COMP4109 : Applied Cryptography

Size: px
Start display at page:

Download "COMP4109 : Applied Cryptography"

Transcription

1 COMP4109 : Applied Cryptography Fall 2013 M. Jason Hinek Carleton University

2 Applied Cryptography Day 11 public-key cryptography Die-Hellman some math some problems 2

3 how to share a secret? private-key cryptography works private-key cryptography is generally fast private-key cryptography requires shared secrets how do we share the secrets? 3

4 how to share a secret? private-key cryptography works private-key cryptography is generally fast private-key cryptography requires shared secrets how do we share the secrets? 3

5 Die-Hellman Die-Hellman key exchange roulette Joseph Hobson Jagger poker Citigal Netscape Wagner and Goldberg 4

6 Roulette Joseph Hobson Jagger The Man who broke the bank at Monte Carlo magic numbers 7, 8, 9, 17, 18, 19, 22, 28, 29 in 1875 took away the equivalent of $6,000,000 5

7 Pseudorandom Numbers true random numbers are expensive to obtain use pseudorandom numbers instead use a pseudorandom number generator PRNG deterministic algorithm uses a small truly random seed to generate a large amount of pseudorandom numbers 6

8 Poker Citigal software security consulting ASF Software Inc. shuing algorithm for online poker 7

9 Poker procedure TDeck.Shuffle; var ctr: Byte; tmp: Byte; random_number: Byte; begin { Fill the deck with unique cards } for ctr := 1 to 52 do Card[ctr] := ctr; { Generate a new seed based on the system clock } randomize; { Randomly rearrange each card } for ctr := 1 to 52 do begin random_number := random(51)+1; tmp := card[random_number]; card[random_number] := card[ctr]; card[ctr] := tmp; end; CurrentCard := 1; JustShuffled := True; end; 8

10 Poker procedure TDeck.Shuffle; var ctr: Byte; tmp: Byte; random_number: Byte; begin { Fill the deck with unique cards } for ctr := 1 to 52 do Card[ctr] := ctr; { Generate a new seed based on the system clock } randomize; { Randomly rearrange each card } for ctr := 1 to 52 do begin random_number := random(51)+1; tmp := card[random_number]; card[random_number] := card[ctr]; card[ctr] := tmp; end; CurrentCard := 1; JustShuffled := True; end; 9

11 Poker procedure TDeck.Shuffle; var ctr: Byte; tmp: Byte; random_number: Byte; begin { Fill the deck with unique cards } for ctr := 1 to 52 do Card[ctr] := ctr; { Generate a new seed based on the system clock } randomize; { Randomly rearrange each card } for ctr := 1 to 52 do begin random_number := random(51)+1; tmp := card[random_number]; card[random_number] := card[ctr]; card[ctr] := tmp; end; CurrentCard := 1; JustShuffled := True; end; 10

12 Poker procedure TDeck.Shuffle; var ctr: Byte; tmp: Byte; random_number: Byte; begin { Fill the deck with unique cards } for ctr := 1 to 52 do Card[ctr] := ctr; { Generate a new seed based on the system clock } randomize; { Randomly rearrange each card } for ctr := 1 to 52 do begin random_number := random(51)+1; tmp := card[random_number]; card[random_number] := card[ctr]; card[ctr] := tmp; end; CurrentCard := 1; JustShuffled := True; end; 11

13 Poker Citigal 52! possible shued decks (51! when you don't move the last card) 2 32 possible decks when you use 32-bit "random" number 2 26 possible seeds 86,4000, milliseconds in a day possible seeds allowed to sync with clock of server 12

14 Poker Citigal 13

15 Netscape random numbers and SSL David Wagner and Ian Goldberg (from WEP break) 1995 Netscape creates SSL for secure communication 14

16 Netscape RNG_GenerateRandomBytes() x = MD5(seed); seed = seed + 1; return x; global variable challenge, secret_key; create_key() RNG_CreateContext(); tmp = RNG_GenerateRandomBytes(); tmp = RNG_GenerateRandomBytes(); challenge = RNG_GenerateRandomBytes(); secret_key = RNG_GenerateRandomBytes(); 15

17 Netscape global variable seed; RNG_CreateContext() (seconds, microseconds) = time of day; /* since 1970 */ pid = process ID; ppid = parent process ID; a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid << 12)); seed = MD5(a, b); /* 128-bits */ mklcpr(x) /* not cryptographically significant; */ return ((0xDEECE66D * x + 0x2BBB62DC) >> 1); MD5() /* a very good standard mixing function */ 16

