Approach I: Do Nothing

Size: px
Start display at page:

Download "Approach I: Do Nothing"

Transcription

1 Exceptions and Continuations ndling in programming languages is a very limited form on ntinues after a function call that is still active when sed pproach II: Non-Standard Return to modify calls so that they look like this: _f OK to handle exception s mechanism to return a value with the exception, but new complexity for normal return ception: of exception in some standard register or memory locainstruction after normal return r the ia2(above) Easier on machines that allow returnster+constant offset address [why?] andling code decides whether it can handle the excepes another exception return if not equires small distributed overhead for every function 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 4 8: More Special Effects Exceptions and OOP Approach I: Do Nothing ep it simple; don t bother with exceptions code convention: C libraryfunctions often returneither for OK or nonvarious degrees of badness g to check ter s: makes value-returning functions less useful st in always checking return codes 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28

2 Approach III: Discussion pic: Dynamic Method Selection and OOP, call to setjmp appears to return twice, with two dif- uire help from compiler, tation is architecture-specific posed on every setjmp call plement try and catch, therefore, would impose cost ms involving variables that are stored in registers: uf typically has to store such registers, but s the value of some local variables may revert unprepon a longjmp language feature introduced by Simula 67, Smalltalk, he virtual function (to use C++ terminology) classes in a hierarchy of types of subtype is an instance of its supertype(s) ular, inherits their methods, but can override them c effect: Cannot in general tell from program text what ode executed by a given call tion difficulty (as usual) depends on details of a lanantics still static: functions, numbers of arguments are (usually) known can handle overloading by inventing new names for func-,g++encodesafunctionf(intx)inclassqas ZN1Q1fEi, x, int y) as ZN1Q1fEii 46:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 8 pproach III: Stack manipulation ave an exception mechanism built into its syntax, but outines: _point; ) { (catch_point) == ) { ase, which eventually Caller s n to Callee FP, SP, catch point: addr of exception setjmp call & others ) { xception: atch_point, 42); Callee s frame other frames Caller s frame Approach IV: PC tables mplementation uses a different approach nerates a table mapping instruction addresses (program values) to exception handlers for each function ompiler also leaves behind information necessary to refunction ( unwind the stack ) when exception thrown ception E: rent PC doesn t map to handler for E) tack to last caller approach, a try-catch incurs no cost unless there is an ut d handling the exception more expensive than other apd space 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 7

3 racteristics of Dynamic Approach os and Cons of Dynamic Approach stance is independent Contents of class definition until a new value is assigned to an attribute of the ines can be added freely to instances or to class ants of this approach, there are no classes at all, only d we get new instances by cloning existing objects, and adding new attributes lexible simple tion easy ead: every instance has pointers to all methods ad: lookup on each call ecking 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 12 I Fully Dynamic Approach on is completely dynamic: elf): return 42 = A () af() # Prints 2 42 a r, z: rw * z w = 5, ), af, aw # Prints , ), bf, bw # Error (x not a function) # Prints 2 a (self): 19 mplementing the Dynamic Approach egy: just put a dictionary in every instance, and in class stance by making fresh copy of class s dictionary alue of attribute in object s dictionary, then in that of perclass, etc at runtime or pointers) carry around dynamic type ), cf, cv # Prints 19, 2, 1 ), bf, bv # Prints 19, 2, 1 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 11

4 menting the Smalltalk-like Approach ngle Inheritance with Static Types ed not carry around copies of function pointers h class has a data structure mapping method names to d instance-variable names to offsets from the start of ): body1 ): body2 ): body ): body4 a: b: class: class: at offset 8 from start of instance 2 super x@4: super f: body h: body4 y@8: 2 va without interfaces Type can inherit from at most te superclass ss, xw, insist that compiler knows a supertype of x s e that defines w all possible overridings of a method have compatible pas and return values quesimilar to previous one, but put entriesfor all methr or not overridden) in each class data structure ata structures are called virtual tables or vtables in 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 16 ght Single Inheritance, Dynamic Typing s fixed set of methods and instance variables e fixed definition in each class herit from single superclass ypes of parameters, variables, etc, still dynamic nique in Smalltalk, Objective C os and Cons of Smalltalk Approach store modifiable things instance variables in instances ure can be a bit faster at accessing than fully dynamic much static checking possible, and of method names required 46:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 15

