M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr

Size: px
Start display at page:

Download "M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr"

Transcription

1 Lighting Basics: ADS Model The ADS (ambient, diffuse, specular) model simulates shading in terms of these three components Light source i is modeled as emitting L ira L iga L iba L i = L ird L igd L ibd L irs L igs L ibs where we have three components for each of the primary colors Material j is modeled as reflecting these three components: M jra M jga M jba M j = M jrd M jgd M jbd M jrs M jgs M jbs Intensity of light reflected from surface j when illuminated by source i: I ijr = M jra L ira + M jrd L ird + M jrs L irs = I ijra + I ijrd + I ijrs Intensity of red light reflected from surface j when all sources considered: I jr = n i=1 (I ijra + I ijrd + I ijrs ) + I gr In simpler terms: I = L a M a + L d M d + L M s + I g = I a + I d + I s + I g where I g is the global ambient light Lighting is characterized by the vectors in the following diagram: 1

2 Lighting Basics: ADS Model - Calculations 1. Ambient Ambient reflection represented by factor k a 0 k a 1 Amount of ambient reflected light calculated as M a = k a 2. Diffuse Diffuse reflection represented by factor k d 0 k d 1 Lambert s Law: M d cosθ Amount of diffuse reflected light calculated as M d = k d cosθ I d = k d cosθ L d To perform lighting calculations, want to represent everything in terms of what is known: Locations of vertex, light source, eye Vectors from vertex to light source, vector from vertex to eye, vector normal to vertex 2

3 The reflection vector: Lighting Basics: ADS Model - Calculations (2) Given a light source and a vertex, want to compute the vector representing the reflected light in terms of the normal and the light source vector The vector from a to b is ˆncosθ (The projection of ˆl onto ˆn is ˆl ˆn = ˆl ˆn cosθ since ˆn is a unit vector Since ˆl = ˆn = 1, the length of this projection is cosθ Hence the vector from a to b is ˆncosθ ) s can be represented in terms of ˆl and ˆncosθ: s = ˆncosθ ˆl r can be similarly represented in terms of s and ˆncosθ: r = ˆncosθ + s = ˆncosθ + ˆncosθ ˆl = 2ˆncosθ ˆl Since cosθ ˆl ˆn: r = 2ˆn(ˆl ˆn) ˆl Given the above representation of cosθ in terms of ˆl and ˆn, we can represent I d as k d ˆl ˆn L d 3

4 Lighting Basics: ADS Model - Calculations (3) 3. Phong specular reflection Specular reflection represented by factor k s 0 k s 1 The relevant vectors: Amount of specular reflected light calculated as R s = k s cos α φ α is shininess coefficient α = mirror I s = k s cos α φl s As with reflection, we can replace cosφ with ˆn ˆv, resulting in I s = k s (ˆn ˆv) α L s 4

5 4. The halfway vector Lighting Basics: ADS Model - Calculations (4) The halfway vector is the vector that bisects the angle between ˆl and ˆv ĥ = ˆl + ˆv ˆl + ˆv ˆn ĥ is often used instead of ˆv ˆr in specular calculations It is sometimes referred to as the direction of maximum highlights This is because that - if the surface were rotated so that ˆn were to align with ˆv - the viewer would see the brightest specular highlight The advantage to using ĥ instead of ˆr is that computing r relies on n, which is variable for a non-planar surface, while if both the viewer and light source are at infinity, ĥ is constant The specular term in the Phong model would become k s (ˆn ĥ)α L s Note that while ψ and φ are not the same and thus the two formulations will give different results, neither is based on physical analysis, but rather on empirical observation 5. Intensity inversely proportional to distance This applies to both diffuse and specular light Distance factor: 1 a + bd + cd 2 5

6 6. Complete Phong lighting model: Lighting Basics: ADS Model - Calculations (5) I = OR (using the halfway vector) I = 1 a + bd + cd 2(k d(ˆn ˆl)L d + k s (ˆn ˆv) α L s ) + k a L a 1 a + bd + cd 2(k d(ˆn ˆl)L d + k s (ˆn ĥ)α L s ) + k a L a 6

7 Lighting Basics: Refraction As with reflection, we want to represent the refracted vector in terms of known values: ˆn, ˆl, θ, and φ The projection of ˆl onto ˆm is ˆncosθ ˆl The projection of ˆl onto ˆm is ˆmsinθ Solving for ˆm in terms of the above: The projection of ˆt onto ˆ n is ˆm = ˆ ncosφ The projection of ˆt onto ˆm is ˆmsinφ ˆncosθ ˆl sinθ ˆt can be represented in terms of the above two projections: (1) ˆt = ˆmsinφ ˆ ncosφ (2) 7