18 Netscape global variable seed; RNG_CreateContext() (seconds, microseconds) = time of day; /* since 1970 */ pid = process ID; ppid = parent process ID; a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid << 12)); seed = MD5(a, b); /* 128-bits */ mklcpr(x) /* not cryptographically significant; */ return ((0xDEECE66D * x + 0x2BBB62DC) >> 1); MD5() /* a very good standard mixing function */ 17

19 Netscape a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid 12)); seed = MD5(a,b); seconds, microseconds each 32-bits, pid, ppid each 16-bits 2 96 bits at best (remember MD5 outputs 128-bits) there are only 1,000,000 microseconds a = mklcpr(microseconds) has about 2 20 values (not 2 32 ) pid is not a secret (and ppid is often 1) if you on the same machine ps send invalid and check the bounce time on machine can be recovered packet sning reveals time 18

20 Netscape a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid 12)); seed = MD5(a,b); seconds, microseconds each 32-bits, pid, ppid each 16-bits 2 96 bits at best (remember MD5 outputs 128-bits) there are only 1,000,000 microseconds a = mklcpr(microseconds) has about 2 20 values (not 2 32 ) pid is not a secret (and ppid is often 1) if you on the same machine ps send invalid and check the bounce time on machine can be recovered packet sning reveals time 18

21 Netscape a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid 12)); seed = MD5(a,b); seconds, microseconds each 32-bits, pid, ppid each 16-bits 2 96 bits at best (remember MD5 outputs 128-bits) there are only 1,000,000 microseconds a = mklcpr(microseconds) has about 2 20 values (not 2 32 ) pid is not a secret (and ppid is often 1) if you on the same machine ps send invalid and check the bounce time on machine can be recovered packet sning reveals time 18

22 Netscape a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid 12)); seed = MD5(a,b); seconds, microseconds each 32-bits, pid, ppid each 16-bits 2 96 bits at best (remember MD5 outputs 128-bits) there are only 1,000,000 microseconds a = mklcpr(microseconds) has about 2 20 values (not 2 32 ) pid is not a secret (and ppid is often 1) if you on the same machine ps send invalid and check the bounce time on machine can be recovered packet sning reveals time 18

23 Netscape a = mklcpr(microseconds); b = mklcpr(pid + seconds + (ppid 12)); seed = MD5(a,b); seconds, microseconds each 32-bits, pid, ppid each 16-bits 2 96 bits at best (remember MD5 outputs 128-bits) there are only 1,000,000 microseconds a = mklcpr(microseconds) has about 2 20 values (not 2 32 ) pid is not a secret (and ppid is often 1) if you on the same machine ps send invalid and check the bounce time on machine can be recovered packet sning reveals time 18

24 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) 19

25 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack 19

26 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack rst publicized (unexploited) attack (NY Times) 19

27 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack rst publicized (unexploited) attack (NY Times) Netscape (and others) nally sees the light? 19

28 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack rst publicized (unexploited) attack (NY Times) Netscape (and others) nally sees the light? original SSL uses closed algorithms (attack needed reverse engineering) RSA approached Netscape to review their original code (denied) 19

29 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack rst publicized (unexploited) attack (NY Times) Netscape (and others) nally sees the light? original SSL uses closed algorithms (attack needed reverse engineering) RSA approached Netscape to review their original code (denied) Netscape approached RSA to review their next version! 19

30 Netscape random numbers and SSL with seconds, pid and ppid known, milliseconds is searched in less than a minute ('95) consequences of this attack rst publicized (unexploited) attack (NY Times) Netscape (and others) nally sees the light? original SSL uses closed algorithms (attack needed reverse engineering) RSA approached Netscape to review their original code (denied) Netscape approached RSA to review their next version! Paul Kocher (of side channel attack fame) helps with SSL3 19

31 Pseudorandom Numbers we need cryptographically secure PRNGs needs to pass the next-bit test you cannot guess the n-th output bit given all n 1 previous bits with probability signicantly greater than 1/2 exposing the current state should not reveal the previous output bits this gives forward security if PRNG uses randomness during operation exposing the current state should not reveal the future output bits sadly, PRNGs are often to crypto what magnetism is to electricity & magnetism... 20

32 Pseudorandom Numbers we need cryptographically secure PRNGs needs to pass the next-bit test you cannot guess the n-th output bit given all n 1 previous bits with probability signicantly greater than 1/2 exposing the current state should not reveal the previous output bits this gives forward security if PRNG uses randomness during operation exposing the current state should not reveal the future output bits sadly, PRNGs are often to crypto what magnetism is to electricity & magnetism... 20

33 A CSPRNG here is a potential cryptographically secure PRNG Blum-Blum-Shub choose random primes p, q and let N = pq both p and q must be congruent to 3 modulo 4 choose random seed x0 x 0 0,1 and gcd(x 0, N) = 1 using the recurrence x i+1 = x 2 i mod N, generate bits b i = LSB(x i ) b i = Parity(x i ) security is based on the believed diculty of factoring 21