5 Interfaces terface inheritance of any number of interface types o new bodies) tes life: consider class B { interface C { int y; f (); () { } g () { } } h () { } public f () { } } */ tends A class B2 extends B plements C implements C { } */ void f (C y) { yf () } // How can this work? Implementation II: Make Interface Values Different roach is to represent values of static type C (an interifferently value x2 of type B2 to C then causes C to point to a antity: o x2 o a cut-down virtual table containing just the f entry at offset ) converting to interface requires work and allocates stor- ile A and B without knowledge of C, A2, B2 make the virtual table of A2 and B2 compatible with that f is at same known offset regardless of whether of C is A2 or B2? (Above isn t hardest example!) 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 2 ation of Simple Static Single Inheritance { body1 } { body2 } ends A { { body } { body4 } ) ) a: b: 2 f: body h: body4 ore offsets of x and y; compiler knows where they are r knows where to find f, g, h in virtual tables ffsets of variables in instances and of method pointers les are known constants, the same for all subtypes nows how to call methods of b even if static type is A! 6:4 218 CS164: Lecture #28 17 rface Implementation I: Brute Force h is to have the system assign a different offset globdifferent function signature s f(int x) and f() have different function signatures) us example, the virtual tables can be: C: : pntr to Bg : unused 4: pntr to Bh 4: unused f 8: pntr to Bf 8: pntr to Cf f f method calls B2: : pntr to Bg 4: pntr to Bh 8: pntr to Bf ze of tables gets big (some optimization possible) ake into account all classes before laying out tables es dynamic linking 46:4 218 CS164: Lecture #28 19

6 oving Interface Implementation II void doing allocation to create value of interface type ultiple Inheritance: What Must Work ust solve the problem of insuring that extend the virtual table of all types to include an inor n this vector identifies an interface the type implehe table (eg C table for B in last slide) t C c = b from last slide, just copy pointer b, as for es when assigning to a variable whose type is a superalue assigned cg() from last slide, find the C table in the interfor object pointed to be c and fetch the entry for g sual the reader: How best to design the interface vector? hing of cg to be fast, avoid having to actually perform a search at execution? llowing work (Java syntax, but not quite Java!), and calls and instance-variable accesses involve small, fast l, non-looping code sequences 9; ) { x += 1; h(x + px); return x; } y) { print(x+y); } 2; ) { y += 1; h(y + py); return y; } z) { print(x*y); } ds A, B { t a) { thisf(this); thisg(this); print(x + y + a); } ; af(a); bg(b); ah(); bh(); df(a); dg(b); dh() 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 24 face Implementation II, Illustrated Full Multiple Inheritance { body1 } { body2 } { body } ; c: h: body multiple inheritance only via interfaces oint: interfaces don t have instance variables riables basically mess everything up for multiple inheriming we want to keep constant offsets to instance vari- { void g (); } ends A s C { } (); b: "interface object" from cvtbl, use cobj as this obj: C table for h: body class B { int y = 42; x h() } void g () { y h() } } void h () { } } class D extends A, B { // Where do x and y go? void h () { } } thenadfexpectsthat this pointstoana,adgexpects s to a B, but adh expects it to point to a D se all be true?? 6:4 218 CS164: Lecture # :4 218 CS164: Lecture #28 2

7 ting Full Multiple Inheritance I (contd) ction address of g from D table first add 8 to pointer value ofad so as to get a pointer art of ad ventually calls h (actually thish), rs to the B part of ad l table is D (B part) in the preceding slide from that table gives us Dh, e call, after first adding the -8 offset from the table nd up calling Dh with a this value that points to ad, cts 6:4 218 CS164: Lecture #28 26 menting Full Multiple Inheritance I tend the contents of the virtual table with an offset hod how to adjust the this pointer before calling es from the last slide: g: body of Bg h: body of Bh D (B part): g: body of Bg h: body of Dh -8 f: body of Af h: body of Ah D: f: body of Af h: body of Dh g: body of Bg 6:4 218 CS164: Lecture # ementing Full Multiple Inheritance II entation slows things down in all cases to accommodate tter if only the methods inherited from B (for example) a work design: use stubs to adjust the this pointer to add 8 to the this pointer and then call Bg; and Dh 1 8 and then call Dh: g: body of Bg h: body of Bh D (B part): g: body of Bg h: body of Dh 1 f: body of Af h: body of Ah D: f: body of Af h: body of Dh g: body of Bg 1 46:4 218 CS164: Lecture #28 27

Exceptions and Continuations. Lecture #19: More Special Effects Exceptions and OOP. Approach II: Non-Standard Return. Approach I: Do Nothing

Exceptions and Continuations. Lecture #19: More Special Effects Exceptions and OOP. Approach II: Non-Standard Return. Approach I: Do Nothing Lecture #19: More Special Effects Exceptions and OOP Test #2 in two weeks (14 April), in class. Autograder runs Sunday night sometime. Exceptions and Continuations Exception-handling in programming languages

More information

Week 7. Statically-typed OO languages: C++ Closer look at subtyping

Week 7. Statically-typed OO languages: C++ Closer look at subtyping C++ & Subtyping Week 7 Statically-typed OO languages: C++ Closer look at subtyping Why talk about C++? C++ is an OO extension of C Efficiency and flexibility from C OO program organization from Simula

More information

History C++ Design Goals. How successful? Significant constraints. Overview of C++

