From final point cuts to!-polyhedral cuts

Size: px
Start display at page:

Download "From final point cuts to!-polyhedral cuts"

Transcription

1 AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University

2 Overview Background Generalized intersection cuts!-polyhedral cuts Validity Theoretical strength Extensions Computational results

3 Setting: mixed-integer linear programming Optimize over mixed-integer feasible region in R # min x c x (IP) (LP) Ax x 0 b & & ' x j 2 Z for all j 2 I Typically start with the LP relaxation and apply valid cuts to remove fractional LP solution $

4 Standard intersection cuts Solve the LP relaxation, yielding an optimal solution $ Intersect cone ( (defined by facets of ) tight at $ ) with a ) * - free convex set + These rays create, intersection points (or rays) with -. + Intersection points

5 Standard intersection cuts These points define a unique hyperplane: the standard intersection cut (SIC)

6 Standard intersection cuts These points define a unique hyperplane: the standard intersection cut (SIC)

7 Better ) * -free sets lead to stronger cuts Most commonly used general-purpose cuts in practice are split cuts, which include GMI, MIR, and CG cuts These are one-row cuts, using one equation to obtain the cut However, can actually use any ) * -free convex set to generate cuts Examples: trianglesand quadrilaterals, which are two-row cuts A further generalization: cuts from disjunctive sets Particularly nonsimple disjunctions

8

9

10

11

12

13 Non-simple disjunctive sets can lead to stronger cuts

14 Existing work on stronger cuts (partial list) Balas (1979) disjunctive programming Andersen, Louveaux, Weismantel, Wolsey (2007) sparked renewed interest Simple disjunctive cuts Espinoza (2010) Basu, Bonami, Cornuéjols, Margot (2011) (times 2) Balas, Qualizza (2013) Dey, Lodi, Tramontani, Wolsey (2014) Balas, Margot (2013) and Balas, K., Margot, Nadarajah GICs and PHA cuts Non-simple disjunctive cuts Balas, Ceria, Cornuéjols (1993, 1996) L&P cuts (only tested with splits) Perregaard, Balas (2001) Dash, Günlük, Vielma (2014) Louveaux, Poirrier, Salvagnin (2015)

15 Generalized intersection cuts (GICs)

16 Motivation for a new cutting plane method Traditional cutting plane approaches use recursion to reach strong cuts, which leads to numerical instability (e.g., degeneracy) In one round Goal Efficiently generate large number of strong cuts non-recursively Eventually (not this talk) Cut selection; quickly choose collection of cuts with favorable numerical properties and strength

17 New paradigm of generating cuts In one round Goal Efficiently generate large number of strong cuts non-recursively Idea (Balas and Margot, 2013) Obtain a collection of intersection points 0 and rays R Get cuts by finding inequalities satisfied by all these points and rays Not arbitrary collection

18 Which point-ray collections lead to valid cuts? Let 0 be a set of intersection points and R be a set of rays Consider feasible solutions 2, 4 R # {0, ±1} to following PRLP Generalized intersection cut min, w p for all p 2 P r 0 for all r 2 R If 2 $ 4 is valid for ) * (when >?@ < B) for all such 2, 4 Then (0, R) is a proper point-ray collection For example, maximize violation with respect to?@ such that no intersection point or ray is cut off

19 Insights from first practical implementation Balas, K., Margot, Nadarajah Activating hyperplanes as suggested by Balas and Margot impractical Introduced generalization called partial hyperplane activation to get first real insights into getting strong GICs Results lead to new idea: focus directly on how to get a strong pointray collection What are properties of point-ray collections that yield strong cuts?

20 Final intersection points Intersection point E bd H is final (with respect to S) if E ) Intermediate point Final points

21 Final intersection points Intersection point E bd H is final (with respect to S) if E ) Importance No cut valid for conv() int H) can cut a final point Cuts that lie on many final points are close to being facet-defining for conv() int H) Is there a good way to target final points?

