Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Size: px
Start display at page:

Download "Civil Engineering Systems Analysis Lecture XIV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics"

Transcription

1 Civil Engineering Systems Analysis Lecture XIV Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

2 Today s Learning Objectives Dual 2

3 Linear Programming Dual Problem 3

4 Dual Example Primal Minimize 8x1 + 5x2 + 4x3 4x1 + 2x2 + 8x3 = 12 7x1 + 5x2 + 6x3 9 8x1 + 5x2 + 4x3 10 3x1 + 7x2 + 9x3 7 x1 0, x2 unrestricted, x3 0 Dual Max 12y1 +9y2 + 10y3 +7y4 4y1 + 7y2 + 8y3 + 3y4 8 2y1 + 5y2 + 5y3 + 7y4 = 5 8y1 + 6y2 + 4y3 + 9y4 4 y1 unrestricted, y2, y4 0 and y3 0 4

5 Points to Remember = constraint gives an unrestricted variable and vice versa Desirable constraints yield desirable variables and vice-versa In a minimization is desirable hence the variable corresponding to that will be 0 (look at constraints 2 and 4 in primal) In a minimization is undesirable and hence it gives us 0 variable (look at constraint 3 in primal) In any problem non-negativity is desirable, non-negative variable yield desirable constraint signs (see x1 in primal) Negative variables yield non-desirable constraint signs (see x3 in primal) 5

6 Primal Dual relationships Weak duality theorem If x is a feasible solution for the primal problem and y is a feasible solution to the dual problem, then cx yb Lets look at an example Primal: Max Z = 6x1+5x2 x1+x2 5 3x1+2x2 12 x1, x2 0 Dual Min W = 5y1+12y2 y1+ 3y2 6 y1 + 2y2 5 y1, y2 0 (0,0) Z = 0 (3,1) Z = 23 (3,3) Z = 51 (1,2) Z = 29 6

7 Primal Dual relationships Weak duality mathematically Lets say we have a feasible soln to primal and dual Then we write W = 5y1+12y2 W (x1+x2)y1+ (3x1+2x2)y2 W x1(y1+3y2)+ x2(y1+2y2) W 6x1+ 5x2 = Z W Z If we generalize this to matrices, we proved the weak duality 7

8 Primal Dual relationships Strong duality theorem If x* is an optimal solution for the primal problem and y* is an optimal solution for the dual problem then cx* = y*b If cx* = y*b then x* and y* are solutions to primal and dual respectively Primal: Max Z = 6x1+5x2 x1+x2 5 3x1+2x2 12 x1, x2 0 Try (2, 3) Dual: Min W = 5y1+12y2 y1+ 3y2 6 y1 + 2y2 5 y1, y2 0 Try (3,1) 8

9 Primal Dual Relationship Why do we care about weak duality and strong duality? We care because when we want to develop computer models to solve for large problems, we might use heuristics. Heuristics tap into such logical rules and try to solve the problem quickly For example in a large problem we have access to primal and dual Now if I can quickly find solutions to primal and dual with same objective function value.. I know I hit my optimum.. I can write my code with this as my criterion.. a search based algorithm that does not worry about simplex and so on! 9

10 Primal Dual relationships If one problem has a feasible solution and bounded objective function then so does the other problem If one problem is feasible with an unbounded objective function then the other problem has no feasible solution If one problem has no feasible solution, then other problem either has no feasible solution or is unbounded Again, these relationships can be exploited in solving large problems Lets say I figure out that the Dual has unbounded solution (1-2 iterations).. I don t have to solve primal, I know it is infeasible Once I find out for example, dual is infeasible then I can check directly for unboundedness or infeasibility in primal 10

11 Primal Dual relationships Complementary slackness conditions If x* and y* are optimal solutions to primal and dual respectively, we have xv + yu=0 U and V vector of slack variables for primal and dual We can write this as x i V i + y j U j =0 Because all of these 0 We can write x i V i = 0 and y j U j =0 And in fact, x i V i = 0; y j U j =0 What does this mean? If a particular primal variable is basic then it corresponding dual slack will be 0 11