History C++ Design Goals. How successful? Significant constraints. Overview of C++ 1 CS 242 History C++ John Mitchell C++ is an object-oriented extension of C C was designed by Dennis Ritchie at Bell Labs used to write Unix based on BCPL C++ designed by Bjarne Stroustrup at Bell Labs

More information

Object typing and subtypes

Object typing and subtypes CS 242 2012 Object typing and subtypes Reading Chapter 10, section 10.2.3 Chapter 11, sections 11.3.2 and 11.7 Chapter 12, section 12.4 Chapter 13, section 13.3 Subtyping and Inheritance Interface The

More information

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem:

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem: Expression evaluation CSE 504 Order of evaluation For the abstract syntax tree + + 5 Expression Evaluation, Runtime Environments + + x 3 2 4 the equivalent expression is (x + 3) + (2 + 4) + 5 1 2 (. Contd

More information

Conformance. Object-Oriented Programming Spring 2015

Conformance. Object-Oriented Programming Spring 2015 Conformance Object-Oriented Programming 236703 Spring 2015 1 What s Conformance? Overriding: replace method body in sub-class Polymorphism: subclass is usable wherever superclass is usable Dynamic Binding:

More information

C++ Yanyan SHEN. slide 1

C++ Yanyan SHEN. slide 1 C++ Yanyan SHEN slide 1 History C++ is an object-oriented extension of C Designed by Bjarne Stroustrup at Bell Labs His original interest at Bell Labs was research on simulation Early extensions to C are

More information

CSE341: Programming Languages Lecture 23 Multiple Inheritance, Mixins, Interfaces, Abstract Methods. Dan Grossman Autumn 2018

CSE341: Programming Languages Lecture 23 Multiple Inheritance, Mixins, Interfaces, Abstract Methods. Dan Grossman Autumn 2018 CSE341: Programming Languages Lecture 23 Multiple Inheritance, Mixins, Interfaces, Abstract Methods Dan Grossman Autumn 2018 What next? Have used classes for OOP's essence: inheritance, overriding, dynamic

More information

VIRTUAL FUNCTIONS Chapter 10

VIRTUAL FUNCTIONS Chapter 10 1 VIRTUAL FUNCTIONS Chapter 10 OBJECTIVES Polymorphism in C++ Pointers to derived classes Important point on inheritance Introduction to virtual functions Virtual destructors More about virtual functions

More information

Objects, Encapsulation, Inheritance (2)

Objects, Encapsulation, Inheritance (2) CS 242 2012 Objects, Encapsulation, Inheritance (2) Reading (two lectures) Chapter 10, except section 10.4 Chapter 11, sections 11.1, 11.2, 11.3.1 and 11.4., 11.5, 11.6 only Chapter 12, sections 12.1,

More information

Subtyping (Dynamic Polymorphism)

Subtyping (Dynamic Polymorphism) Fall 2018 Subtyping (Dynamic Polymorphism) Yu Zhang Course web site: http://staff.ustc.edu.cn/~yuzhang/tpl References PFPL - Chapter 24 Structural Subtyping - Chapter 27 Inheritance TAPL (pdf) - Chapter

More information

CS558 Programming Languages Winter 2013 Lecture 8

CS558 Programming Languages Winter 2013 Lecture 8 OBJECT-ORIENTED PROGRAMMING CS558 Programming Languages Winter 2013 Lecture 8 Object-oriented programs are structured in terms of objects: collections of variables ( fields ) and functions ( methods ).

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 11

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 11 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 11 EXCEPTION HANDLING Many higher-level languages provide exception handling Concept: One part of the program knows how to detect a problem,

More information

Design issues for objectoriented. languages. Objects-only "pure" language vs mixed. Are subclasses subtypes of the superclass?

Design issues for objectoriented. languages. Objects-only pure language vs mixed. Are subclasses subtypes of the superclass? Encapsulation Encapsulation grouping of subprograms and the data they manipulate Information hiding abstract data types type definition is hidden from the user variables of the type can be declared variables

More information

What about Object-Oriented Languages?

What about Object-Oriented Languages? What about Object-Oriented Languages? What is an OOL? A language that supports object-oriented programming How does an OOL differ from an ALL? (ALGOL-Like Language) Data-centric name scopes for values

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division DO NOT. P. N.

