animation projects in digital art animation 2009 fabio pellacini 1

Size: px
Start display at page:

Download "animation projects in digital art animation 2009 fabio pellacini 1"

Transcription

1 animation projects in digital art animation 2009 fabio pellacini 1

2 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2

3 how animation works? flip very fast a set of fixed images perceived as motion by our visual system how many images per second? should be above flicker fusion: > 60 Hz NTSC TV signal: 60 half-frames per second movies: 24 fps repeated 3 times projects in digital art animation 2009 fabio pellacini 3

4 motion blur avoid strobing effects (aliasing over time) [Cook et al., 1984] projects in digital art animation 2009 fabio pellacini 4

5 principles of animation squash-and-stretch [Lassiter, 1987] projects in digital art animation 2009 fabio pellacini 5

6 principles of animation squash-and-stretch slow motion [Lassiter, 1987] fast motion fast motion w s.s. projects in digital art animation 2009 fabio pellacini 6

7 principles of animation timing [Lassiter, 1987] projects in digital art animation 2009 fabio pellacini 7

8 principles of animation anticipation [Lassiter, 1987] projects in digital art animation 2009 fabio pellacini 8

9 movie time luxo jr. projects in digital art animation 2009 fabio pellacini 9

10 animation representation many ways to represent changes with time depends on intent artistic motion physically-plausible motion projects in digital art animation 2009 fabio pellacini 10

11 animation editing different techniques for different processes key-framing describe key poses, interpolate the rest man-made process: laborious but artistic good for characters procedural animation motion expressed algorithmically good for small secondary motion or special effects e.g. clock animation projects in digital art animation 2009 fabio pellacini 11

12 animation editing different techniques for different processes motion capture: reproducing performances good for character, but requires lots of hand-tuning physically-based simulation assign physical properties simulate physics realistic, but difficult to set up and control style projects in digital art animation 2009 fabio pellacini 12

13 representing changes one frame-at-a-time inefficient and cumbersome key-frame animation define key poses interpolate in the middle projects in digital art animation 2009 fabio pellacini 13

14 key-frame animation used in 2d hand-drawn animation head animators define key poses inbetweeners define intermediate poses same conceptual framework animator defines key poses computer interpolates intermediate poses projects in digital art animation 2009 fabio pellacini 14

15 key-frame animation [Lassiter, 1987] projects in digital art animation 2009 fabio pellacini 15

16 key-frame interpolation how to define interpolating function choose smooth curve formulation: splines not controlled by the key-frame themselves can only add more keyframes if things go wrong acceleration depends on interpolating functions [Lassiter, 1987] projects in digital art animation 2009 fabio pellacini 16

17 key-frame animation what to interpolate? shape are defined by control points too many controls for animation purposes express deformation with meaningful parameters deformation: changes in shape degrees of freedom modeling: number of control points animation: parameters of deformations ui: parameters of manipulators use smallest number of degrees of freedom projects in digital art animation 2009 fabio pellacini 17

18 key-frame animation visualization feedback comes in various forms animation playback parameter curve ghosting value time projects in digital art animation 2009 fabio pellacini 18

19 inheriting vs. constraining hierarchical transformations are inherited children can completely change their transform useful as a UI technique to speed up the setup sometimes we want to enforce constraints e.g. feet on the ground various kinds exists hard to mix with other animation sources will not cover in depth projects in digital art animation 2009 fabio pellacini 19

20 constraints on hierarchies reduce degrees of freedom of child transform robot arm example projects in digital art animation 2009 fabio pellacini 20

21 constraints on hierarchies sliding joints rotational joints projects in digital art animation 2009 fabio pellacini 21

22 animating a stick-figure/skeleton bones do not deform can be represented by rigid body transformations hierarchies can be naturally applied e.g. hand parented to arm, foot to leg, etc. constraints to avoid unrealistic motion only rotational joints most rotations have limited angles, e.g. knee we have a very good model for stick figure animation!!! projects in digital art animation 2009 fabio pellacini 22

23 providing deformation parameters kinematics provide transformation parameters directly hand-editing forward kinematics inverse kinematics motion capture dynamics solve physics equations of motion projects in digital art animation 2009 fabio pellacini 23

24 forward kinematics artists defines transformation parameters directly hierarchical transformations used for bone structures in character animation e.g. skeletons or robots hard to define what happens at end of chains e.g. which angles should the leg be to have the foot touch the floor? done by trial and error projects in digital art animation 2009 fabio pellacini 24