8 Substituting 1 in 2 for ˆm: Lighting Basics: Refraction (2) ˆt = sinφ sinθ (ˆncosθ ˆl) ˆ ncosφ (3) Snell s Law states that sinφ sinθ = η l η t where η t and η l are the indices of refraction of the respective media across which the light is transitioning Using Snell s Law and letting η = η l η t, equation 3 can be rewritten as ˆt = (ηcosθ cosφ)ˆn ˆlη (4) Using Snell s Law, we can represent cos φ in terms of η and cosθ: cosφ = 1 sin 2 φ = 1 η 2 sin 2 θ = 1 η 2 (1 cos 2 θ) (5) Substituting ˆn ˆl for cosθ in equation 5 gives cosφ = 1 η 2 (1 (ˆn ˆl) 2 ) (6) Finally, substituting ˆn ˆl for cosθ and equation 6 for cosφ in equation 4 gives ( ) ˆt = η(ˆn ˆl) ˆn 1 η 2 (1 (ˆn ˆl) 2 ) ˆlη (7) 8

Illumination and Shading

Illumination and Shading Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

More information

Comp 410/510 Computer Graphics. Spring Shading

Comp 410/510 Computer Graphics. Spring Shading Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather

More information

Illumination & Shading

Illumination & Shading Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination

More information

Shading Intro. Shading & Lighting. Light and Matter. Light and Matter

Shading Intro. Shading & Lighting. Light and Matter. Light and Matter Shading Intro Shading & Lighting Move from flat to 3-D models Orthographic view of sphere was uniformly color, thus, a flat circle A circular shape with many gradations or shades of color Courtesy of Vincent

More information

Illumination. Illumination CMSC 435/634

Illumination. Illumination CMSC 435/634 Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Illumination and Shading Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Course Objectives (Ch. 10) Know how to consider lights during rendering models

More information

7: Rendering (1) COMP Computer Graphics and Image Processing. Local illumination model. Global illumination model. Direct Direct.

7: Rendering (1) COMP Computer Graphics and Image Processing. Local illumination model. Global illumination model. Direct Direct. COMP27112 Computer Graphics and Image Processing 7: Rendering (1) Toby.Howard@manchester.ac.uk Local and global illumination Direct Direct Direct Direct Indirect Local illumination model Global illumination

More information

Illumination in Computer Graphics

Illumination in Computer Graphics Illumination in Computer Graphics Ann McNamara Illumination in Computer Graphics Definition of light sources. Analysis of interaction between light and objects in a scene. Rendering images that are faithful

More information

Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch

Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch 15-462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model

More information

Shading. Why we need shading. Scattering. Shading. Objectives

Shading. Why we need shading. Scattering. Shading. Objectives Shading Why we need shading Objectives Learn to shade objects so their images appear three-dimensional Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

CHAPTER5. We have learned to build three-dimensional graphical models and to LIGHTING AND SHADING

CHAPTER5. We have learned to build three-dimensional graphical models and to LIGHTING AND SHADING LIGHTING AND SHADING CHAPTER5 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look

More information

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL: CS580: Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Recursive Ray Casting Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could

More information

Shading I Computer Graphics I, Fall 2008

Shading I Computer Graphics I, Fall 2008 Shading I 1 Objectives Learn to shade objects ==> images appear threedimensional Introduce types of light-material interactions Build simple reflection model Phong model Can be used with real time graphics

More information

Rendering. Illumination Model. Wireframe rendering simple, ambiguous Color filling flat without any 3D information

Rendering. Illumination Model. Wireframe rendering simple, ambiguous Color filling flat without any 3D information llumination Model Wireframe rendering simple, ambiguous Color filling flat without any 3D information Requires modeling interaction of light with the object/surface to have a different color (shade in

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Shading II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Shading II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Shading II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Continue discussion of shading Introduce modified Phong model

More information

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces

Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector

More information

Turn on the Lights: Reflectance

Turn on the Lights: Reflectance Turn on the Lights: Reflectance Part 2: Shading Tuesday, October 15 2012 Lecture #14 Goal of Shading Model simple light sources Point light sources Extended light sources Ambient lighting Model lighting

More information

Illumination & Shading: Part 1

Illumination & Shading: Part 1 Illumination & Shading: Part 1 Light Sources Empirical Illumination Shading Local vs Global Illumination Lecture 10 Comp 236 Spring 2005 Computer Graphics Jargon: Illumination Models Illumination - the

More information

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading.