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division DO NOT. P. N. CS 164 Fall 2011 UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164: P. N. Hilfinger 1. [2 points] We d like to add inheritance to our

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 11

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 11 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2015 Lecture 11 EXCEPTION HANDLING! Many higher-level languages provide exception handling! Concept: One part of the program knows how to detect a problem,

More information

What s Conformance? Conformance. Conformance and Class Invariants Question: Conformance and Overriding

What s Conformance? Conformance. Conformance and Class Invariants Question: Conformance and Overriding Conformance Conformance and Class Invariants Same or Better Principle Access Conformance Contract Conformance Signature Conformance Co-, Contra- and No-Variance Overloading and Overriding Inheritance as

More information

AP Computer Science Chapter 10 Implementing and Using Classes Study Guide

AP Computer Science Chapter 10 Implementing and Using Classes Study Guide AP Computer Science Chapter 10 Implementing and Using Classes Study Guide 1. A class that uses a given class X is called a client of X. 2. Private features of a class can be directly accessed only within

More information

CSE 303: Concepts and Tools for Software Development

CSE 303: Concepts and Tools for Software Development CSE 303: Concepts and Tools for Software Development Hal Perkins Autumn 2008 Lecture 24 Introduction to C++ CSE303 Autumn 2008, Lecture 24 1 C++ C++ is an enormous language: All of C Classes and objects

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 10a Andrew Tolmach Portland State University 1994-2017 Object-oriented Programming Programs are structured in terms of objects: collections of variables

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

CSE 401/M501 Compilers

CSE 401/M501 Compilers CSE 401/M501 Compilers Code Shape II Objects & Classes Hal Perkins Autumn 2018 UW CSE 401/M501 Autumn 2018 L-1 Administrivia Semantics/type check due next Thur. 11/15 How s it going? Reminder: if you want

More information

Outline. Java Models for variables Types and type checking, type safety Interpretation vs. compilation. Reasoning about code. CSCI 2600 Spring

Outline. Java Models for variables Types and type checking, type safety Interpretation vs. compilation. Reasoning about code. CSCI 2600 Spring Java Outline Java Models for variables Types and type checking, type safety Interpretation vs. compilation Reasoning about code CSCI 2600 Spring 2017 2 Java Java is a successor to a number of languages,

More information

Overview. Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading

Overview. Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading How C++ Works 1 Overview Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading Motivation There are lot of myths about C++

More information

Data Abstraction. Hwansoo Han

Data Abstraction. Hwansoo Han Data Abstraction Hwansoo Han Data Abstraction Data abstraction s roots can be found in Simula67 An abstract data type (ADT) is defined In terms of the operations that it supports (i.e., that can be performed

More information

abstract binary class composition diamond Error Exception executable extends friend generic hash implementation implements

abstract binary class composition diamond Error Exception executable extends friend generic hash implementation implements CS365 Midterm 1) This exam is open-note, open book. 2) You must answer all of the questions. 3) Answer all the questions on a separate sheet of paper. 4) You must use Java to implement the coding questions.

More information

Method Resolution Approaches. Dynamic Dispatch

Method Resolution Approaches. Dynamic Dispatch Method Resolution Approaches Static - procedural languages (w/o fcn ptrs) Dynamically determined by data values C with function pointers Compile-time analysis can estimate possible callees Dynamically

More information

LECTURE 19. Subroutines and Parameter Passing

LECTURE 19. Subroutines and Parameter Passing LECTURE 19 Subroutines and Parameter Passing ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments behind a simple name. Data abstraction: hide data

More information

the gamedesigninitiative at cornell university Lecture 7 C++ Overview

the gamedesigninitiative at cornell university Lecture 7 C++ Overview Lecture 7 Lecture 7 So You Think You Know C++ Most of you are experienced Java programmers Both in 2110 and several upper-level courses If you saw C++, was likely in a systems course Java was based on

More information

Data Structures (list, dictionary, tuples, sets, strings)

Data Structures (list, dictionary, tuples, sets, strings) Data Structures (list, dictionary, tuples, sets, strings) Lists are enclosed in brackets: l = [1, 2, "a"] (access by index, is mutable sequence) Tuples are enclosed in parentheses: t = (1, 2, "a") (access

More information

1B1b Inheritance. Inheritance. Agenda. Subclass and Superclass. Superclass. Generalisation & Specialisation. Shapes and Squares. 1B1b Lecture Slides

1B1b Inheritance. Inheritance. Agenda. Subclass and Superclass. Superclass. Generalisation & Specialisation. Shapes and Squares. 1B1b Lecture Slides 1B1b Inheritance Agenda Introduction to inheritance. How Java supports inheritance. Inheritance is a key feature of object-oriented oriented programming. 1 2 Inheritance Models the kind-of or specialisation-of

More information

Overview of OOP. Dr. Zhang COSC 1436 Summer, /18/2017

Overview of OOP. Dr. Zhang COSC 1436 Summer, /18/2017 Overview of OOP Dr. Zhang COSC 1436 Summer, 2017 7/18/2017 Review Data Structures (list, dictionary, tuples, sets, strings) Lists are enclosed in square brackets: l = [1, 2, "a"] (access by index, is mutable

More information

Type Hierarchy. Comp-303 : Programming Techniques Lecture 9. Alexandre Denault Computer Science McGill University Winter 2004

Type Hierarchy. Comp-303 : Programming Techniques Lecture 9. Alexandre Denault Computer Science McGill University Winter 2004 Type Hierarchy Comp-303 : Programming Techniques Lecture 9 Alexandre Denault Computer Science McGill University Winter 2004 February 16, 2004 Lecture 9 Comp 303 : Programming Techniques Page 1 Last lecture...