34 A CSPRNG here is a real(ish) cryptographically secure PRNG Blum-Micali let p be a large prime and g be a primitive root modulo p let x0 Z p be a truly random seed using the recurrence x i+1 = g x i mod p, generate bits b i = { 1 if xi < p if x i p 1 2 security follows if computing discrete logarithms modulo p is infeasible 22

35 CSPRNGs NIST SP A: This standard has three uncontroversial CSPRNGs named Hash_DRBG, HMAC_DRBG, and CTR_DRBG; and a PRNG named Dual_EC_DRBG which has been shown to not be cryptographically secure and probably has a kleptographic NSA backdoor. Fortuna: Ferguson/Fortuna.pdf 23

Summary on Crypto Primitives and Protocols

Summary on Crypto Primitives and Protocols Summary on Crypto Primitives and Protocols Levente Buttyán CrySyS Lab, BME www.crysys.hu 2015 Levente Buttyán Basic model of cryptography sender key data ENCODING attacker e.g.: message spatial distance

More information

Pseudo-random number generators

Pseudo-random number generators Pseudo-random number generators -- Definition and motivation -- Classification of attacks -- Examples: DSA PRNG and Yarrow-160 (c) Levente Buttyán (buttyan@crysys.hu) Definitions a random number is a number

More information

Randomness and the Netscape Browser

Randomness and the Netscape Browser Randomness and the Netscape Browser No one was more surprised than Netscape Communications when a pair of computer-science students broke the Netscape encryption scheme. Ian and David describe how they

More information

Random number generation

Random number generation Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán associate professor BME Hálózati Rendszerek és Szolgáltatások Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.hu

More information

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator BBS encryption scheme A prime p is called a Blum prime if p mod 4 = 3. ALGORITHM Alice, the recipient, makes her BBS key as follows: BBS encryption scheme A prime p is called a Blum prime if p mod 4 =

More information

Basic principles of pseudo-random number generators

Basic principles of pseudo-random number generators Basic principles of pseudo-random number generators Faculty of Informatics, Masaryk University Outline PRNGs True-randomness and pseudo-randomness Linear feedback shift registers Cryptographically secure

More information

Topics. Key Generation. Applying Cryptography

Topics. Key Generation. Applying Cryptography Applying Cryptography Topics 1. Key Generation 2. Randomness and Information Theory 3. PRNGs 4. Entropy Gathering 5. Key Storage 6. Cryptographic APIs Key Generation Goal: generate difficult to guess keys

More information

Analysis, demands, and properties of pseudorandom number generators

Analysis, demands, and properties of pseudorandom number generators Analysis, demands, and properties of pseudorandom number generators Jan Krhovják Department of Computer Systems and Communications Faculty of Informatics, Masaryk University Brno, Czech Republic Jan Krhovják

More information

CSC 482/582: Computer Security. Applying Cryptography

CSC 482/582: Computer Security. Applying Cryptography Applying Cryptography Topics 1. Applications of Randomness 2. Defining and Evaluating Randomness 3. Pseudo-Random Number Generators (PRNGs) 4. Cryptographically Secure PRNGs (CSPRNGs) 5. Attacks on PRNGs

More information

Cryptographic Malpractice

Cryptographic Malpractice Cryptographic Malpractice Common Ways Cryptography is Misused, and How to Get it Right John Black University of Colorado at Boulder ACM CCS 2005, Tutorial I November 8 th, 2005 Goals of the Tutorial Review

More information

Network Security. Random Number Generation. Chapter 6. Network Security (WS 2003): 06 Random Number Generation 1 Dr.-Ing G.

Network Security. Random Number Generation. Chapter 6. Network Security (WS 2003): 06 Random Number Generation 1 Dr.-Ing G. Network Security Chapter 6 Random Number Generation Network Security (WS 2003): 06 Random Number Generation 1 Tasks of Key Management (1) Generation: It is crucial to security, that keys are generated

More information

CSC 580 Cryptography and Computer Security

CSC 580 Cryptography and Computer Security CSC 580 Cryptography and Computer Security Random Bit Generators (Sections 8.1-8.3) February 20, 2018 Overview Today: HW 4 solution discussion Pseudorandom generation - concepts and simple techniques Reminder:

More information

Chapter 6 Random Number Generation

Chapter 6 Random Number Generation Chapter 6 Random Number Generation Requirements / application Pseudo-random bit generator Hardware and software solutions [NetSec/SysSec], WS 2007/2008 6.1 Requirements and Application Scenarios Security