25 forward kinematics position at end of the chain projects in digital art animation 2009 fabio pellacini 25

26 inverse kinematics specify directly the position at the end of chain easier to control motion, less trial and error joints angles solutions by inverting previous eqs. projects in digital art animation 2009 fabio pellacini 26

27 inverse kinematics more bones results in under-constrained system infinite number of solutions which solution to pick? impose constraints: minimize energy function based on plausible motion projects in digital art animation 2009 fabio pellacini 27

28 inverse kinematics or try to capture styles by learning from data sets [Grochow et al., 2004] projects in digital art animation 2009 fabio pellacini 28

29 review: forward kinematics top-down method begin by positioning and rotating parent objects then position and rotate child objects uses a hierarchical linking from parent to child pivot points define joints between objects children inherit the transforms of their parents projects in digital art animation 2009 fabio pellacini 29

30 review: inverse kinematics bottom-up method position a goal location for a joint IK solver determines the transforms for all parents uses a hierarchical linking from parent to child pivot points define joints between objects joints can be limited by constraining positional and rotational degrees of freedom child transforms affect parents ones depending on goal systems, constraints and defaults projects in digital art animation 2009 fabio pellacini 30

31 forward vs. inverse kinematics forward kinematics more laborious approach (needs lots of keyframes) less setup (since does not require proper joints) more control over final look inverse kinematics way less work more setup a lot less control new style-based IK systems soon available projects in digital art animation 2009 fabio pellacini 31

32 motion capture record motion and play it back how to record: motion capture systems how to apply motion to digital characters motion editing motion retargeting projects in digital art animation 2009 fabio pellacini 32

33 motion capture usage heavily in games, a bit in movies not very expressive, but more high expectation [ Sony] projects in digital art animation 2009 fabio pellacini 33

34 motion capture systems mechanical optical [ Animazoo] [Popovic] projects in digital art animation 2009 fabio pellacini 34

35 motion capture editing motion capture generates too much raw data how to edit it? try to fit with lower DOFs models motion retargeting capture from actor A, but apply to actor B how to do this in a believable manner? clean up motion noise present in data / too little DOFs how to clean it up? often just starting point for manual animation projects in digital art animation 2009 fabio pellacini 35

36 kinematics vs. dynamics kinematics: specify parameters directly dynamics: solve the equations of motion physically based animation rigid body dynamics solve rigid body equations collision detection doable in many cases more complex cases almost impossible cannot model physics accurately enough simply for good-enough solutions projects in digital art animation 2009 fabio pellacini 36

37 dynamics animation from dynamics is accurate since we are simulating physics at the price of less artistic freedom cartoon physics anyone? control-vs-correctness triage often hard interests in mixing dynamics with kinematics open research issue projects in digital art animation 2009 fabio pellacini 37

38 dynamics simulating simple objects [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 38

39 dynamics simulating complex situations [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 39

40 dynamics simulating complex objects [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 40

41 dynamics simulating complex objects [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 41

42 controlling dynamics basic principle: cheat where you can [Popovic et al., 2003] projects in digital art animation 2009 fabio pellacini 42

43 movie time for the birds projects in digital art animation 2009 fabio pellacini 43

44 natural phenomena often done by physical simulation looks like computational physics simulation domain choose based on phenomena to define e.g. smoke uses volumetric adaptive grids e.g. cloth uses points/springs systems simulation algorithms very different ones depending on simulation domain lots of open research projects in digital art animation 2009 fabio pellacini 44

45 natural phenomena [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 45

46 natural phenomena [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 46

47 natural phenomena [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 47

48 natural phenomena [Fedkiw et al.] projects in digital art animation 2009 fabio pellacini 48

49 particle systems collection of particles simple, since it is just simulating point dynamics used heavily in special effects complex phenomena represented as point/force collections simplest dynamics formulation point properties dynamics: position/velocity/acceleration varying properties: color/temperature/lifespan constant properties: mass/lifetime projects in digital art animation 2009 fabio pellacini 49

50 particle systems for each frame create new random particles where to create? along point/line/surface artistic control delete expired particles random/lifespan/collision update particles based on dynamics render particles projects in digital art animation 2009 fabio pellacini 50