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Spring 2010

CSE 374 Programming Concepts & Tools. Hal Perkins Spring 2010 CSE 374 Programming Concepts & Tools Hal Perkins Spring 2010 Lecture 19 Introduction ti to C++ C++ C++ is an enormous language: g All of C Classes and objects (kind of like Java, some crucial differences)

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

G Programming Languages Spring 2010 Lecture 9. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 9. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 9 Robert Grimm, New York University 1 Review Last week Modules 2 Outline Classes Encapsulation and Inheritance Initialization and Finalization Dynamic

More information

CGS 2405 Advanced Programming with C++ Course Justification

CGS 2405 Advanced Programming with C++ Course Justification Course Justification This course is the second C++ computer programming course in the Computer Science Associate in Arts degree program. This course is required for an Associate in Arts Computer Science

More information

Implementing Interfaces. Marwan Burelle. July 20, 2012

Implementing Interfaces. Marwan Burelle. July 20, 2012 Implementing marwan.burelle@lse.epita.fr http://www.lse.epita.fr/ July 20, 2012 Outline 1 2 3 4 Quick Overview of System oriented programming language Variant of C with a rationnalized syntax. Syntactic

More information

CPS 506 Comparative Programming Languages. Programming Language

CPS 506 Comparative Programming Languages. Programming Language CPS 506 Comparative Programming Languages Object-Oriented Oriented Programming Language Paradigm Introduction Topics Object-Oriented Programming Design Issues for Object-Oriented Oriented Languages Support

More information

Polymorphism. Zimmer CSCI 330

Polymorphism. Zimmer CSCI 330 Polymorphism Polymorphism - is the property of OOP that allows the run-time binding of a function's name to the code that implements the function. (Run-time binding to the starting address of the code.)

More information

Java Inheritance. Written by John Bell for CS 342, Spring Based on chapter 6 of Learning Java by Niemeyer & Leuck, and other sources.

Java Inheritance. Written by John Bell for CS 342, Spring Based on chapter 6 of Learning Java by Niemeyer & Leuck, and other sources. Java Inheritance Written by John Bell for CS 342, Spring 2018 Based on chapter 6 of Learning Java by Niemeyer & Leuck, and other sources. Review Which of the following is true? A. Java classes may either

More information

CS107 Handout 37 Spring 2007 May 25, 2007 Introduction to Inheritance

CS107 Handout 37 Spring 2007 May 25, 2007 Introduction to Inheritance CS107 Handout 37 Spring 2007 May 25, 2007 Introduction to Inheritance Handout written by Julie Zelenski, updated by Jerry. Inheritance is a language property most gracefully supported by the object-oriented

More information

Principles of Programming Languages. Objective-C. Joris Kluivers

Principles of Programming Languages. Objective-C. Joris Kluivers Principles of Programming Languages Objective-C Joris Kluivers joris.kluivers@gmail.com History... 3 NeXT... 3 Language Syntax... 4 Defining a new class... 4 Object identifiers... 5 Sending messages...

More information

C++ Programming: Polymorphism

C++ Programming: Polymorphism C++ Programming: Polymorphism 2018 년도 2 학기 Instructor: Young-guk Ha Dept. of Computer Science & Engineering Contents Run-time binding in C++ Abstract base classes Run-time type identification 2 Function

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

Object Model Comparisons

Object Model Comparisons Object Model Comparisons 1 Languages are designed, just like programs Someone decides what the language is for Someone decides what features it's going to have Can't really understand a language until

More information

Programming in C++: Assignment Week 6

Programming in C++: Assignment Week 6 Programming in C++: Assignment Week 6 Total Marks : 20 August 26, 2017 Question 1 class A { virtual void f(int) { virtual void g(double) { virtual void d(char) { int h(a *) { class B: public A { void f(int)

More information

CS11 Advanced C++ Fall Lecture 3

CS11 Advanced C++ Fall Lecture 3 CS11 Advanced C++ Fall 2006-2007 Lecture 3 Today s Topics C++ Standard Exceptions Exception Cleanup Fun with Exceptions Exception Specifications C++ Exceptions Exceptions are nice for reporting many errors

More information

Overview. Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading

Overview. Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading HOW C++ WORKS Overview Constructors and destructors Virtual functions Single inheritance Multiple inheritance RTTI Templates Exceptions Operator Overloading Motivation There are lot of myths about C++

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

D Programming Language

D Programming Language Group 14 Muazam Ali Anil Ozdemir D Programming Language Introduction and Why D? It doesn t come with a religion this is written somewhere along the overview of D programming language. If you actually take

More information

Concepts of Programming Languages

Concepts of Programming Languages Concepts of Programming Languages Lecture 10 - Object-Oriented Programming Patrick Donnelly Montana State University Spring 2014 Patrick Donnelly (Montana State University) Concepts of Programming Languages