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP4109 : Applied Cryptography Fall 2013 M. Jason Hinek Carleton University Applied Cryptography Day 2 information security cryptographic primitives unkeyed primitives NSA... one-way functions hash functions

More information

Pseudorandom Number Generation

Pseudorandom Number Generation Pseudorandom Number Generation Thanks once again to A. Joseph, D. Tygar, U. Vazirani, and D. Wagner at the University of California, Berkeley 1 What Can Go Wrong? An example: This generates a 16 byte (128

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Side-Channel Attacks on RSA with CRT. Weakness of RSA Alexander Kozak Jared Vanderbeck

Side-Channel Attacks on RSA with CRT. Weakness of RSA Alexander Kozak Jared Vanderbeck Side-Channel Attacks on RSA with CRT Weakness of RSA Alexander Kozak Jared Vanderbeck What is RSA? As we all know, RSA (Rivest Shamir Adleman) is a really secure algorithm for public-key cryptography.

More information

More Attacks on Cryptography 3/12/2010

More Attacks on Cryptography 3/12/2010 More Attacks on Cryptography 3/12/2010 MS Point-to-Point Encryption (MPPE) If both endpoints support 128-bit crypto: I support 128-bit crypto So do I. Here s a nonce: R M RC4(K) where K = hash(password

More information

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest 1 2 3 This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest PKCS, Diffie- Hellman key exchange. This first published

More information

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who 1 The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who exchange messages from any third party. However, it does

More information

Computer Security 3/23/18

Computer Security 3/23/18 s s encrypt a block of plaintext at a time and produce ciphertext Computer Security 08. Cryptography Part II Paul Krzyzanowski DES & AES are two popular block ciphers DES: 64 bit blocks AES: 128 bit blocks

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.159 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Kaufman et al: Ch 11.6; 9.7-9; Stallings:

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms 1 Public Key Algorithms It is necessary to know some number theory to really understand how and why public key algorithms work Most of the public key algorithms are based on modular

More information

Random and Pseudorandom Bit Generators

Random and Pseudorandom Bit Generators Random and Pseudorandom Bit Generators Random bit generators Pseudorandom bit generators Cryptographically Secure PRBG Statistical tests Unpredictable quantities The security of many cryptographic systems

More information

Information Security CS526

Information Security CS526 Information Security CS 526 Topic 3 Cryptography: One-time Pad, Information Theoretic Security, and Stream CIphers 1 Announcements HW1 is out, due on Sept 11 Start early, late policy is 3 total late days

More information

CSC/ECE 774 Advanced Network Security

CSC/ECE 774 Advanced Network Security Computer Science CSC/ECE 774 Advanced Network Security Topic 2. Network Security Primitives CSC/ECE 774 Dr. Peng Ning 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange;

More information

Dawn Song

Dawn Song 1 Secret-Sharing & Zero-knowledge Proof Dawn Song dawnsong@cs.berkeley.edu Review DH key exchange protocol Password authentication protocol Random number generation 2 Lessons Learned Seeds must be unpredictable

More information

Attack on Sun s MIDP Reference Implementation of SSL

Attack on Sun s MIDP Reference Implementation of SSL Attack on Sun s MIDP Reference Implementation of SSL Kent Inge Simonsen, Vebjørn Moen, and Kjell Jørgen Hole Department of Informatics, University of Bergen Pb. 7800, N-5020 Bergen, Norway {kentis,moen,kjell.hole}@ii.uib.no

More information

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi Cryptographic Primitives A brief introduction Ragesh Jaiswal CSE, IIT Delhi Cryptography: Introduction Throughout most of history: Cryptography = art of secret writing Secure communication M M = D K (C)

More information

2 Handout 20: Midterm Quiz Solutions Problem Q-1. On-Line Gambling In class, we discussed a fair coin ipping protocol (see lecture 11). In it, Alice a

2 Handout 20: Midterm Quiz Solutions Problem Q-1. On-Line Gambling In class, we discussed a fair coin ipping protocol (see lecture 11). In it, Alice a Massachusetts Institute of Technology Handout 20 6.857: Network and Computer Security November 18, 1997 Professor Ronald L. Rivest Midterm Quiz Solutions PLEASE READ ALL THE INSTRUCTIONS These are the

More information

n-bit Output Feedback

n-bit Output Feedback n-bit Output Feedback Cryptography IV Encrypt Encrypt Encrypt P 1 P 2 P 3 C 1 C 2 C 3 Steven M. Bellovin September 16, 2006 1 Properties of Output Feedback Mode No error propagation Active attacker can

More information

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 26. Cryptographic Systems: An Introduction Paul Krzyzanowski Rutgers University Fall 2015 1 Cryptography Security Cryptography may be a component of a secure system Adding cryptography