22 Final point cuts Focused efforts on directly working with final points, which involved optimization over ) bd H However, the core of this new idea applies also to disjunctions Optimizing over the terms of a disjunction leads to points that are not necessarily intersection points Departure from generalized intersection cut framework

23 !-polyhedral cuts (VPCs)

24 Idea for!-polyhedral cuts We are interested in generating cuts from a valid disjunction S U R S (R S {$: X S $ Y S }) Perhaps can work directly with points in ) R S, Z [ Arbitrary points will not work; need to guarantee validity

25 Modification of definition of proper Let 0 be a set of intersection points and R be a set of rays Consider feasible solution 2, 4 R # {0, ±1} to following PRLP!-polyhedral cut (VPC) If 2 $ 4 is valid for ) * (when 2 $ < 4) Then (0, R) is a proper point-ray collection min, w p for all p 2 P r 0 for all r 2 R This is a significant departure from the original notion of GICs; in fact these may not be intersection cuts! (Balas, Kis 2016)

26 Theorem: sufficient condition for a point-ray collection to be proper Given: ] _(\ ]? ^]), a valid disjunction & ] = {? &: \ ]? ^]}, the restriction of & to term ] _ If 0 and R denote collections of points and rays such that, for all Z [, ) S conv 0 + cone R, then (0, R) is a proper point-ray collection!-polyhedral relaxation of each & ]

27 Connection to lift-and-project cuts Lift-and-project cuts can be used to find facet-defining inequalities for the disjunctive hull, clconv( ) S ) S U However, the cut-generating linear program can be expensive to solve and may have other undesirable properties that need special attention If for 0, R we use the!-polyhedral description of each ) S, then VPCs are equivalent in strength to lift-and-project cuts VPCs offer an efficient alternative to get facets

28 !-polyhedral cuts For simplicity, we illustrate our procedure for a simple split disjunction on an integer variable $ f that is fractional at $ Need to obtain a!-polyhedral description of relaxations for ) g = {$ ): $ f $ f } and ) k = {$ ): $ f $ f }

29 !-polyhedral cuts of type 1 & n = & {?:? o?@ o } & p = & {?:? o?@ o } Need ) g ) k conv 0 + cone(r)

30 !-polyhedral cuts of type 1 ) g = ) {$: $ f $ f } ) k = ) {$: $ f $ f } Need ) g ) k conv 0 + cone(r)

31 !-polyhedral cuts of type 1 Optimal solution r ] to stu v?:? & ] (for ] _) ) g = ) {$: $ f $ f } ) k = ) {$: $ f $ f } Need ) g ) k conv 0 + cone(r) Start with simple cone on each facet of the split (type 1 VPCs)

32 !-polyhedral cuts of type 1 Need ) g ) k conv 0 + cone(r) Start with simple cone on each facet of the split (type 1 VPCs) Any cut valid for each of the relaxations will be valid for ) *

33 !-polyhedral cuts of type 1 Need ) g ) k conv 0 + cone(r) Start with simple cone on each facet of the split (type 1 VPCs) Any cut valid for each of the relaxations will be valid for ) *

34 !-polyhedral cuts of type 1 Need ) g ) k conv 0 + cone(r) Start with simple cone on each facet of the split (type 1 VPCs) Any cut valid for each of the relaxations will be valid for ) *

35 Theoretical strength Cut lies on w points in the disjunctive hull, so it is facet-defining Theorem If (0, R) is a proper point-ray set, every point in 0 is final, and every ray in R has a final point in its interior, then every VPC defines a facet of clconv( ) S ) S U

36 Theoretical strength Cut lies on w points in the disjunctive hull, so it is facet-defining Corollary For Z [, let E S = min y $ $ ) S If all E S have a unique optimal basis, all type 1 VPCs are facetdefining for clconv( ) S ) S U

37 Further strengthening of VPCs Instead of ) S, we can obtain points and rays from any ){S with ) * R S ){S Idea Within ) S, use integrality to strengthen the relaxation, obtaining some ){S

38 Further strengthening of VPCs Idea Within ) S, use integrality to strengthen the relaxation, obtaining some ){S

39 Further strengthening of VPCs Idea Within ) S, use integrality to strengthen the relaxation, obtaining some ){S

40 Further strengthening of VPCs Idea Within ) S, use integrality to strengthen the relaxation, obtaining some ){S Then generate VPCs using new ){S

41 Further strengthening of VPCs Idea Within ) S, use integrality to strengthen the relaxation, obtaining some ){S Then generate VPCs using new ){S

42 Further strengthening of VPCs Simplest and most logical strengthening is applying GMI cuts (to the problem ) S for each Z [) This is fast, because we already have the tableau information Stronger approaches clearly exist