51 particle dynamics Newton equation find position at time t given position, velocity and acceleration at time 0 initial value problem: use Euler method more efficient methods exist projects in digital art animation 2009 fabio pellacini 51

52 particle systems example [Reeves, 1983] projects in digital art animation 2009 fabio pellacini 52

53 particle systems example [Reeves, 1983] projects in digital art animation 2009 fabio pellacini 53

54 particle systems example [Reeves, 1983] projects in digital art animation 2009 fabio pellacini 54

55 particle systems example [Reeves, 1983] projects in digital art animation 2009 fabio pellacini 55

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010)

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 24: Animation http://inst.eecs.berkeley.edu/~cs184 To Do Submit HW 4 (today) Start working on HW 5 (can be simple add-on) Many slides courtesy

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 21 KEYFRAME ANIMATION 1 Lecture Overview Review of last class Next week Quiz #2 Project presentations rubric Today Keyframe Animation Programming Assignment #3 solution

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Animation by Adaptation Tutorial 1: Animation Basics

Animation by Adaptation Tutorial 1: Animation Basics Animation by Adaptation Tutorial 1: Animation Basics Michael Gleicher Graphics Group Department of Computer Sciences University of Wisconsin Madison http://www.cs.wisc.edu/graphics Outline Talk #1: Basics

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Character Animation. Presented by: Pam Chow

Character Animation. Presented by: Pam Chow Character Animation Presented by: Pam Chow Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. PLAZMO AND

More information

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling

Keyframe Animation. Animation. Computer Animation. Computer Animation. Animation vs Modeling. Animation vs Modeling CSCI 420 Computer Graphics Lecture 19 Keyframe Animation Traditional Animation Keyframe Animation [Angel Ch. 9] Animation "There is no particular mystery in animation...it's really very simple, and like

More information

Character Animation 1

Character Animation 1 Character Animation 1 Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character

More information

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker Beginners Guide Maya To be used next to Learning Maya 5 Foundation 15 juni 2005 Clara Coepijn 0928283 Raoul Franker 1202596 Index Index 1 Introduction 2 The Interface 3 Main Shortcuts 4 Building a Character

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION Rémi Ronfard, Animation, M2R MOSIG 2 Outline Principles of animation Keyframe interpolation Rigging, skinning and walking

More information

Topics in Computer Animation

Topics in Computer Animation Topics in Computer Animation Animation Techniques Artist Driven animation The artist draws some frames (keyframing) Usually in 2D The computer generates intermediate frames using interpolation The old

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics Preview CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles of traditional

More information

Keyframing an IK Skeleton Maya 2012

Keyframing an IK Skeleton Maya 2012 2002-2012 Michael O'Rourke Keyframing an IK Skeleton Maya 2012 (This tutorial assumes you have done the Creating an Inverse Kinematic Skeleton tutorial in this set) Concepts Once you have built an Inverse

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc.

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc. ANIMATION Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character is represented

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeleton Origin (root) Joint centers/ bones lengths ) Keyframes Pos/Rot Root (x) Joint Angles (q) Kinematics study of static

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

Character Animation COS 426

Character Animation COS 426 Character Animation COS 426 Syllabus I. Image processing II. Modeling III. Rendering IV. Animation Image Processing (Rusty Coleman, CS426, Fall99) Rendering (Michael Bostock, CS426, Fall99) Modeling (Dennis

More information

Basics of Motion Generation

Basics of Motion Generation Basics of Motion Generation let X i = position,orient. of O i at t k = t 0, i END = false while (not END) do display O i, i t k = t k + Δt generate X i at t k, i END = function(motion generation) Methods

More information

CS 231. Inverse Kinematics Intro to Motion Capture

CS 231. Inverse Kinematics Intro to Motion Capture CS 231 Inverse Kinematics Intro to Motion Capture Representation 1) Skeleton Origin (root) Joint centers/ bones lengths 2) Keyframes Pos/Rot Root (x) Joint Angles (q) 3D characters Kinematics study of

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017 Computer Graphics Si Lu Fall 2017 http://web.cecs.pdx.edu/~lusi/cs447/cs447_547_comp uter_graphics.htm 11/27/2017 Last time o Ray tracing 2 Today o Animation o Final Exam: 14:00-15:30, Novermber 29, 2017

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Computer Graphics II

Computer Graphics II Computer Graphics II Autumn 2017-2018 Outline MoCap 1 MoCap MoCap in Context WP Vol. 2; Ch. 10 MoCap originated in TV and film industry but games industry was first to adopt the technology as a routine

More information

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101 Animation by Example Lecture 1: Introduction, Human Representation Michael Gleicher University of Wisconsin- Madison www.cs.wisc.edu/~gleicher www.cs.wisc.edu/graphics Why animate humans? Movies Television

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Welman, 1993 Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation, Chris

More information

Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p.

Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p. Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p. 6 Realistic Designs p. 6 Stylized Designs p. 7 Designing a Character

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Computer Graphics. Spring Feb Ghada Ahmed, PhD Dept. of Computer Science Helwan University

Computer Graphics. Spring Feb Ghada Ahmed, PhD Dept. of Computer Science Helwan University Spring 2018 13 Feb 2018, PhD ghada@fcih.net Agenda today s video 2 Starting video: Video 1 Video 2 What is Animation? Animation is the rapid display of a sequence of images to create an illusion of movement

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Learning Autodesk Maya The Modeling & Animation Handbook. Free Models From Turbo Squid Value US $ Official Autodesk Training Guide

Learning Autodesk Maya The Modeling & Animation Handbook. Free Models From Turbo Squid Value US $ Official Autodesk Training Guide Free Models From Turbo Squid Value US $239.00 Official Autodesk Training Guide Learning Autodesk Maya 2008 The Modeling & Animation Handbook A hands-on introduction to key tools and techniques in Autodesk

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Breathing life into your applications: Animation with Qt 3D. Dr Sean Harmer Managing Director, KDAB (UK)

Breathing life into your applications: Animation with Qt 3D. Dr Sean Harmer Managing Director, KDAB (UK) Breathing life into your applications: Animation with Qt 3D Dr Sean Harmer Managing Director, KDAB (UK) sean.harmer@kdab.com Contents Overview of Animations in Qt 3D Simple Animations Skeletal Animations

More information

Computer Animation. Courtesy of Adam Finkelstein

Computer Animation. Courtesy of Adam Finkelstein Computer Animation Courtesy of Adam Finkelstein Advertisement Computer Animation What is animation? o Make objects change over time according to scripted actions What is simulation? o Predict how objects

More information

Maya Lesson 8 Notes - Animated Adjustable Desk Lamp

Maya Lesson 8 Notes - Animated Adjustable Desk Lamp Maya Lesson 8 Notes - Animated Adjustable Desk Lamp To Model the Lamp: 1. Research: Google images - adjustable desk lamp. 2. Print several images of lamps for ideas to model. 3. Make a sketch of the lamp

More information

Animation. Traditional Animation Keyframe Animation. Interpolating Rotation Forward/Inverse Kinematics

Animation. Traditional Animation Keyframe Animation. Interpolating Rotation Forward/Inverse Kinematics Animation Traditional Animation Keyframe Animation Interpolating Rotation Forward/Inverse Kinematics Overview Animation techniques Performance-based (motion capture) Traditional animation (frame-by-frame)

More information

CSE 682: Animation. Winter Jeff Walsh, Stephen Warton, Brandon Rockwell, Dustin Hoffman

CSE 682: Animation. Winter Jeff Walsh, Stephen Warton, Brandon Rockwell, Dustin Hoffman CSE 682: Animation Winter 2012 Jeff Walsh, Stephen Warton, Brandon Rockwell, Dustin Hoffman Topics: Path animation Camera animation Keys and the graph editor Driven keys Expressions Particle systems Animating

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Animation, Motion Capture, & Inverse Kinematics

Animation, Motion Capture, & Inverse Kinematics Animation, Motion Capture, & Inverse Kinematics Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH Enumerate all cases (including rotations) of the 2D version of Marching Cubes, labeling

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

SM2231 :: 3D Animation I :: Basic. Rigging

SM2231 :: 3D Animation I :: Basic. Rigging SM2231 :: 3D Animation I :: Basic Rigging Object arrangements Hierarchical Hierarchical Separate parts arranged in a hierarchy can be animated without a skeleton Flat Flat Flat hierarchy is usually preferred,

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

CNM 190 Advanced Digital Animation Lec 10 : Inverse Kinematics & Automating Animation

CNM 190 Advanced Digital Animation Lec 10 : Inverse Kinematics & Automating Animation A ski-jumping Luxo, Jr.. from Spacetime Constraints, 1988 CNM 190 Advanced Digital Animation Lec 10 : Inverse Kinematics & Automating Animation Dan Garcia,, EECS (co-instructor) Greg Niemeyer, Art (co-instructor)