More information

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell 1 Cryptography Merriam-Webster Online Dictionary: 1. secret writing 2. the enciphering and deciphering

More information

Lecture 1 Applied Cryptography (Part 1)

Lecture 1 Applied Cryptography (Part 1) Lecture 1 Applied Cryptography (Part 1) Patrick P. C. Lee Tsinghua Summer Course 2010 1-1 Roadmap Introduction to Security Introduction to Cryptography Symmetric key cryptography Hash and message authentication

More information

Cryptography and Network Security Chapter 7

Cryptography and Network Security Chapter 7 Cryptography and Network Security Chapter 7 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 7 Stream Ciphers and Random Number Generation The comparatively

More information

Comparative Analysis of SLA-LFSR with Traditional Pseudo Random Number Generators

Comparative Analysis of SLA-LFSR with Traditional Pseudo Random Number Generators International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 6 (2017), pp. 1461-1470 Research India Publications http://www.ripublication.com Comparative Analysis of SLA-LFSR

More information

CSE 127: Computer Security Cryptography. Kirill Levchenko

CSE 127: Computer Security Cryptography. Kirill Levchenko CSE 127: Computer Security Cryptography Kirill Levchenko October 24, 2017 Motivation Two parties want to communicate securely Secrecy: No one else can read messages Integrity: messages cannot be modified

More information

Information Security CS526

Information Security CS526 Information CS 526 Topic 3 Ciphers and Cipher : Stream Ciphers, Block Ciphers, Perfect Secrecy, and IND-CPA 1 Announcements HW1 is out, due on Sept 10 Start early, late policy is 3 total late days for

More information

COMPUTER & NETWORK SECURITY

COMPUTER & NETWORK SECURITY COMPUTER & NETWORK SECURITY Lecture 7: Key Management CRYPTOBULLETIN: IN THE LAST WEEK OpenSSL Patch to Plug Severe Security Holes http://krebsonsecurity.com/2015/03/openssl patch to plug severe security

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Giuseppe F. Italiano Universita` di Roma Tor Vergata italiano@disp.uniroma2.it Motivation Until early 70s, cryptography was mostly owned by government and military Symmetric cryptography

More information

Chapter 9 Public Key Cryptography. WANG YANG

Chapter 9 Public Key Cryptography. WANG YANG Chapter 9 Public Key Cryptography WANG YANG wyang@njnet.edu.cn Content Introduction RSA Diffie-Hellman Key Exchange Introduction Public Key Cryptography plaintext encryption ciphertext decryption plaintext

More information

Introduction to Cryptography. Vasil Slavov William Jewell College

Introduction to Cryptography. Vasil Slavov William Jewell College Introduction to Cryptography Vasil Slavov William Jewell College Crypto definitions Cryptography studies how to keep messages secure Cryptanalysis studies how to break ciphertext Cryptology branch of mathematics,

More information

Recommendation for Random Number Generation Using Deterministic Random Bit Generators

Recommendation for Random Number Generation Using Deterministic Random Bit Generators NIST SP 800-90A January 2012 NIST Special Publication 800-90A Recommendation for Random Number Generation Using Deterministic Random Bit Generators Elaine Barker and John Kelsey Computer Security Division

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.5 Public Key Algorithms CSC 474/574 Dr. Peng Ning 1 Public Key Algorithms Public key algorithms covered in this class RSA: encryption and digital signature

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Midterm 2 Problem 1 True or False (10 points) Circle True or False. Do not justify your answer. (a) True or False : It is safe (IND-CPA-secure) to encrypt

More information

Analysis of Cryptography and Pseudorandom Numbers

Analysis of Cryptography and Pseudorandom Numbers ISSN: 2454-2377 Volume 2, Issue 2, June 2016 Analysis of Cryptography and Pseudorandom Numbers Richa Agarwal Student, M. Tech., Computer Science, Invertis University, Bareilly, India Abstract: With the

More information

CS61A Lecture #39: Cryptography

CS61A Lecture #39: Cryptography Announcements: CS61A Lecture #39: Cryptography Homework 13 is up: due Monday. Homework 14 will be judging the contest. HKN surveys on Friday: 7.5 bonus points for filling out their survey on Friday (yes,

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.4501 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Stallings: Ch 7.4; 7.3; 10.1 1 The Use

More information

Stream Ciphers. Stream Ciphers 1

Stream Ciphers. Stream Ciphers 1 Stream Ciphers Stream Ciphers 1 Stream Ciphers Generate a pseudo-random key stream & xor to the plaintext. Key: The seed of the PRNG Traditional PRNGs (e.g. those used for simulations) are not secure.