Objectives. Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading. Shading II 1 Objectives Introduce Phong model Introduce modified Phong model Consider computation of required vectors Discuss polygonal shading Flat Smooth Gouraud 2 Phong Lighting Model A simple model

More information

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting

More information

CSE 681 Illumination and Phong Shading

CSE 681 Illumination and Phong Shading CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our

More information

Objectives. Shading II. Distance Terms. The Phong Reflection Model

Objectives. Shading II. Distance Terms. The Phong Reflection Model Shading II Objectives Introduce distance terms to the shading model. More details about the Phong model (lightmaterial interaction). Introduce the Blinn lighting model (also known as the modified Phong

More information

Introduction to Computer Graphics 7. Shading

Introduction to Computer Graphics 7. Shading Introduction to Computer Graphics 7. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

More information

Objectives. Continue discussion of shading Introduce modified Phong model Consider computation of required vectors

Objectives. Continue discussion of shading Introduce modified Phong model Consider computation of required vectors Objectives Continue discussion of shading Introduce modified Phong model Consider computation of required vectors 1 Lambertian Surface Perfectly diffuse reflector Light scattered equally in all directions

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

CS230 : Computer Graphics Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lighting and Shading Tamar Shinar Computer Science & Engineering UC Riverside General light source Illumination function: [Angel and Shreiner] integrate contributions from all

More information

Illumination Models & Shading

Illumination Models & Shading Illumination Models & Shading Lighting vs. Shading Lighting Interaction between materials and light sources Physics Shading Determining the color of a pixel Computer Graphics ZBuffer(Scene) PutColor(x,y,Col(P));

More information

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Illumination Michael Kazhdan (601.457/657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Ray Casting Image RayCast(Camera camera, Scene scene, int width, int height) { Image image = new Image(width, height); for

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting & shading? Sphere

More information

Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling Strategies" Ø The Hall illumination model. Ø Original ray tracing paper

Ø Sampling Theory Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling Strategies Ø The Hall illumination model. Ø Original ray tracing paper CS 431/636 Advanced Rendering Techniques Ø Dr. David Breen Ø Korman 105D Ø Wednesday 6PM 8:50PM Presentation 6 5/16/12 Questions from ast Time? Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling

More information

WHY WE NEED SHADING. Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like.

WHY WE NEED SHADING. Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like. LIGHTING 1 OUTLINE Learn to light/shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can

More information

CS Illumination and Shading. Slide 1

CS Illumination and Shading. Slide 1 CS 112 - Illumination and Shading Slide 1 Illumination/Lighting Interaction between light and surfaces Physics of optics and thermal radiation Very complex: Light bounces off several surface before reaching

More information

CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

More information

Visualisatie BMT. Rendering. Arjan Kok

Visualisatie BMT. Rendering. Arjan Kok Visualisatie BMT Rendering Arjan Kok a.j.f.kok@tue.nl 1 Lecture overview Color Rendering Illumination 2 Visualization pipeline Raw Data Data Enrichment/Enhancement Derived Data Visualization Mapping Abstract

More information

University of Victoria CSC 305 Shading. Brian Wyvill 2016

University of Victoria CSC 305 Shading. Brian Wyvill 2016 University of Victoria CSC 305 Shading Brian Wyvill 2016 The illuminating Hemisphere Energy and Intensity Energy is the intensity integrated over the solid angle through which it acts. Intensity is not

More information

Ambient reflection. Jacobs University Visualization and Computer Graphics Lab : Graphics and Visualization 407

Ambient reflection. Jacobs University Visualization and Computer Graphics Lab : Graphics and Visualization 407 Ambient reflection Phong reflection is a local illumination model. It only considers the reflection of light that directly comes from the light source. It does not compute secondary reflection of light

More information

Lighting and Shading. Slides: Tamar Shinar, Victor Zordon

Lighting and Shading. Slides: Tamar Shinar, Victor Zordon Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2

More information

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Computer Vision Systems Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Viewing Systems Viewing Transformation Projective Transformation 2D Computer Graphics Devices

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Illumination (Lighting)! Model the interaction of light with surface points to determine their final color and brightness! The illumination can be computed either at vertices or

More information

Interactive Real-Time Raycasting

Interactive Real-Time Raycasting Interactive Real-Time Raycasting CS184 AS4 Due 2009-02-26 11:00pm We start our exploration of Rendering - the process of converting a high-level object-based description into a graphical image for display.