12 Complementary slackness Primal Maximize Z = 3x1+5x2 x1 4 2x2 12 3x1 + 2x2 18 x1,x2 0 Maximize Z = 3x1+5x2 x1 + u1 = 4 2x2 +u2 = 12 3x1 + 2x2 + u3 = 18 x1, x2, u1, u2, u3 0 Solution (2, 6, 2, 0, 0) Dual Minimize W = 4y1+12y2+18y3 y1+ 3y3 3 2y2+2y3 5 y1, y2, y3 0 Minimize W = 4y1+12y2+18y3 y1+ 3y3 v1 = 3 2y2+2y3 v2 =5 y1, y2, y3, v1, v2 0 Solution From complementary slackness x1 is basic v1 =0; x2 is basic v2 =0 u1 is basic so y1 =0; u2 =0, y2 non-zero; u3 =0, y3 non-zero Solving we get Y2 = 3/2, Y3 =1! Z = 36 12

13 Complementary Slackness Primal: Max Z = 6x1+5x2 x1+x2 + u1 = 5 3x1+2x2 + u2 =12 x1, x2, u1, u2 0 Optimal Soln (2,3,0,0) and Z = 27 Does this satisfy complementary slackness Yes.. x1*v1=0, x2*v2=0 y1*u1=0, y2*u2=0 Dual Min 5y1 + 12y2 y1 + 3y2 v1 = 6 y1 + 2y2 v2 = 5 y1, y2, v1, v2 0 Optimal soln (3,1,0,0) and Z = 27 13

14 Dual Mathematical interpretation Maximize 22 X A +28X B 8X A +10X B X A +3X B 960 X A,X B 0 Optimal solution is (150, 220, 0, 0) Dual Min 3400y1+960y2 8y1+2y y1+3y2 28 y1,y2 0 Dual solution from complementary slackness u1 = 0; y1 non-zero u2 = 0; y2 non-zero x1 basic, v1 = 0 x2 basic, v2=0 Soln (5/2, 1, 0, 0) The dual represents the marginal value for the resource 14

15 Dual Marginal value interpretation Maximize 22 X A +28X B 8X A +10X B X A +3X B 960 X A,X B 0 Lets say 3400 is increased by δ What will happen to the optimal solution Lets assume X A and X B are still in the basis In that case Solve for X A and X B ; X B = 220- δ/2; X A = δ/4 Znew = /2δ We can do the same for 960 Simplex provides the entire range of values 15

16 Dual from Simplex table Solution to the problem in Simplex Basic Z X A X B Y1 Y2 Solution Z / X A /4-5/2 150 X B / By observing the z row we can determine the dual solution at optimality Z / v1 v2 y1 y2 16

17 Full set of iterations Min 3400y1+960y2 8y1+2y2 22; 10y1+3y2 28; y1,y2 0 Basic Z X A X B Y1 Y2 Solution Z Y Y Basic Z X A X B Y1 Y2 Solution Z 1-10/ / Y1 0 4/ /3 200 X B 0 2/ /3 320 Basic Z X A X B Y1 Y2 Solution Z / X A /4-5/2 150 X B /

18 Points to note Whenever the problem is feasible for the primal, but not yet optimal, the dual is infeasible But at optimality dual becomes feasible (as well as optimal) We will exploit this relationship in sensitivity analysis 18

19 Sensitivity Analysis Dual provides the shadow prices We know that we have this information in the simplex itself Dual allows us to do sensitivity analysis more efficiently If I change something in the primal, the change will also transfer to the dual also. Based on which problem will give me the result efficiently I can use that to address the sensitivity 19

20 Changes to a non-basic variable You have solved the primal to optimality and found your basic variables This means these are the set of variables that affect your bottom line Now, you realize the coefficients of the nonbasic variable are not reliable. So how do we test that? What is the impact of changes to the basic feasible solution? Is the solution still feasible? Yes Is the solution still optimal? We need to check 20

21 Example Max x1+4x2+2x3 x1+ x2+ x3 6 x1+ 3x2+ 2x3 12 x1+ 2x2 6 x1, x2, x3 0 Optimal solution is (0, 3, 1.5) 21

22 Example simplex solution x1 x2 x3 s1 s2 s3 RHS Z S S S x1 x2 x3 s1 s2 s3 RHS Z S1 1/ /2 3 S2-1/ /2 3 x2 1/ /2 3 x1 x2 x3 s1 s2 s3 RHS Z 1/ /2 15 S1 ¾ /2 1/4 3/2 x3 - ¼ /2-3/4 3/2 x2 1/ /2 3 22