43 Computational results

44 Computational setup Implemented VPCs (+ strengthening) in COIN-OR framework Compared VPCs against standard intersection cuts (SICs) Cut-generating sets: simple split disjunction (elementary split) union of two simple splits (non-convex) Tested percent gap closed on 40 small instances from MIPLIB sets

45 Percent gap closed by type 1 VPCs % gap closed for SICs and VPCs of type 1, unstrengthened SIC VPC_splits VPC_crosses 14.21% 27.52% 30.88% Over 100% improvement over only SICs % gap closed for GMICs and VPCs of type 1, strengthened GMIC GMIC x 2 VPC+_splits VPC+_crosses 23.59% 31.78% 40.70% 45.60%

46 Cut selection: a challenge moving forward Each VPC is relatively fast to generate, but we can get a lot of cuts On the other hand, this aligns with one of our motivations! Given a collection of cuts, can we choose a small subset of them that are strong and have good numerical properties?

47 Conclusion We introduce a new approach,!-polyhedral cuts, that takes advantage of structural properties of an instance, has nice theoretical properties, and shows promising computational results Equivalent in strength to lift-and-project cuts, but more efficient Rich topic theoretically and practically, with many future directions, such as cuts from a partial branch-and-bound tree

48 Thank you! SIC VPC Questions? VPC+

49 Necessary and sufficient conditions for a point-ray collection to be proper A point-ray collection (0, R) is proper if and only if the line segment between $ and any point in ) * intersects conv(0) + cone(r) $ $ $

cuts François Margot 1 Chicago, IL Abstract The generalized intersection cut (GIC) paradigm is a recent framework for generating

cuts François Margot 1 Chicago, IL Abstract The generalized intersection cut (GIC) paradigm is a recent framework for generating Partial hyperplane activation for generalized intersection cuts Aleksandr M. Kazachkov 1 Selvaprabu Nadarajah 2 Egon Balas 1 François Margot 1 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh,

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

Disjunctive Programming

Disjunctive Programming Chapter 10 Disjunctive Programming Egon Balas Introduction by Egon Balas In April 1967 I and my family arrived into the US as fresh immigrants from behind the Iron Curtain. After a fruitful semester spent

More information

S-free Sets for Polynomial Optimization

S-free Sets for Polynomial Optimization S-free Sets for and Daniel Bienstock, Chen Chen, Gonzalo Muñoz, IEOR, Columbia University May, 2017 SIAM OPT 2017 S-free sets for PolyOpt 1 The Polyhedral Approach TighteningP with an S-free setc conv(p

More information

Stable sets, corner polyhedra and the Chvátal closure

Stable sets, corner polyhedra and the Chvátal closure Stable sets, corner polyhedra and the Chvátal closure Manoel Campêlo Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil, mcampelo@lia.ufc.br. Gérard Cornuéjols Tepper

More information

Intersection Cuts with Infinite Split Rank

Intersection Cuts with Infinite Split Rank Intersection Cuts with Infinite Split Rank Amitabh Basu 1,2, Gérard Cornuéjols 1,3,4 François Margot 1,5 April 2010; revised April 2011; revised October 2011 Abstract We consider mixed integer linear programs

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS FINITE DISJUNCTIVE PROGRAMMING CHARACTERIZATIONS FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, SUVRAJEET SEN Abstract. In this paper, we give a finite disjunctive programming

More information

On the polyhedrality of cross and quadrilateral closures

On the polyhedrality of cross and quadrilateral closures On the polyhedrality of cross and quadrilateral closures Sanjeeb Dash IBM Research sanjeebd@us.ibm.com Oktay Günlük IBM Research gunluk@us.ibm.com December 9, 2014 Diego A. Morán R. Virginia Tech dmoran@gatech.edu

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Combining Lift-and-Project and Reduce-and-Split

Combining Lift-and-Project and Reduce-and-Split Combining Lift-and-Project and Reduce-and-Split Egon Balas Tepper School of Business, Carnegie Mellon University, PA Email: eb17@andrew.cmu.edu Gérard Cornuéjols Tepper School of Business, Carnegie Mellon

More information

Integer Programming as Projection

Integer Programming as Projection Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA A Different Perspective on IP Projection of an IP onto