More information

Introduction to Cryptography and Security Mechanisms: Unit 5. Public-Key Encryption

Introduction to Cryptography and Security Mechanisms: Unit 5. Public-Key Encryption Introduction to Cryptography and Security Mechanisms: Unit 5 Public-Key Encryption Learning Outcomes Explain the basic principles behind public-key cryptography Recognise the fundamental problems that

More information

A Systematic Analysis of the Juniper Dual EC Incident Stephen Checkoway

A Systematic Analysis of the Juniper Dual EC Incident Stephen Checkoway A Systematic Analysis of the Juniper Dual EC Incident Stephen Checkoway With Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric

More information

David Wetherall, with some slides from Radia Perlman s security lectures.

David Wetherall, with some slides from Radia Perlman s security lectures. David Wetherall, with some slides from Radia Perlman s security lectures. djw@cs.washington.edu Networks are shared: Want to secure communication between legitimate participants from others with (passive

More information

1. Diffie-Hellman Key Exchange

1. Diffie-Hellman Key Exchange e-pgpathshala Subject : Computer Science Paper: Cryptography and Network Security Module: Diffie-Hellman Key Exchange Module No: CS/CNS/26 Quadrant 1 e-text Cryptography and Network Security Objectives

More information

CS408 Cryptography & Internet Security

CS408 Cryptography & Internet Security CS408 Cryptography & Internet Security Lectures 16, 17: Security of RSA El Gamal Cryptosystem Announcement Final exam will be on May 11, 2015 between 11:30am 2:00pm in FMH 319 http://www.njit.edu/registrar/exams/finalexams.php

More information

Cryptography [Symmetric Encryption]

Cryptography [Symmetric Encryption] CSE 484 / CSE M 584: Computer Security and Privacy Cryptography [Symmetric Encryption] Spring 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

Elements of Cryptography and Computer and Networking Security Computer Science 134 (COMPSCI 134) Fall 2016 Instructor: Karim ElDefrawy

Elements of Cryptography and Computer and Networking Security Computer Science 134 (COMPSCI 134) Fall 2016 Instructor: Karim ElDefrawy Elements of Cryptography and Computer and Networking Security Computer Science 134 (COMPSCI 134) Fall 2016 Instructor: Karim ElDefrawy Homework 2 Due: Friday, 10/28/2016 at 11:55pm PT Will be posted on

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 33 Key size in RSA The security of the RSA system is dependent on the diculty

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP4109 : Applied Cryptography Fall 2013 M. Jason Hinek Carleton University Applied Cryptography Day 8 (and maybe 9) secret-key primitives Message Authentication Codes Pseudorandom number generators 2

More information

Key Exchange. References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings

Key Exchange. References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings Key Exchange References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings Outlines Primitives Root Discrete Logarithm Diffie-Hellman ElGamal Shamir s Three Pass

More information

symmetric cryptography s642 computer security adam everspaugh

symmetric cryptography s642 computer security adam everspaugh symmetric cryptography s642 adam everspaugh ace@cs.wisc.edu computer security Announcement Midterm next week: Monday, March 7 (in-class) Midterm Review session Friday: March 4 (here, normal class time)

More information

Cryptography. Summer Term 2010

Cryptography. Summer Term 2010 Cryptography Summer Term 2010 Harald Baier Chapter 3: Pseudo Random Bit Generators and Stream Ciphers Contents Random bits and pseudo random bits Stream ciphers Harald Baier Cryptography h_da, Summer Term

More information

Randomness in Cryptography

Randomness in Cryptography Randomness in Cryptography JKU Linz 2007 Randomness in Cryptography 1 Randomness? Randomness in Cryptography 2 The need for randomness Contents 1 Introduction The need for randomness Formal denitions,

More information

The Design and Analysis of a True Random Number Generator in a Field Programmable Gate Array. By Paul Kohlbrenner November 20, 2003

The Design and Analysis of a True Random Number Generator in a Field Programmable Gate Array. By Paul Kohlbrenner November 20, 2003 The Design and Analysis of a True Random Number Generator in a Field Programmable Gate Array By Paul Kohlbrenner November 20, 2003 Presentation Organization 1. Thesis goal 2. The need for random bits in

More information

RSA Cryptography in the Textbook and in the Field. Gregory Quenell

RSA Cryptography in the Textbook and in the Field. Gregory Quenell RSA Cryptography in the Textbook and in the Field Gregory Quenell 1 In the beginning... 2 In the beginning... Diffie and Hellman 1976: A one-way function can be used to pass secret information over an insecure

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Photuris and SKIP PHASE 1 IKE PHASE 2 IKE How is SA established? How do parties negotiate