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Computer Animation INF2050

Computer Animation INF2050 Computer Animation INF2050 Comments from Lasseter Keyframing Computers are stupid Worst case, keyframe required for every frame John discovered that some degrees of freedom (DOFs) require more keyframes

More information

Motion for Computer Animation. Michael Gleicher Department of Computer Sciences University of Wisconsin, Madison

Motion for Computer Animation. Michael Gleicher Department of Computer Sciences University of Wisconsin, Madison Motion for Computer Animation Michael Gleicher Department of Computer Sciences University of Wisconsin, Madison Outline A brief history of computer animation (animation appreciation) Video! Techniques

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

Animation by Adaptation Tales of Motion Use and Re-Use

Animation by Adaptation Tales of Motion Use and Re-Use Animation by Adaptation Tales of Motion Use and Re-Use Michael Gleicher And the UW Graphics Gang Department of Computer Sciences University of Wisconsin Madison http://www.cs.wisc.edu/graphics Tales of

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

Animation. Representation of objects as they vary over time. Traditionally, based on individual drawing or photographing the frames in a sequence

Animation. Representation of objects as they vary over time. Traditionally, based on individual drawing or photographing the frames in a sequence 6 Animation Animation Representation of objects as they vary over time Traditionally, based on individual drawing or photographing the frames in a sequence Computer animation also results in a sequence

More information

Evaluation of motion retargeting using spacetime constraints. Master s Thesis of Bas Lommers. December 6, Supervisor: Dr. J.

Evaluation of motion retargeting using spacetime constraints. Master s Thesis of Bas Lommers. December 6, Supervisor: Dr. J. Evaluation of motion retargeting using spacetime constraints Master s Thesis of Bas Lommers Student Number: 3441431 December 6, 2013 Supervisor: Dr. J. Egges Thesis number: ICA-3441431 Utrecht University

More information

Animator Friendly Rigging Part 2b

Animator Friendly Rigging Part 2b Animator Friendly Rigging Part 2b Creating animation rigs which solve problems, are fun to use, and don t cause nervous breakdowns. - 1- CONTENTS Review The Requirements... 5 Torso Animation Rig Requirements...

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Animating Non-Human Characters using Human Motion Capture Data

Animating Non-Human Characters using Human Motion Capture Data Animating Non-Human Characters using Human Motion Capture Data Laurel Bancroft 1 and Jessica Hodgins 2 1 College of Fine Arts, Carngie Mellon University, lbancrof@andrew.cmu.edu 2 Computer Science, Carnegie

More information

Reading. Animation principles. Required:

Reading. Animation principles. Required: Reading Required: Animation principles John Lasseter. Principles of traditional animation applied to 3D computer animation. Proceedings of SIGGRAPH (Computer Graphics) 21(4): 35-44, July 1987. Recommended:

More information

Modeling. Anuj Agrawal Dan Bibyk Joe Pompeani Hans Winterhalter

Modeling. Anuj Agrawal Dan Bibyk Joe Pompeani Hans Winterhalter Modeling Anuj Agrawal Dan Bibyk Joe Pompeani Hans Winterhalter Modeling Joe o Polygon Models o NURBS o Subdivision Surfaces o Locators Hans o Splitting polygons, joining objects, extruding faces o Extrude,

More information

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard The Line of Action: an Intuitive Interface for Expressive Character Posing Martin Guay, Marie-Paule Cani, Rémi Ronfard LJK, INRIA, Université de Grenoble [S.Lee and J. Buscema, Drawing Comics the Marvel

More information

Chapter 5.2 Character Animation

Chapter 5.2 Character Animation Chapter 5.2 Character Animation Overview Fundamental Concepts Animation Storage Playing Animations Blending Animations Motion Extraction Mesh Deformation Inverse Kinematics Attachments & Collision Detection

More information

Computer Animation. Michael Kazhdan ( /657) HB 16.5, 16.6 FvDFH 21.1, 21.3, 21.4

Computer Animation. Michael Kazhdan ( /657) HB 16.5, 16.6 FvDFH 21.1, 21.3, 21.4 Computer Animation Michael Kazhdan (601.457/657) HB 16.5, 16.6 FvDFH 21.1, 21.3, 21.4 Overview Some early animation history http://web.inter.nl.net/users/anima/index.htm http://www.public.iastate.edu/~rllew/chrnearl.html