23 Example Now lets say the coefficient of x1 in obj. function is 2 Is the solution still feasible? Yes What about optimality? Is it easy to figure that out? This is where the dual comes in handy We know that since the solution is optimal, the corresponding dual solution is feasible Lets quickly compute the dual 23

24 Example Dual Min 6y1+12y2+6y3 y1+y2+1y3 1 y1+3y2+2y3 4 y1+2y2 2 y1, y2, y3 0 Can we determine the value of y1, y2, y3from simplex table (0,1, 0.5, 0.5, 0, 0) 24

25 Example Now when we changed the coefficient in obj. function for primal what will change in the dual The change will be only in the constraint 1 Now we know that the optimal solution to primal should remain feasible for the dual So, lets see if the solution is still feasible with new constraint (y1+y2+1y3 2) Soln 0, 1, 0.5 => not feasible Hence when we change the coefficient of x1 in objective function optimal basic solution will change! We checked it with just one constraint A good tool to make quick checks 25

26 Primal Dual relationships Consider the case of adding a new variable to the problem For example, a company produces three products currently and are considering producing a new product What will this mean? 26

27 Example Max x1+4x2+2x3 x1+ x2+ x3 6 x1+ 3x2+ 2x3 12 x1+ 2x2 6 x1, x2, x3 0 Optimal solution is (0, 3, 1.5) Now the company is interested to check if x new will provide more profit New Problem Max x1+4x2+2x3+3x new x1+ x2+ x3 +x new 6 x1+ 3x2+ 2x3+2x new 12 x1+ 2x2 +3x new 6 x1, x2, x3, x new 0 27

28 Example Is the solution still feasible? Yes What about optimality? Check dual feasibility We know that since the solution is optimal, the corresponding dual solution is feasible 28

29 Example New Dual Min 6y1+12y2+6y3 y1+y2+1y3 1 y1+3y2+2y3 4 y1+2y2 2 y1+2y2+3y3 3 (NEW) y1, y2, y3 0 Current optimal solution (0,1, 0.5) Do I have to worry about the entire dual? Only one constraint corresponding to x new is enough! Now check feasibility for new constraint -> still feasible - > so the new product does not change the optimal solution for the company, so you do not start producing x new! 29

30 Sensitivity Analysis Why do we need sensitivity analysis The parameters we use are not exact.. They are estimated.. So we need to understand which are the most important parameters, so that we can try to evaluate them carefully i.e. IDENTIFY SENSITIVE PARAMETERS Also, we would like to know the range of the parameters within which the solution we obtained will remain optimal i.e. RANGE OF THE PARAMETERS Two kinds: (1) range of parameters that ensures the solution is optimal and (2) range of parameters that ensures the solution has to change It will be extremely time consuming if we had to run everything again So, we use insights from our earlier attempts at solving the simplex to conduct sensitivity analysis 30

31 References Hillier F.S and G. J. Lieberman. Introduction to Operations Research, Ninth Edition, McGraw- Hill,

Civil Engineering Systems Analysis Lecture XV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Civil Engineering Systems Analysis Lecture XV. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Civil Engineering Systems Analysis Lecture XV Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Today s Learning Objectives Sensitivity Analysis Dual Simplex Method 2

More information

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018 Section Notes 4 Duality, Sensitivity, and the Dual Simplex Algorithm Applied Math / Engineering Sciences 121 Week of October 8, 2018 Goals for the week understand the relationship between primal and dual

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

Read: H&L chapters 1-6

Read: H&L chapters 1-6 Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research Fall 2006 (Oct 16): Midterm Review http://www-scf.usc.edu/~ise330

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 10: Dual Simplex Yiling Chen SEAS Lesson Plan Interpret primal simplex in terms of pivots on the corresponding dual tableau Dictionaries

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module - 05 Lecture - 24 Solving LPs with mixed type of constraints In the

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Duality. Primal program P: Maximize n. Dual program D: Minimize m. j=1 c jx j subject to n. j=1. i=1 b iy i subject to m. i=1

Duality. Primal program P: Maximize n. Dual program D: Minimize m. j=1 c jx j subject to n. j=1. i=1 b iy i subject to m. i=1 Duality Primal program P: Maximize n j=1 c jx j subject to n a ij x j b i, i = 1, 2,..., m j=1 x j 0, j = 1, 2,..., n Dual program D: Minimize m i=1 b iy i subject to m a ij x j c j, j = 1, 2,..., n i=1

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras.