More information

Inheritance, Polymorphism and the Object Memory Model

Inheritance, Polymorphism and the Object Memory Model Inheritance, Polymorphism and the Object Memory Model 1 how objects are stored in memory at runtime? compiler - operations such as access to a member of an object are compiled runtime - implementation

More information

Introduction to Programming Using Java (98-388)

Introduction to Programming Using Java (98-388) Introduction to Programming Using Java (98-388) Understand Java fundamentals Describe the use of main in a Java application Signature of main, why it is static; how to consume an instance of your own class;

More information

Lecture 13: more class, C++ memory management

Lecture 13: more class, C++ memory management CIS 330: / / / / (_) / / / / _/_/ / / / / / \/ / /_/ / `/ \/ / / / _/_// / / / / /_ / /_/ / / / / /> < / /_/ / / / / /_/ / / / /_/ / / / / / \ /_/ /_/_/_/ _ \,_/_/ /_/\,_/ \ /_/ \ //_/ /_/ Lecture 13:

More information

Outline. Central concepts in OO languages Objects as activation records (Simula) Dynamically-typed object-oriented languages

Outline. Central concepts in OO languages Objects as activation records (Simula) Dynamically-typed object-oriented languages Objects Outline Central concepts in OO languages Objects as activation records (Simula) Dynamically-typed object-oriented languages Class-based languages (Smalltalk) Prototype-based languages (JavaScript)

More information

CSE 504: Compiler Design. Runtime Environments

CSE 504: Compiler Design. Runtime Environments Runtime Environments Pradipta De pradipta.de@sunykorea.ac.kr Current Topic Procedure Abstractions Mechanisms to manage procedures and procedure calls from compiler s perspective Runtime Environment Choices

More information

Objects. Deian Stefan (Adopted from my & Edward Yang s CS242 slides)

Objects. Deian Stefan (Adopted from my & Edward Yang s CS242 slides) Objects Deian Stefan (Adopted from my & Edward Yang s CS242 slides) Outline Central concepts in OO languages Objects as activation records (Simula) Dynamically-typed object-oriented languages Class-based

More information

Object Oriented Paradigm

Object Oriented Paradigm Object Oriented Paradigm History Simula 67 A Simulation Language 1967 (Algol 60 based) Smalltalk OO Language 1972 (1 st version) 1980 (standard) Background Ideas Record + code OBJECT (attributes + methods)

More information

CS153: Compilers Lecture 11: Compiling Objects

CS153: Compilers Lecture 11: Compiling Objects CS153: Compilers Lecture 11: Compiling Objects Stephen Chong https://www.seas.harvard.edu/courses/cs153 Announcements Project 3 due today Project 4 out Due Thursday Oct 25 (16 days) Project 5 released

More information

CS 3 Introduction to Software Engineering. 3: Exceptions

CS 3 Introduction to Software Engineering. 3: Exceptions CS 3 Introduction to Software Engineering 3: Exceptions Questions? 2 Objectives Last Time: Procedural Abstraction This Time: Procedural Abstraction II Focus on Exceptions. Starting Next Time: Data Abstraction

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

Forth Meets Smalltalk. A Presentation to SVFIG October 23, 2010 by Douglas B. Hoffman

Forth Meets Smalltalk. A Presentation to SVFIG October 23, 2010 by Douglas B. Hoffman Forth Meets Smalltalk A Presentation to SVFIG October 23, 2010 by Douglas B. Hoffman 1 CONTENTS WHY FMS? NEON HERITAGE SMALLTALK HERITAGE TERMINOLOGY EXAMPLE FMS SYNTAX ACCESSING OVERRIDDEN METHODS THE

More information

QUIZ. Write the following for the class Bar: Default constructor Constructor Copy-constructor Overloaded assignment oper. Is a destructor needed?

QUIZ. Write the following for the class Bar: Default constructor Constructor Copy-constructor Overloaded assignment oper. Is a destructor needed? QUIZ Write the following for the class Bar: Default constructor Constructor Copy-constructor Overloaded assignment oper. Is a destructor needed? Or Foo(x), depending on how we want the initialization

More information

The Java Programming Language

The Java Programming Language The Java Programming Language Slide by John Mitchell (http://www.stanford.edu/class/cs242/slides/) Outline Language Overview History and design goals Classes and Inheritance Object features Encapsulation

More information

Smalltalk Implementation

Smalltalk Implementation Smalltalk Implementation Prof. Harry Porter Portland State University 1 The Image The object heap The Virtual Machine The underlying system (e.g., Mac OS X) The ST language interpreter The object-memory

More information

(12-1) OOP: Polymorphism in C++ D & D Chapter 12. Instructor - Andrew S. O Fallon CptS 122 (April 3, 2019) Washington State University