More information

CS-184: Computer Graphics. Today. Forward kinematics Inverse kinematics. Wednesday, November 12, Pin joints Ball joints Prismatic joints

CS-184: Computer Graphics. Today. Forward kinematics Inverse kinematics. Wednesday, November 12, Pin joints Ball joints Prismatic joints CS-184: Computer Graphics Lecture #18: Forward and Prof. James O Brien University of California, Berkeley V2008-F-18-1.0 1 Today Forward kinematics Inverse kinematics Pin joints Ball joints Prismatic joints

More information

Keyframe Animation. Computer Animation. Outline. Computer Animation. Keyframe Animation. Keyframe Animation

Keyframe Animation. Computer Animation. Outline. Computer Animation. Keyframe Animation. Keyframe Animation Computer Animation What is animation? o Make objects change over time according to scripted actions What is simulation? Pixar o Predict how objects change over time according to physical laws Adam Finkelstein

More information

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter Animation COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard Everson Animation

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO F ^ k.^ Computer a jap Animation Algorithms and Techniques Second Edition Rick Parent Ohio State University AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation CS 352: Computer Graphics Hierarchical Graphics, Modeling, And Animation Chapter 9-2 Overview Modeling Animation Data structures for interactive graphics CSG-tree BSP-tree Quadtrees and Octrees Visibility

More information

Richard Williams Study Circle Handout: Disney 12 Principles of Animation. Frank Thomas & Ollie Johnston: The Illusion of Life

Richard Williams Study Circle Handout: Disney 12 Principles of Animation. Frank Thomas & Ollie Johnston: The Illusion of Life Frank Thomas & Ollie Johnston: The Illusion of Life 1 1. Squash and Stretch The principle is based on observation that only stiff objects remain inert during motion, while objects that are not stiff, although

More information

Virtual Marionettes: A System and Paradigm for Real-Time 3D Animation

Virtual Marionettes: A System and Paradigm for Real-Time 3D Animation Virtual Marionettes: A System and Paradigm for Real-Time 3D Animation Adi Bar-Lev, Alfred M. Bruckstein, Gershon Elber Computer Science Department Technion, I.I.T. 32000 Haifa, Israel Abstract This paper

More information

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research Motion capture Applications Systems Motion capture pipeline Biomechanical analysis Graphics research Applications Computer animation Biomechanics Robotics Cinema Video games Anthropology What is captured?

More information

Computer Animation. Conventional Animation

Computer Animation. Conventional Animation Animation The term animation has a Greek (animos) as well as roman (anima) root, meaning to bring to life Life: evolution over time Conventional Animation Animation is a technique in which the illusion

More information

Computer Animation. Animation A broad Brush. Keyframing. Keyframing

Computer Animation. Animation A broad Brush. Keyframing. Keyframing Animation A broad Brush Computer Animation Traditional Methods Cartoons, stop motion Keyframing Digital inbetweens Motion Capture What you record is what you get Simulation Animate what you can model (with

More information

3D Character animation principles

3D Character animation principles References: http://download.toonboom.com/files/templates/studio/animation_charts_pack2_studio.pdf (Breakdown poses) http://www.siggraph.org/education/materials/hypergraph/animation/character_animati on/principles/follow_through.htm

More information

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics Kinematics: The science of pure motion, considered without reference to the matter of objects moved, or to the

More information

Karen Liu associate professor at School of Interactive Computing. Murali Varma graduate student at School of Interactive Computing

Karen Liu associate professor at School of Interactive Computing. Murali Varma graduate student at School of Interactive Computing Computer Animation Karen Liu associate professor at School of Interactive Computing Murali Varma graduate student at School of Interactive Computing Administrations http://www.cc.gatech.edu/classes/ay2012/

More information

History. Early viewers

History. Early viewers IT82: Multimedia 1 History Photography around since the 19th century Realistic animation began in 1872 when Eadweard Muybridge asked to settle a bet about a flying horse IT82: Multimedia 2 1 History Muybridge

More information

3D Production Pipeline

3D Production Pipeline Overview 3D Production Pipeline Story Character Design Art Direction Storyboarding Vocal Tracks 3D Animatics Modeling Animation Rendering Effects Compositing Basics : OpenGL, transformation Modeling :

More information