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras. Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture No # 06 Simplex Algorithm Initialization and Iteration (Refer Slide

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Math Introduction to Operations Research

Math Introduction to Operations Research Math 300 Introduction to Operations Research Examination (50 points total) Solutions. (6 pt total) Consider the following linear programming problem: Maximize subject to and x, x, x 3 0. 3x + x + 5x 3

More information

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Introduction to Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Module 03 Simplex Algorithm Lecture - 03 Tabular form (Minimization) In this

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

A Computer Technique for Duality Theory in Linear Programs

A Computer Technique for Duality Theory in Linear Programs American Journal of Applied Mathematics 2015; 3(3): 95-99 Published online April 23, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150303.13 ISSN: 2330-0043 (Print); ISSN:

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 18 All-Integer Dual Algorithm We continue the discussion on the all integer

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

4.1 The original problem and the optimal tableau

4.1 The original problem and the optimal tableau Chapter 4 Sensitivity analysis The sensitivity analysis is performed after a given linear problem has been solved, with the aim of studying how changes to the problem affect the optimal solution In particular,

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Marginal and Sensitivity Analyses

Marginal and Sensitivity Analyses 8.1 Marginal and Sensitivity Analyses Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor, Winter 1997. Consider LP in standard form: min z = cx, subject to Ax = b, x 0 where A m n and rank m. Theorem:

More information

Recap, and outline of Lecture 18

Recap, and outline of Lecture 18 Recap, and outline of Lecture 18 Previously Applications of duality: Farkas lemma (example of theorems of alternative) A geometric view of duality Degeneracy and multiple solutions: a duality connection

More information

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality 6.854 Advanced Algorithms Scribes: Jay Kumar Sundararajan Lecturer: David Karger Duality This lecture covers weak and strong duality, and also explains the rules for finding the dual of a linear program,

More information

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer

George B. Dantzig Mukund N. Thapa. Linear Programming. 1: Introduction. With 87 Illustrations. Springer George B. Dantzig Mukund N. Thapa Linear Programming 1: Introduction With 87 Illustrations Springer Contents FOREWORD PREFACE DEFINITION OF SYMBOLS xxi xxxiii xxxvii 1 THE LINEAR PROGRAMMING PROBLEM 1

More information

VARIANTS OF THE SIMPLEX METHOD

VARIANTS OF THE SIMPLEX METHOD C H A P T E R 6 VARIANTS OF THE SIMPLEX METHOD By a variant of the Simplex Method (in this chapter) we mean an algorithm consisting of a sequence of pivot steps in the primal system using alternative rules

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Math 414 Lecture 30. The greedy algorithm provides the initial transportation matrix.

Math 414 Lecture 30. The greedy algorithm provides the initial transportation matrix. Math Lecture The greedy algorithm provides the initial transportation matrix. matrix P P Demand W ª «2 ª2 «W ª «W ª «ª «ª «Supply The circled x ij s are the initial basic variables. Erase all other values

More information

Math 5490 Network Flows

Math 5490 Network Flows Math 590 Network Flows Lecture 7: Preflow Push Algorithm, cont. Stephen Billups University of Colorado at Denver Math 590Network Flows p./6 Preliminaries Optimization Seminar Next Thursday: Speaker: Ariela

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Outline. Combinatorial Optimization 2. Finite Systems of Linear Inequalities. Finite Systems of Linear Inequalities. Theorem (Weyl s theorem :)

Outline. Combinatorial Optimization 2. Finite Systems of Linear Inequalities. Finite Systems of Linear Inequalities. Theorem (Weyl s theorem :) Outline Combinatorial Optimization 2 Rumen Andonov Irisa/Symbiose and University of Rennes 1 9 novembre 2009 Finite Systems of Linear Inequalities, variants of Farkas Lemma Duality theory in Linear Programming

More information

OPTIMUM DESIGN. Dr. / Ahmed Nagib Elmekawy. Lecture 3

OPTIMUM DESIGN. Dr. / Ahmed Nagib Elmekawy. Lecture 3 OPTIMUM DESIGN Dr. / Ahmed Nagib Elmekawy Lecture 3 1 Graphical Solution 1. Sketch coordinate system 2. Plot constraints 3. Determine feasible region 4. Plot f(x) contours 5. Find opt solution x* & opt

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Heuristic Optimization Today: Linear Programming Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Linear programming Let s first define it formally: A linear program is an optimization