(12-1) OOP: Polymorphism in C++ D & D Chapter 12. Instructor - Andrew S. O Fallon CptS 122 (April 3, 2019) Washington State University (12-1) OOP: Polymorphism in C++ D & D Chapter 12 Instructor - Andrew S. O Fallon CptS 122 (April 3, 2019) Washington State University Key Concepts Polymorphism virtual functions Virtual function tables

More information

Object Oriented Programming: Based on slides from Skrien Chapter 2

Object Oriented Programming: Based on slides from Skrien Chapter 2 Object Oriented Programming: A Review Based on slides from Skrien Chapter 2 Object-Oriented Programming (OOP) Solution expressed as a set of communicating objects An object encapsulates the behavior and

More information

Lecture 13: Object orientation. Object oriented programming. Introduction. Object oriented programming. OO and ADT:s. Introduction

Lecture 13: Object orientation. Object oriented programming. Introduction. Object oriented programming. OO and ADT:s. Introduction Lecture 13: Object orientation Object oriented programming Introduction, types of OO languages Key concepts: Encapsulation, Inheritance, Dynamic binding & polymorphism Other design issues Smalltalk OO

More information

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20 COL728 Minor2 Exam Compiler Design Sem II, 2017-18 Answer all 5 questions Max. Marks: 20 1. Short questions a. Give an example of a program that is not a legal program if we assume static scoping, but

More information

OOPS Viva Questions. Object is termed as an instance of a class, and it has its own state, behavior and identity.

OOPS Viva Questions. Object is termed as an instance of a class, and it has its own state, behavior and identity. OOPS Viva Questions 1. What is OOPS? OOPS is abbreviated as Object Oriented Programming system in which programs are considered as a collection of objects. Each object is nothing but an instance of a class.

More information

Procedure and Object- Oriented Abstraction

Procedure and Object- Oriented Abstraction Procedure and Object- Oriented Abstraction Scope and storage management cs5363 1 Procedure abstractions Procedures are fundamental programming abstractions They are used to support dynamically nested blocks

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #6: Memory Management CS 61C L06 Memory Management (1) 2006-07-05 Andy Carle Memory Management (1/2) Variable declaration allocates

More information

STUDENT LESSON A20 Inheritance, Polymorphism, and Abstract Classes

STUDENT LESSON A20 Inheritance, Polymorphism, and Abstract Classes STUDENT LESSON A20 Inheritance, Polymorphism, and Abstract Classes Java Curriculum for AP Computer Science, Student Lesson A20 1 STUDENT LESSON A20 Inheritance, Polymorphism, and Abstract Classes INTRODUCTION:

More information

CS11 Introduction to C++ Fall Lecture 7

CS11 Introduction to C++ Fall Lecture 7 CS11 Introduction to C++ Fall 2012-2013 Lecture 7 Computer Strategy Game n Want to write a turn-based strategy game for the computer n Need different kinds of units for the game Different capabilities,

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. compute jump/branch targets

More information

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 17: Types and Type-Checking 25 Feb 08

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 17: Types and Type-Checking 25 Feb 08 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 17: Types and Type-Checking 25 Feb 08 CS 412/413 Spring 2008 Introduction to Compilers 1 What Are Types? Types describe the values possibly

More information

CS64 Week 5 Lecture 1. Kyle Dewey

CS64 Week 5 Lecture 1. Kyle Dewey CS64 Week 5 Lecture 1 Kyle Dewey Overview More branches in MIPS Memory in MIPS MIPS Calling Convention More Branches in MIPS else_if.asm nested_if.asm nested_else_if.asm Memory in MIPS Accessing Memory

More information

Syntax Errors; Static Semantics

Syntax Errors; Static Semantics Dealing with Syntax Errors Syntax Errors; Static Semantics Lecture 14 (from notes by R. Bodik) One purpose of the parser is to filter out errors that show up in parsing Later stages should not have to

More information

Lecture 10: building large projects, beginning C++, C++ and structs

Lecture 10: building large projects, beginning C++, C++ and structs CIS 330: / / / / (_) / / / / _/_/ / / / / / \/ / /_/ / `/ \/ / / / _/_// / / / / /_ / /_/ / / / / /> < / /_/ / / / / /_/ / / / /_/ / / / / / \ /_/ /_/_/_/ _ \,_/_/ /_/\,_/ \ /_/ \ //_/ /_/ Lecture 10:

More information

Programming Languages and Techniques (CIS120)

Programming Languages and Techniques (CIS120) Programming Languages and Techniques (IS120) Lecture 30 April 4, 2016 Exceptions hapter 27 HW7: PennPals hat Due: Tuesday Announcements Simplified Example class { public void foo() {.bar(); "here in foo");

More information

CS152: Programming Languages. Lecture 23 Advanced Concepts in Object-Oriented Programming. Dan Grossman Spring 2011

CS152: Programming Languages. Lecture 23 Advanced Concepts in Object-Oriented Programming. Dan Grossman Spring 2011 CS152: Programming Languages Lecture 23 Advanced Concepts in Object-Oriented Programming Dan Grossman Spring 2011 So far... The difference between OOP and records of functions with shared private state