More information

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS

A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS A COMPUTATIONAL STUDY OF THE CUTTING PLANE TREE ALGORITHM FOR GENERAL MIXED-INTEGER LINEAR PROGRAMS BINYUAN CHEN, SİMGE KÜÇÜKYAVUZ, AND SUVRAJEET SEN Abstract. The cutting plane tree (CPT) algorithm provides

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Stefan Ropke Technical University of Denmark, Department of Transport (DTU Transport) Column

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

Graph Coloring Facets from a Constraint Programming Formulation

Graph Coloring Facets from a Constraint Programming Formulation Graph Coloring Facets from a Constraint Programming Formulation David Bergman J. N. Hooker Carnegie Mellon University INFORMS 2011 Motivation 0-1 variables often encode choices that can be represented

More information

Branch and Cut. John E. Mitchell. May 12, 2010

Branch and Cut. John E. Mitchell. May 12, 2010 Branch and Cut John E. Mitchell May 12, 2010 Combinatorial optimization problems can often be formulated as mixed integer linear programming problems, as discussed in Section 1.4.1.1 in this encyclopedia.

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

Gomory Reloaded. Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 MIP 2010

Gomory Reloaded. Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 MIP 2010 Gomory Reloaded Matteo Fischetti, DEI, University of Padova (joint work with Domenico Salvagnin) 1 Cutting planes (cuts) We consider a general MIPs of the form min { c x : A x = b, x 0, x j integer for

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs

Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Split-Cuts and the Stable Set Polytope of Quasi-Line Graphs Friedrich Eisenbrand Joint work with G. Oriolo, P. Ventura and G. Stauffer Gomory cutting planes P = {x n Ax b} polyhedron, c T x δ, c n valid

More information

Target Cuts from Relaxed Decision Diagrams

Target Cuts from Relaxed Decision Diagrams Target Cuts from Relaxed Decision Diagrams Christian Tjandraatmadja 1, Willem-Jan van Hoeve 1 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA {ctjandra,vanhoeve}@andrew.cmu.edu

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Banhirup Sengupta, Dipankar Mondal, Prajjal Kumar De, Souvik Ash Proposal Description : ILP [integer linear

More information

1 date: September 15, 1998 file: mitche2

1 date: September 15, 1998 file: mitche2 1 date: September 15, 1998 file: mitche2 BRANCH-AND-CUT ALGORITHMS FOR INTEGER PROGRAMMING, Branch-and-cut Branch-and-cut methods are exact algorithms for integer programming problems. They consist of

More information

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it January-February, 2012 @ Universität Wien A. Lodi, How to use your favorite

More information

MOURAD BAÏOU AND FRANCISCO BARAHONA

MOURAD BAÏOU AND FRANCISCO BARAHONA THE p-median POLYTOPE OF RESTRICTED Y-GRAPHS MOURAD BAÏOU AND FRANCISCO BARAHONA Abstract We further study the effect of odd cycle inequalities in the description of the polytopes associated with the p-median

More information

Convex Hull Representation Conversion (cddlib, lrslib)

Convex Hull Representation Conversion (cddlib, lrslib) Convex Hull Representation Conversion (cddlib, lrslib) Student Seminar in Combinatorics: Mathematical Software Niklas Pfister October 31, 2014 1 Introduction In this report we try to give a short overview

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Cover Inequalities. As mentioned above, the cover inequalities were first presented in the context of the 0-1 KP. The 0-1 KP takes the following form:

Cover Inequalities. As mentioned above, the cover inequalities were first presented in the context of the 0-1 KP. The 0-1 KP takes the following form: Cover Inequalities Konstantinos Kaparis Adam N. Letchford Many problems arising in OR/MS can be formulated as Mixed-Integer Linear Programs (MILPs); see entry #1.4.1.1. If one wishes to solve a class of

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints Daniel Porumbel CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

On Mixed-Integer (Linear) Programming and its connection with Data Science

On Mixed-Integer (Linear) Programming and its connection with Data Science On Mixed-Integer (Linear) Programming and its connection with Data Science Andrea Lodi Canada Excellence Research Chair École Polytechnique de Montréal, Québec, Canada andrea.lodi@polymtl.ca January 16-20,