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Linear Programming Motivation: The Diet Problem

Linear Programming Motivation: The Diet Problem Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Network Flows & Applications NP-completeness Now Linear Programming and the Simplex Method Hung Q. Ngo (SUNY at Buffalo) CSE 531 1

More information

Discuss mainly the standard inequality case: max. Maximize Profit given limited resources. each constraint associated to a resource

Discuss mainly the standard inequality case: max. Maximize Profit given limited resources. each constraint associated to a resource Sensitivity Analysis Discuss mainly the standard inequality case: ma s.t. n a i, z n b, i c i,, m s.t.,,, n ma Maimize Profit given limited resources each constraint associated to a resource Alternate

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Econ 172A - Slides from Lecture 8

Econ 172A - Slides from Lecture 8 1 Econ 172A - Slides from Lecture 8 Joel Sobel October 23, 2012 2 Announcements Important: Midterm seating assignments. Posted tonight. Corrected Answers to Quiz 1 posted. Quiz 2 on Thursday at end of

More information

Tuesday, April 10. The Network Simplex Method for Solving the Minimum Cost Flow Problem

Tuesday, April 10. The Network Simplex Method for Solving the Minimum Cost Flow Problem . Tuesday, April The Network Simplex Method for Solving the Minimum Cost Flow Problem Quotes of the day I think that I shall never see A poem lovely as a tree. -- Joyce Kilmer Knowing trees, I understand

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Generalized Network Flow Programming

Generalized Network Flow Programming Appendix C Page Generalized Network Flow Programming This chapter adapts the bounded variable primal simplex method to the generalized minimum cost flow problem. Generalized networks are far more useful

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Optimization of Design. Lecturer:Dung-An Wang Lecture 8

Optimization of Design. Lecturer:Dung-An Wang Lecture 8 Optimization of Design Lecturer:Dung-An Wang Lecture 8 Lecture outline Reading: Ch8 of text Today s lecture 2 8.1 LINEAR FUNCTIONS Cost Function Constraints 3 8.2 The standard LP problem Only equality

More information

Solving Linear Programs Using the Simplex Method (Manual)

Solving Linear Programs Using the Simplex Method (Manual) Solving Linear Programs Using the Simplex Method (Manual) GáborRétvári E-mail: retvari@tmit.bme.hu The GNU Octave Simplex Solver Implementation As part of the course material two simple GNU Octave/MATLAB

More information

Assignment #3 - Solutions MATH 3300A (01) Optimization Fall 2015

Assignment #3 - Solutions MATH 3300A (01) Optimization Fall 2015 Assignment #3 - Solutions MATH 33A (1) Optimization Fall 15 Section 6.1 1. Typical isoprofit line is 3x 1 +c x =z. This has slope -3/c. If slope of isoprofit line is

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

Lecture notes on Transportation and Assignment Problem (BBE (H) QTM paper of Delhi University)

Lecture notes on Transportation and Assignment Problem (BBE (H) QTM paper of Delhi University) Transportation and Assignment Problems The transportation model is a special class of linear programs. It received this name because many of its applications involve determining how to optimally transport

More information

CSc 545 Lecture topic: The Criss-Cross method of Linear Programming

CSc 545 Lecture topic: The Criss-Cross method of Linear Programming CSc 545 Lecture topic: The Criss-Cross method of Linear Programming Wanda B. Boyer University of Victoria November 21, 2012 Presentation Outline 1 Outline 2 3 4 Please note: I would be extremely grateful

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

CASE STUDY. fourteen. Animating The Simplex Method. case study OVERVIEW. Application Overview and Model Development.

CASE STUDY. fourteen. Animating The Simplex Method. case study OVERVIEW. Application Overview and Model Development. CASE STUDY fourteen Animating The Simplex Method case study OVERVIEW CS14.1 CS14.2 CS14.3 CS14.4 CS14.5 CS14.6 CS14.7 Application Overview and Model Development Worksheets User Interface Procedures Re-solve

More information

INEN 420 Final Review

INEN 420 Final Review INEN 420 Final Review Office Hours: Mon, May 2 -- 2:00-3:00 p.m. Tues, May 3 -- 12:45-2:00 p.m. (Project Report/Critiques due on Thurs, May 5 by 5:00 p.m.) Tuesday, April 28, 2005 1 Final Exam: Wednesday,

More information

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis Linear Programming Revised Simple Method, Dualit of LP problems and Sensitivit analsis Introduction Revised simple method is an improvement over simple method. It is computationall more efficient and accurate.