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. See P&H 2.8 and 2.12, and

More information

Compiler construction 2009

Compiler construction 2009 Compiler construction 2009 Lecture 6 Some project extensions. Pointers and heap allocation. Object-oriented languages. Module systems. Memory structure Javalette restrictions Only local variables and parameters

More information

C++ Part 2 <: <: C++ Run-Time Representation. Smalltalk vs. C++ Dynamic Dispatch. Smalltalk vs. C++ Dynamic Dispatch

C++ Part 2 <: <: C++ Run-Time Representation. Smalltalk vs. C++ Dynamic Dispatch. Smalltalk vs. C++ Dynamic Dispatch C++ Run-Time Representation Point object Point vtable Code for move C++ Part x y CSCI 4 Stephen Freund ColorPoint object x 4 y 5 c red ColorPoint vtable Code for move Code for darken Data at same offset

More information

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention Runtime Environment The Procedure Abstraction and Separate Compilation Topics we will cover The procedure abstraction and linkage conventions Runtime storage convention Non-local data access (brief) These

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 12 Thomas Wies New York University Review Last lecture Modules Outline Classes Encapsulation and Inheritance Initialization and Finalization Dynamic

More information

Agenda. Strings: C vs. Java. Loading, Storing bytes. Support for Characters and Strings 6/29/2011

Agenda. Strings: C vs. Java. Loading, Storing bytes. Support for Characters and Strings 6/29/2011 6/29/2011 61: Great deas in omputer Architecture (achine tructures) ore achine Language nstructors: Randy H. Katz David A. atterson http://inst.eecs.berkeley.edu/~cs61c/sp11 pring 2011 -- Lecture #6 1

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Semantic Analysis. Lecture 9. February 7, 2018

Semantic Analysis. Lecture 9. February 7, 2018 Semantic Analysis Lecture 9 February 7, 2018 Midterm 1 Compiler Stages 12 / 14 COOL Programming 10 / 12 Regular Languages 26 / 30 Context-free Languages 17 / 21 Parsing 20 / 23 Extra Credit 4 / 6 Average

More information

Case Study: Meta Classes

Case Study: Meta Classes 1 Case Study: Meta Classes Class representation in memory Class variables and methods Meta Classes 3 Level System 4 Level System 5 Level System 1 Level System Infinite Levels System Class Representation

More information

Rules and syntax for inheritance. The boring stuff

Rules and syntax for inheritance. The boring stuff Rules and syntax for inheritance The boring stuff The compiler adds a call to super() Unless you explicitly call the constructor of the superclass, using super(), the compiler will add such a call for

More information

This Unit: Main Memory. Virtual Memory. Virtual Memory. Other Uses of Virtual Memory

This Unit: Main Memory. Virtual Memory. Virtual Memory. Other Uses of Virtual Memory This Unit: Virtual Application OS Compiler Firmware I/O Digital Circuits Gates & Transistors hierarchy review DRAM technology A few more transistors Organization: two level addressing Building a memory

More information

Wednesday, October 15, 14. Functions

Wednesday, October 15, 14. Functions Functions Terms void foo() { int a, b;... bar(a, b); void bar(int x, int y) {... foo is the caller bar is the callee a, b are the actual parameters to bar x, y are the formal parameters of bar Shorthand:

More information

CS 11 java track: lecture 3

CS 11 java track: lecture 3 CS 11 java track: lecture 3 This week: documentation (javadoc) exception handling more on object-oriented programming (OOP) inheritance and polymorphism abstract classes and interfaces graphical user interfaces

More information

3. Process Management in xv6

3. Process Management in xv6 Lecture Notes for CS347: Operating Systems Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay 3. Process Management in xv6 We begin understanding xv6 process management by looking

More information

INHERITANCE & POLYMORPHISM. INTRODUCTION IB DP Computer science Standard Level ICS3U. INTRODUCTION IB DP Computer science Standard Level ICS3U

INHERITANCE & POLYMORPHISM. INTRODUCTION IB DP Computer science Standard Level ICS3U. INTRODUCTION IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G INHERITANCE & POLYMORPHISM P2 LESSON 12 P2 LESSON 12.1 INTRODUCTION inheritance: OOP allows a programmer to define new classes

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

Thanks! Review. Course Goals. General Themes in this Course. There are many programming languages. Teaching Assistants. John Mitchell.

Thanks! Review. Course Goals. General Themes in this Course. There are many programming languages. Teaching Assistants. John Mitchell. 1 CS 242 Thanks! Review John Mitchell Final Exam Wednesday Dec 8 8:30 11:30 AM Gates B01, B03 Teaching Assistants Mike Cammarano TJ Giuli Hendra Tjahayadi Graders Andrew Adams Kenny Lau Vishal Patel and

More information