More information

Implementation Issues

Implementation Issues Implementation Issues More from Interface point of view Y V U Eye N X Z World Coordinate System (WCS) Viewing Coordinate System (VCS) View Coordinate System (VCS) Viewing coordinate system Position and

More information

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College Computer Graphics Shading Based on slides by Dianna Xu, Bryn Mawr College Image Synthesis and Shading Perception of 3D Objects Displays almost always 2 dimensional. Depth cues needed to restore the third

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

Shading II. CITS3003 Graphics & Animation

Shading II. CITS3003 Graphics & Animation Shading II CITS3003 Graphics & Animation Objectives Introduce distance terms to the shading model. More details about the Phong model (lightmaterial interaction). Introduce the Blinn lighting model (also

More information

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014 ECS 175 COMPUTER GRAPHICS Ken Joy Winter 2014 Shading To be able to model shading, we simplify Uniform Media no scattering of light Opaque Objects No Interreflection Point Light Sources RGB Color (eliminating

More information

Raytracing CS148 AS3. Due :59pm PDT

Raytracing CS148 AS3. Due :59pm PDT Raytracing CS148 AS3 Due 2010-07-25 11:59pm PDT We start our exploration of Rendering - the process of converting a high-level object-based description of scene into an image. We will do this by building

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #6: Lights Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Thursday in class: midterm #1 Closed book Material

More information

w Foley, Section16.1 Reading

w Foley, Section16.1 Reading Shading w Foley, Section16.1 Reading Introduction So far, we ve talked exclusively about geometry. w What is the shape of an object? w How do I place it in a virtual 3D space? w How do I know which pixels

More information

Ray-Tracing. Misha Kazhdan

Ray-Tracing. Misha Kazhdan Ray-Tracing Misha Kazhdan Ray-Tracing In graphics, we often represent the surface of a 3D shape by a set of triangles. Goal: Ray-Tracing Take a collection of triangles representing a 3D scene and render

More information

Specular Reflection. Lecture 19. Robb T. Koether. Hampden-Sydney College. Wed, Oct 4, 2017

Specular Reflection. Lecture 19. Robb T. Koether. Hampden-Sydney College. Wed, Oct 4, 2017 Specular Reflection Lecture 19 Robb T. Koether Hampden-Sydney College Wed, Oct 4, 2017 Robb T. Koether (Hampden-Sydney College) Specular Reflection Wed, Oct 4, 2017 1 / 22 Outline 1 Specular Reflection

More information

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 8: Lighting and Shading Tamar Shinar Computer Science & Engineering UC Riverside Why we need shading Suppose we build a model of a sphere using many polygons and color

More information

Illumination. Courtesy of Adam Finkelstein, Princeton University

Illumination. Courtesy of Adam Finkelstein, Princeton University llumination Courtesy of Adam Finkelstein, Princeton University Ray Casting mage RayCast(Camera camera, Scene scene, int width, int height) { mage image = new mage(width, height); for (int i = 0; i < width;

More information

Computer Graphics. Ray Tracing. Based on slides by Dianna Xu, Bryn Mawr College

Computer Graphics. Ray Tracing. Based on slides by Dianna Xu, Bryn Mawr College Computer Graphics Ray Tracing Based on slides by Dianna Xu, Bryn Mawr College Ray Tracing Example Created by Anto Matkovic Ray Tracing Example Ray Tracing Example Ray Tracing Most light rays do not reach

More information

Illumination & Shading I

Illumination & Shading I CS 543: Computer Graphics Illumination & Shading I Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

More information

Lighting and Reflectance COS 426

Lighting and Reflectance COS 426 ighting and Reflectance COS 426 Ray Casting R2mage *RayCast(R3Scene *scene, int width, int height) { R2mage *image = new R2mage(width, height); for (int i = 0; i < width; i++) { for (int j = 0; j < height;

More information

Reflection and Shading

Reflection and Shading Reflection and Shading R. J. Renka Department of Computer Science & Engineering University of North Texas 10/19/2015 Light Sources Realistic rendering requires that we model the interaction between light

More information

Supplement to Lecture 16

Supplement to Lecture 16 Supplement to Lecture 16 Global Illumination: View Dependent CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Notes and figures from Ed Angel: Interactive Computer Graphics, 6 th Ed., 2012 Addison