More information

Modeling the Duality Extraction for Linear Programming Models

Modeling the Duality Extraction for Linear Programming Models Modeling the Duality Extraction for Linear Programming Models 1 University of Bahrain, Bahrain Muwafaq M. Fendi AlKubaisi 1 Correspondence: Dr. Muwafaq M. Fendi AlKubaisi, University of Bahrain, Bahrain.

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý

Interpretation of Dual Model for Piecewise Linear. Programming Problem Robert Hlavatý Interpretation of Dual Model for Piecewise Linear 1 Introduction Programming Problem Robert Hlavatý Abstract. Piecewise linear programming models are suitable tools for solving situations of non-linear

More information

DEGENERACY AND THE FUNDAMENTAL THEOREM

DEGENERACY AND THE FUNDAMENTAL THEOREM DEGENERACY AND THE FUNDAMENTAL THEOREM The Standard Simplex Method in Matrix Notation: we start with the standard form of the linear program in matrix notation: (SLP) m n we assume (SLP) is feasible, and

More information

CSE 460. Today we will look at" Classes of Optimization Problems" Linear Programming" The Simplex Algorithm"

CSE 460. Today we will look at Classes of Optimization Problems Linear Programming The Simplex Algorithm CSE 460 Linear Programming" Today we will look at" Classes of Optimization Problems" Linear Programming" The Simplex Algorithm" Classes of Optimization Problems" Optimization" unconstrained"..." linear"

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Econ 172A - Slides from Lecture 9

Econ 172A - Slides from Lecture 9 1 Econ 172A - Slides from Lecture 9 Joel Sobel October 25, 2012 2 Announcements Important: Midterm seating assignments. Posted. Corrected Answers to Quiz 1 posted. Midterm on November 1, 2012. Problems

More information

Notes for Lecture 20

Notes for Lecture 20 U.C. Berkeley CS170: Intro to CS Theory Handout N20 Professor Luca Trevisan November 13, 2001 Notes for Lecture 20 1 Duality As it turns out, the max-flow min-cut theorem is a special case of a more general

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

Mathematics for Decision Making: An Introduction. Lecture 18

Mathematics for Decision Making: An Introduction. Lecture 18 Mathematics for Decision Making: An Introduction Lecture 18 Matthias Köppe UC Davis, Mathematics March 5, 2009 18 1 Augmenting Circuit Algorithm for Min Cost Flow Augmenting Circuit Algorithm, Kantoróvich

More information

An iteration of the simplex method (a pivot )

An iteration of the simplex method (a pivot ) Recap, and outline of Lecture 13 Previously Developed and justified all the steps in a typical iteration ( pivot ) of the Simplex Method (see next page). Today Simplex Method Initialization Start with

More information

SENSITIVITY. CS4491 Introduction to Computational Models with Python

SENSITIVITY. CS4491 Introduction to Computational Models with Python SENSITIVITY CS4491 Introduction to Computational Models with Python José M Garrido Department of Computer Science January 2016 College of Computing and Software Engineering Kennesaw State University Sensitivity

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Linear Programming with Bounds

Linear Programming with Bounds Chapter 481 Linear Programming with Bounds Introduction Linear programming maximizes (or minimizes) a linear objective function subject to one or more constraints. The technique finds broad use in operations

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Design and Analysis of Algorithms (V)

Design and Analysis of Algorithms (V) Design and Analysis of Algorithms (V) An Introduction to Linear Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Homework Assignment 2 is announced! (deadline Apr. 10) Linear Programming

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No.

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No. Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture No. # 13 Transportation Problem, Methods for Initial Basic Feasible

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

CSE 40/60236 Sam Bailey

CSE 40/60236 Sam Bailey CSE 40/60236 Sam Bailey Solution: any point in the variable space (both feasible and infeasible) Cornerpoint solution: anywhere two or more constraints intersect; could be feasible or infeasible Feasible

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

Primal-Dual Methods for Approximation Algorithms

Primal-Dual Methods for Approximation Algorithms Primal-Dual Methods for Approximation Algorithms Nadia Hardy, April 2004 The following is based on: Approximation Algorithms for NP-Hard Problems. D.Hochbaum, ed. Chapter 4: The primal-dual method for

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information