More information

Cryptography and Network Security Chapter 7. Fourth Edition by William Stallings

Cryptography and Network Security Chapter 7. Fourth Edition by William Stallings Cryptography and Network Security Chapter 7 Fourth Edition by William Stallings Chapter 7 Confidentiality Using Symmetric Encryption John wrote the letters of the alphabet under the letters in its first

More information

Information Security. message M. fingerprint f = H(M) one-way hash. 4/19/2006 Information Security 1

Information Security. message M. fingerprint f = H(M) one-way hash. 4/19/2006 Information Security 1 Information Security message M one-way hash fingerprint f = H(M) 4/19/2006 Information Security 1 Outline and Reading Digital signatures Definition RSA signature and verification One-way hash functions

More information

CIT 480: Securing Computer Systems. Hashes and Random Numbers

CIT 480: Securing Computer Systems. Hashes and Random Numbers CIT 480: Securing Computer Systems Hashes and Random Numbers Topics 1. Hash Functions 2. Applications of Hash Functions 3. Secure Hash Functions 4. Collision Attacks 5. Pre-Image Attacks 6. Current Hash

More information

TLSnotary - a mechanism for independently audited https sessions

TLSnotary - a mechanism for independently audited https sessions TLSnotary - a mechanism for independently audited https sessions September 10, 2014 1 Abstract TLSnotary allows a client to provide evidence to a third party auditor that certain web traffic occurred between

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

A Secured Key Generation Scheme Using Enhanced Entropy

A Secured Key Generation Scheme Using Enhanced Entropy 236 A Secured Key Generation Scheme Using Enhanced Entropy M.S. Irfan Ahmed Asst. Professor, VLB Engineering College, Coimbatore E.R. Naganathan Reader, Computer Science Department Alagappa University,

More information

Lecture 2 Applied Cryptography (Part 2)

Lecture 2 Applied Cryptography (Part 2) Lecture 2 Applied Cryptography (Part 2) Patrick P. C. Lee Tsinghua Summer Course 2010 2-1 Roadmap Number theory Public key cryptography RSA Diffie-Hellman DSA Certificates Tsinghua Summer Course 2010 2-2

More information

Digital Signatures. Luke Anderson. 7 th April University Of Sydney.

Digital Signatures. Luke Anderson. 7 th April University Of Sydney. Digital Signatures Luke Anderson luke@lukeanderson.com.au 7 th April 2017 University Of Sydney Overview 1. Digital Signatures 1.1 Background 1.2 Basic Operation 1.3 Attack Models Replay Naïve RSA 2. PKCS#1

More information

PRNGs & DES. Luke Anderson. 16 th March University Of Sydney.

PRNGs & DES. Luke Anderson. 16 th March University Of Sydney. PRNGs & DES Luke Anderson luke@lukeanderson.com.au 16 th March 2018 University Of Sydney Overview 1. Pseudo Random Number Generators 1.1 Sources of Entropy 1.2 Desirable PRNG Properties 1.3 Real PRNGs

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate of savage

More information

Provable Partial Key Escrow

Provable Partial Key Escrow Provable Partial Key Escrow Kooshiar Azimian Electronic Research Center, Sharif University of Technology, and Computer Engineering Department, Sharif University of Technology Tehran, Iran Email: Azimian@ce.sharif.edu

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

LECTURE NOTES ON PUBLIC- KEY CRYPTOGRAPHY. (One-Way Functions and ElGamal System)

LECTURE NOTES ON PUBLIC- KEY CRYPTOGRAPHY. (One-Way Functions and ElGamal System) Department of Software The University of Babylon LECTURE NOTES ON PUBLIC- KEY CRYPTOGRAPHY (One-Way Functions and ElGamal System) By College of Information Technology, University of Babylon, Iraq Samaher@itnet.uobabylon.edu.iq

More information

Network Security Essentials Chapter 2

Network Security Essentials Chapter 2 Network Security Essentials Chapter 2 Fourth Edition by William Stallings Lecture slides by Lawrie Brown Encryption What is encryption? Why do we need it? No, seriously, let's discuss this. Why do we need

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

Kurose & Ross, Chapters (5 th ed.)

Kurose & Ross, Chapters (5 th ed.) Kurose & Ross, Chapters 8.2-8.3 (5 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (5 th ed.) Addison-Wesley, April 2009. Copyright 1996-2010, J.F Kurose and

More information

Stream ciphers. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 91

Stream ciphers. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 91 Stream ciphers Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 91 Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 92 Stream Cipher Suppose you want to encrypt

More information

CSC 774 Network Security

CSC 774 Network Security CSC 774 Network Security Topic 2. Review of Cryptographic Techniques CSC 774 Dr. Peng Ning 1 Outline Encryption/Decryption Digital signatures Hash functions Pseudo random functions Key exchange/agreement/distribution

More information

L13. Reviews. Rocky K. C. Chang, April 10, 2015

L13. Reviews. Rocky K. C. Chang, April 10, 2015 L13. Reviews Rocky K. C. Chang, April 10, 2015 1 Foci of this course Understand the 3 fundamental cryptographic functions and how they are used in network security. Understand the main elements in securing

More information

Public-Key Cryptography

Public-Key Cryptography Computer Security Spring 2008 Public-Key Cryptography Aggelos Kiayias University of Connecticut A paradox Classic cryptography (ciphers etc.) Alice and Bob share a short private key using a secure channel.