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Computer Graphics Lecture #8: Shading Prof. James O Brien University of California, Berkeley V2006-S-08-2.0 Today Local Illumination & Shading The BRDF Simple diffuse and specular approximations

More information

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Programming For this assignment you will write a simple ray tracer. It will be written in C++ without

More information

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing

Introduction Ray tracing basics Advanced topics (shading) Advanced topics (geometry) Graphics 2010/2011, 4th quarter. Lecture 11: Ray tracing Lecture 11 Ray tracing Introduction Projection vs. ray tracing Projection Ray tracing Rendering Projection vs. ray tracing Projection Ray tracing Basic methods for image generation Major areas of computer

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading Rendering Pipeline modelling of geometry transformation into world coordinates placement of cameras and light sources transformation into camera coordinates backface culling projection clipping w.r.t.

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading () Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

9. Illumination and Shading

9. Illumination and Shading 9. Illumination and Shading Approaches for visual realism: - Remove hidden surfaces - Shade visible surfaces and reproduce shadows - Reproduce surface properties Texture Degree of transparency Roughness,

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry Visual appearance Christopher Dyken and Martin Reimers 23.09.2009 Page 1 Visual appearance Real Time Rendering: Chapter 5 Light Sources and materials Shading

More information

Illumination and Shading ECE 567

Illumination and Shading ECE 567 Illumination and Shading ECE 567 Overview Lighting Models Ambient light Diffuse light Specular light Shading Models Flat shading Gouraud shading Phong shading OpenGL 2 Introduction To add realism to drawings

More information

Today we will start to look at illumination models in computer graphics

Today we will start to look at illumination models in computer graphics 1 llumination Today we will start to look at illumination models in computer graphics Why do we need illumination models? Different kinds lights Different kinds reflections Basic lighting model 2 Why Lighting?

More information

Illumination and Shading

Illumination and Shading CT4510: Computer Graphics Illumination and Shading BOCHANG MOON Photorealism The ultimate goal of rendering is to produce photo realistic images. i.e., rendered images should be indistinguishable from

More information

Lighting Models. CS116B Chris Pollett Mar 21, 2004.

Lighting Models. CS116B Chris Pollett Mar 21, 2004. Lighting Models CS116B Chris Pollett Mar 21, 2004. Outline Overview Light Sources Surface Lighting Effect Basic Illumination Models Overview An illumination model (lighting model) is used to calculate

More information

Lighting and Shading

Lighting and Shading Lighting and Shading Today: Local Illumination Solving the rendering equation is too expensive First do local illumination Then hack in reflections and shadows Local Shading: Notation light intensity in,

More information

Raytracing. COSC 4328/5327 Scott A. King

Raytracing. COSC 4328/5327 Scott A. King Raytracing COSC 4328/5327 Scott A. King Basic Ray Casting Method pixels in screen Shoot ray p from the eye through the pixel. Find closest ray-object intersection. Get color at intersection Basic Ray Casting

More information

OpenGl Pipeline. triangles, lines, points, images. Per-vertex ops. Primitive assembly. Texturing. Rasterization. Per-fragment ops.

OpenGl Pipeline. triangles, lines, points, images. Per-vertex ops. Primitive assembly. Texturing. Rasterization. Per-fragment ops. OpenGl Pipeline Individual Vertices Transformed Vertices Commands Processor Per-vertex ops Primitive assembly triangles, lines, points, images Primitives Fragments Rasterization Texturing Per-fragment

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

CPSC / Illumination and Shading

CPSC / Illumination and Shading CPSC 599.64 / 601.64 Rendering Pipeline usually in one step modelling of geometry transformation into world coordinate system placement of cameras and light sources transformation into camera coordinate

More information

Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors

Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors Extraction of surface normal and index of refraction using a pair of passive infrared polarimetric sensors Firooz Sadjadi Lockheed Martin Corporation Saint Paul, Minnesota firooz.sadjadi@ieee.org Farzad

More information

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source

surface: reflectance transparency, opacity, translucency orientation illumination: location intensity wavelength point-source, diffuse source walters@buffalo.edu CSE 480/580 Lecture 18 Slide 1 Illumination and Shading Light reflected from nonluminous objects depends on: surface: reflectance transparency, opacity, translucency orientation illumination:

