graphs International Journal of Scientific Innovative Mathematical Research (IJSIMR) Volume 2, Issue 4, April 2014, PP 352-360 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Star-in-Coloring

More information

On Acyclic Vertex Coloring of Grid like graphs

On Acyclic Vertex Coloring of Grid like graphs On Acyclic Vertex Coloring of Grid like graphs Bharat Joshi and Kishore Kothapalli {bharatj@research., kkishore@}iiit.ac.in Center for Security, Theory and Algorithmic Research International Institute

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

Bar k-visibility Graphs

Bar k-visibility Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 11, no. 1, pp. 45 59 (2007) Bar k-visibility Graphs Alice M. Dean Department of Mathematics and Computer Science, Skidmore College http://www.skidmore.edu/

More information

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1.

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1. Lecturer: Scribe: Meena Mahajan Rajesh Chitnis Matchings in Graphs Meeting: 1 6th Jan 010 Most of the material in this lecture is taken from the book Fast Parallel Algorithms for Graph Matching Problems

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information

On Structural Parameterizations of the Matching Cut Problem

On Structural Parameterizations of the Matching Cut Problem On Structural Parameterizations of the Matching Cut Problem N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad,

More information

On Balance Index Set of Double graphs and Derived graphs

On Balance Index Set of Double graphs and Derived graphs International Journal of Mathematics and Soft Computing Vol.4, No. (014), 81-93. ISSN Print : 49-338 ISSN Online: 319-515 On Balance Index Set of Double graphs and Derived graphs Pradeep G. Bhat, Devadas

More information

Graphs That Are Randomly Traceable from a Vertex

Graphs That Are Randomly Traceable from a Vertex Graphs That Are Randomly Traceable from a Vertex Daniel C. Isaksen 27 July 1993 Abstract A graph G is randomly traceable from one of its vertices v if every path in G starting at v can be extended to a

More information

Forced orientation of graphs

Forced orientation of graphs Forced orientation of graphs Babak Farzad Mohammad Mahdian Ebad S. Mahmoodian Amin Saberi Bardia Sadri Abstract The concept of forced orientation of graphs was introduced by G. Chartrand et al. in 1994.

More information

Vertex-antimagic total labelings of graphs

Vertex-antimagic total labelings of graphs Vertex-antimagic total labelings of graphs Martin Bača Department of Applied Mathematics Technical University, 0400 Košice, Slovak Republic e-mail: hollbaca@ccsun.tuke.sk François Bertault Department of

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

GEODETIC DOMINATION IN GRAPHS

GEODETIC DOMINATION IN GRAPHS GEODETIC DOMINATION IN GRAPHS H. Escuadro 1, R. Gera 2, A. Hansberg, N. Jafari Rad 4, and L. Volkmann 1 Department of Mathematics, Juniata College Huntingdon, PA 16652; escuadro@juniata.edu 2 Department

More information

Graceful Labeling for Cycle of Graphs

Graceful Labeling for Cycle of Graphs International Journal of Mathematics Research. ISSN 0976-5840 Volume 6, Number (014), pp. 173 178 International Research Publication House http://www.irphouse.com Graceful Labeling for Cycle of Graphs

More information

Monophonic Chromatic Parameter in a Connected Graph

Monophonic Chromatic Parameter in a Connected Graph International Journal of Mathematical Analysis Vol. 11, 2017, no. 19, 911-920 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.78114 Monophonic Chromatic Parameter in a Connected Graph M.

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

Packing Chromatic Number of Distance Graphs

Packing Chromatic Number of Distance Graphs Packing Chromatic Number of Distance Graphs Jan Ekstein Premysl Holub Bernard Lidicky y May 25, 2011 Abstract The packing chromatic number (G) of a graph G is the smallest integer k such that vertices

More information

arxiv: v1 [math.co] 13 Aug 2017

arxiv: v1 [math.co] 13 Aug 2017 Strong geodetic problem in grid like architectures arxiv:170803869v1 [mathco] 13 Aug 017 Sandi Klavžar a,b,c April 11, 018 Paul Manuel d a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets EECS 310: Discrete Math Lecture 5 Graph Theory, Matching Reading: MIT OpenCourseWare 6.042 Chapter 5.1-5.2 Induction Review Basic Induction: Want to prove P (n). Prove base case P (1). Prove P (n) P (n+1)

More information

Equitable edge colored Steiner triple systems

Equitable edge colored Steiner triple systems AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 0 (0), Pages 63 Equitable edge colored Steiner triple systems Atif A. Abueida Department of Mathematics University of Dayton 300 College Park, Dayton, OH 69-36

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

SIGN DOMINATING SWITCHED INVARIANTS OF A GRAPH

SIGN DOMINATING SWITCHED INVARIANTS OF A GRAPH BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-87, ISSN (o) 0-955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(017), 5-6 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

More information

(1,2) - Domination in Line Graphs of C n, P n and K 1,n

(1,2) - Domination in Line Graphs of C n, P n and K 1,n American Journal of Computational and Applied Mathematics 03, 3(3): 6-67 DOI: 0.593/j.ajcam.030303.0 (,) - Domination in Line Graphs of C n, P n and K,n N. Murugesan, Deepa. S. Nair * Post Graduate and

More information

Rainbow game domination subdivision number of a graph

Rainbow game domination subdivision number of a graph Rainbow game domination subdivision number of a graph J. Amjadi Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran j-amjadi@azaruniv.edu Abstract The rainbow game domination

More information

A NOTE ON INCOMPLETE REGULAR TOURNAMENTS WITH HANDICAP TWO OF ORDER n 8 (mod 16) Dalibor Froncek

A NOTE ON INCOMPLETE REGULAR TOURNAMENTS WITH HANDICAP TWO OF ORDER n 8 (mod 16) Dalibor Froncek Opuscula Math. 37, no. 4 (2017), 557 566 http://dx.doi.org/10.7494/opmath.2017.37.4.557 Opuscula Mathematica A NOTE ON INCOMPLETE REGULAR TOURNAMENTS WITH HANDICAP TWO OF ORDER n 8 (mod 16) Dalibor Froncek

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information