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Midterm 2 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP4109 : Applied Cryptography Fall 2013 M. Jason Hinek Carleton University Applied Cryptography Day 4 (and 5 and maybe 6) secret-key primitives symmetric-key encryption security notions and types of

More information

Uzzah and the Ark of the Covenant

Uzzah and the Ark of the Covenant Uzzah and the Ark of the Covenant And when they came to the threshing floor of Chidon, Uzzah put out his hand to take hold of the ark, for the oxen stumbled. 10 And the anger of the LORD was kindled against

More information

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature Key Management Digital signatures: classical and public key Classic and Public Key exchange 1 Handwritten Signature Used everyday in a letter, on a check, sign a contract A signature on a signed paper

More information

Acronyms. International Organization for Standardization International Telecommunication Union ITU Telecommunication Standardization Sector

Acronyms. International Organization for Standardization International Telecommunication Union ITU Telecommunication Standardization Sector Acronyms 3DES AES AH ANSI CBC CESG CFB CMAC CRT DoS DEA DES DoS DSA DSS ECB ECC ECDSA ESP FIPS IAB IETF IP IPsec ISO ITU ITU-T Triple DES Advanced Encryption Standard Authentication Header American National

More information

Security. Communication security. System Security

Security. Communication security. System Security Security Communication security security of data channel typical assumption: adversary has access to the physical link over which data is transmitted cryptographic separation is necessary System Security

More information

A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS

A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS A SIGNATURE ALGORITHM BASED ON DLP AND COMPUTING SQUARE ROOTS Ounasser Abid 1 and Omar Khadir 2 1, 2 Laboratory of Mathematics, Cryptography and Mechanics, FSTM University Hassan II of Casablanca, Morocco

More information

Security Handshake Pitfalls

Security Handshake Pitfalls Hello Challenge R f(k, R f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone can send the challenge R. f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone

More information

Secret Sharing, Random Numbers, and Information Hiding. Prof. Tom Austin San José State University Spring 2014

Secret Sharing, Random Numbers, and Information Hiding. Prof. Tom Austin San José State University Spring 2014 Secret Sharing, Random Numbers, and Information Hiding Prof. Tom Austin San José State University Spring 2014 Summer University 2014 Summer CS program held in Yverdon-les-Bains, Switzerland. Applications

More information

18-642: Cryptography 11/15/ Philip Koopman

18-642: Cryptography 11/15/ Philip Koopman 18-642: Cryptography 11/15/2017 Cryptography Overview Anti-Patterns for Cryptography Using a home-made cryptographic algorithm Using private key when public key is required Not considering key distribution

More information

Overview. Public Key Algorithms I

Overview. Public Key Algorithms I Public Key Algorithms I Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70810 Durresi@csc.lsu.Edu These slides are available at: http://www.csc.lsu.edu/~durresi/csc4601-04/ Louisiana State

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Public Key Cryptography Modular Arithmetic RSA

More information

Sankalchand Patel College of Engineering, Visnagar Department of Computer Engineering & Information Technology. Question Bank

Sankalchand Patel College of Engineering, Visnagar Department of Computer Engineering & Information Technology. Question Bank Sankalchand Patel College of Engineering, Visnagar Department of Computer Engineering & Information Technology Question Bank Subject: Information Security (160702) Class: BE Sem. VI (CE/IT) Unit-1: Conventional

More information

ח'/סיון/תשע "א. RSA: getting ready. Public Key Cryptography. Public key cryptography. Public key encryption algorithms

ח'/סיון/תשע א. RSA: getting ready. Public Key Cryptography. Public key cryptography. Public key encryption algorithms Public Key Cryptography Kurose & Ross, Chapters 8.28.3 (5 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (5 th ed.) AddisonWesley, April 2009. Copyright 19962010,

More information

CRYPTOGRAPHY AND NETWROK SECURITY-QUESTION BANK

CRYPTOGRAPHY AND NETWROK SECURITY-QUESTION BANK CRYPTOGRAPHY AND NETWROK SECURITY-QUESTION BANK UNIT-1 1. Answer the following: a. What is Non-repudiation b. Distinguish between stream and block ciphers c. List out the problems of one time pad d. Define

More information