More information

Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

More information

CS770/870 Spring 2017 Color and Shading

CS770/870 Spring 2017 Color and Shading Preview CS770/870 Spring 2017 Color and Shading Related material Cunningham: Ch 5 Hill and Kelley: Ch. 8 Angel 5e: 6.1-6.8 Angel 6e: 5.1-5.5 Making the scene more realistic Color models representing the

More information

CS452/552; EE465/505. Intro to Lighting

CS452/552; EE465/505. Intro to Lighting CS452/552; EE465/505 Intro to Lighting 2-10 15 Outline! Projection Normalization! Introduction to Lighting (and Shading) Read: Angel Chapter 5., sections 5.4-5.7 Parallel Projections Chapter 6, sections

More information

Computer Graphics: 3-Local Illumination Models

Computer Graphics: 3-Local Illumination Models Computer Graphics: 3-Local Illumination Models Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de Introduction After having illustrated

More information

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Local Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Graphics Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism

More information

Local Reflection Models

Local Reflection Models Local Reflection Models Illumination Thus Far Simple Illumination Models Ambient + Diffuse + Attenuation + Specular Additions Texture, Shadows, Used in global algs! (Ray tracing) Problem: Different materials

More information

Overview. Shading. Shading. Why we need shading. Shading Light-material interactions Phong model Shading polygons Shading in OpenGL

Overview. Shading. Shading. Why we need shading. Shading Light-material interactions Phong model Shading polygons Shading in OpenGL Overview Shading Shading Light-material interactions Phong model Shading polygons Shading in OpenGL Why we need shading Suppose we build a model of a sphere using many polygons and color it with glcolor.

More information

Supplementary Material: The Rotation Matrix

Supplementary Material: The Rotation Matrix Supplementary Material: The Rotation Matrix Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2014 COMP 4766/6778 (MUN) The Rotation Matrix January

More information

CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions. The Midterm Exam was given in class on Thursday, October 23, 2008.

CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions. The Midterm Exam was given in class on Thursday, October 23, 2008. CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions The Midterm Exam was given in class on Thursday, October 23, 2008. 1. [4 pts] Drawing Where? Your instructor says that objects should always be

More information

CS Computer Graphics: Illumination and Shading I

CS Computer Graphics: Illumination and Shading I CS 543 - Computer Graphics: Illumination and Shading I by Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Illumination and Shading Problem: Model light/surface point interactions to determine

More information

CS Computer Graphics: Illumination and Shading I

CS Computer Graphics: Illumination and Shading I CS 543 - Computer Graphics: Illumination and Shading I by Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Illumination and Shading Problem: Model light/surface point interactions to determine

More information

Introduction. Lighting model Light reflection model Local illumination model Reflectance model BRDF

Introduction. Lighting model Light reflection model Local illumination model Reflectance model BRDF Shading Introduction Affine transformations help us to place objects into a scene. Before creating images of these objects, we ll look at models for how light interacts with their surfaces. Such a model

More information

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. 11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

Multimedia Signals and Systems Virtual Reality and VRML

Multimedia Signals and Systems Virtual Reality and VRML Multimedia Signals and Systems Virtual Reality and VRML Kunio Takaya Electrical and Computer Engineering University of Saskatchewan January 16, 2008 ** Go to full-screen mode now by hitting CTRL-L 1 Contents

More information

Lecture 19: All Together with Refraction

Lecture 19: All Together with Refraction Lecture 19: All Together with Refraction December 1, 2016 12/1/16 CSU CS410 Fall 2016, Ross Beveridge & Bruce Draper 1 How about Interreflections? Note reflections Granite tabletop Visible on base Also

More information

Shading and Illumination

Shading and Illumination Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω

More information

Shading Models. Simulate physical phenomena

Shading Models. Simulate physical phenomena Illumination Models & Shading Shading Models Simulate hysical henomena Real illumination simulation is comlicated & exensive Use aroximation and heuristics with little hysical basis that looks surrisingly

More information

Today s class. Simple shadows Shading Lighting in OpenGL. Informationsteknologi. Wednesday, November 21, 2007 Computer Graphics - Class 10 1

Today s class. Simple shadows Shading Lighting in OpenGL. Informationsteknologi. Wednesday, November 21, 2007 Computer Graphics - Class 10 1 Today s class Simple shadows Shading Lighting in OpenGL Wednesday, November 21, 27 Computer Graphics - Class 1 1 Simple shadows Simple shadows can be gotten by using projection matrices Consider a light

More information