More information

On the safety of Gomory cut generators

On the safety of Gomory cut generators On the safety of Gomory cut generators Gérard Cornuéjols 1, François Margot 1, Giacomo Nannicini 2 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA Email: {gc0v,fmargot}@andrew.cmu.edu

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

1 date: September 15, 1998 file: mitche1

1 date: September 15, 1998 file: mitche1 1 date: September 15, 1998 file: mitche1 CUTTING PLANE ALGORITHMS FOR INTEGER PROGRAMMING, Cutting plane algorithms Cutting plane methods are exact algorithms for integer programming problems. Theyhave

More information

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints

From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints From the Separation to the Intersection Sub-problem in Benders Decomposition Models with Prohibitively-Many Constraints Daniel Porumbel CEDRIC CS Lab, CNAM, 292 rue Saint-Martin, F-75141 Paris, France

More information

An SDP Approach to Multi-level Crossing Minimization

An SDP Approach to Multi-level Crossing Minimization An SDP Approach to Multi-level Crossing Minimization P. Hungerländer joint work with M. Chimani, M. Jünger, P. Mutzel University of Klagenfurt - Department of Mathematics 15th Combinatorial Optimization

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Michael Perregaard Dash Optimization Constraint Branching and Disunctive

More information

On the Unique-lifting Property

On the Unique-lifting Property On the Unique-lifting Property Gennadiy Averkov 1 and Amitabh Basu 2 1 Institute of Mathematical Optimization, Faculty of Mathematics, University of Magdeburg 2 Department of Applied Mathematics and Statistics,

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

A Verification Based Method to Generate Cutting Planes for IPs

A Verification Based Method to Generate Cutting Planes for IPs A Verification Based Method to Generate Cutting Planes for IPs Santanu S. Dey Sebastian Pokutta Georgia Institute of Technology, USA. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. SIAM Conference

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small

On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small Robert Bassett March 10, 2014 2 Question/Why Do We Care Motivating Question: Given a linear or integer

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

Integer and Combinatorial Optimization

Integer and Combinatorial Optimization Integer and Combinatorial Optimization GEORGE NEMHAUSER School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia LAURENCE WOLSEY Center for Operations Research and

More information

DTIC AD-A Projection with a Minimal System of Inequalities AVAILABLE COPY O T by Egon Balas 1 Carnegie Mellon University

DTIC AD-A Projection with a Minimal System of Inequalities AVAILABLE COPY O T by Egon Balas 1 Carnegie Mellon University AD-A257 237 Projection with a Minimal System of Inequalities by Egon Balas 1 July, 1992 "PITTSBURGH, PENNSYLVANIA 15213 DTIC ELECTE T291992 00 GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION 00 WILLIAM LARIMER

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

On the selection of Benders cuts

On the selection of Benders cuts Mathematical Programming manuscript No. (will be inserted by the editor) On the selection of Benders cuts Matteo Fischetti Domenico Salvagnin Arrigo Zanette Received: date / Revised 23 February 2010 /Accepted:

More information

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Ismael Regis de Farias Jr. Department of Industrial Engineering Texas Tech Summary Problem definition Solution strategy Multiple-choice

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 13. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 13 Dr. Ted Ralphs ISE 347/447 Lecture 13 1 Reading for This Lecture C&T Chapter 11 ISE 347/447 Lecture 13 2 Integer Linear Optimization An integer linear optimization

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

Numerically Safe Gomory Mixed-Integer Cuts

Numerically Safe Gomory Mixed-Integer Cuts Numerically Safe Gomory Mixed-Integer Cuts William Cook Industrial and Systems Engineering Georgia Institute of Technology Ricardo Fukasawa Discrete Optimization Group IBM T. J. Watson Research Center

More information

Cost-Bounded Binary Decision Diagrams for 0-1 Programming

Cost-Bounded Binary Decision Diagrams for 0-1 Programming Cost-Bounded Binary Decision Diagrams for -1 Programming Tarik Hadzic 1 and J. N. Hooker 2 1 IT University of Copenhagen tarik@itu.dk 2 Carnegie Mellon University john@hooker.tepper.cmu.edu Abstract. In

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Design and Analysis of Algorithms (V)

Design and Analysis of Algorithms (V) Design and Analysis of Algorithms (V) An Introduction to Linear Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Homework Assignment 2 is announced! (deadline Apr. 10) Linear Programming

More information