Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Size: px
Start display at page:

Download "Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan"

Transcription

1 Language Processing Systems Prof. Mohamed Hamada Software ngineering Lab. The University of Aizu Japan

2 Intermediate/Code Generation Source language Scanner (lexical analysis) tokens Parser (syntax analysis) Parse tree Semantic Analysis AST Intr. IC Code Generator generator Intermediate Language Code Optimizer Intermediate Language OIL Code Generator Target language rror Handler Symbol Table

3 Intermediate Code Generation

4 Intermediate Code Similar terms: Intermediate representation, intermediate language Ties the front and back ends together Language and Machine neutral Many forms More than one intermediate language may be used by a compiler

5 Intermediate Representation There is no standard Intermediate Representation. IR is a step in expressing a source program so that machine understands it As the translation takes place, IR is repeatedly analyzed and transformed Compiler users want analysis and translation to be fast and correct Compiler writers want optimizations to be simple to write, easy to understand and easy to extend IR should be simple and light weight while allowing easy expression of optimizations and transformations.

6 Issues in new IR Design How much machine dependent xpressiveness: how many languages are covered Appropriateness for code optimization Appropriateness for code generation Front end Optimizer

7 Intermediate Languages Types Graphical IRs: Abstract Syntax trees, DAGs, Control Flow Graphs, etc. Linear IRs: Stack based (postfix) Three address code (quadruples) etc.

8 Graphical IRs Abstract Syntax Trees (AST) retain essential structure of the parse tree, eliminating unneeded nodes. Directed Acyclic Graphs (DAG) compacted AST to avoid duplication smaller footprint as well Control Flow Graphs (CFG) explicitly model control flow

9 Abstract Syntax Tree/DAG Condensed form of parse tree Useful for representing language constructs Depicts the natural hierarchical structure of the source program ach internal node represents an operator Children of the nodes represent operands Leaf nodes represent operands DAG is more compact than abstract syntax tree because common sub expressions are eliminated

10 ASTs and DAGs: xample: a := b *-c + b*-c AST := a + DAG := a + * * * b - (uni) b - (uni) b - (uni) c c c

11 Linear IR Low level IL before final code generation A linear sequence of low-level instructions Resemble assembly code for an abstract machine xplicit conditional branches and goto jumps Reflect instruction sets of the target machine Stack-machine code and three-address code Implemented as a collection (table or list) of tuples Linear IR examples Stack based (postfix) Three address code (quadruples)

12 Stack based: Postfix notation Linearized representation of a syntax tree List of nodes of the tree Nodes appear immediately after its children The postfix notation for an expression is defined as follows: If is a variable or constant then the postfix notation is itself If is an expression of the form 1 op 2 where op is a binary operator then the postfix notation for is 1 ' 2 ' op where 1 ' and 2 are the postfix notations for 1 and 2 respectively If is an expression of the form ( 1 ) then the postfix notation for 1 is also the postfix notation for

13 Stack based: Postfix notation No parenthesis are needed in postfix notation because the position and parity of the operators permits only one decoding of a postfix expression Postfix notation for a = b * -c + b * - c is a b c - * b c - * + =

14 Stack-machine code Also called one-address code Assumes an operand stack Operations take operands from the stack and push results back onto the stack Need special operations such as Swapping two operands on top of the stack Compact in space, simple to generate and execute Most operands do not need names Results are transitory unless explicitly moved to memory Used as IR for Smalltalk and Java Stack-machine code for x 2 * y Push 2 Push y Multiply Push x subtract

15 Three address code It is a sequence of statements of the general form X := Y op Z where X, Y or Z are names, constants or compiler generated temporaries op stands for any operator such as a fixed- or floating-point arithmetic operator, or a logical operator

16 Three address code Only one operator on the right hand side is allowed Source expression like x + y * z might be translated into t 1 := y * z t 2 := x + t 1 where t 1 and t 2 are compiler generated temporary names Unraveling of complicated arithmetic expressions and of control flow makes 3-address code desirable for code generation and optimization The use of names for intermediate values allows 3-address code to be easily rearranged Three address code is a linearized representation of a syntax tree where explicit names correspond to the interior nodes of the graph

17 Three address instructions Assignment x = y op z x = op y x = y Function param x call p,n return y Jump goto L if x relop y goto L Indexed assignment x = y[i] x[i] = y Pointer x = &y x = *y *x = y

18 Three address code very instruction manipulates at most two operands and one result. Typical forms include: Arithmetic operations: x := y op z x := op y Data movement: x := y [ z ] x[z] := y x := y Control flow: if y op z goto x goto x Function call: param x return y call foo xample: Three-address code for x 2 * y := 2 t2 := y t3 := *t2 t4 := x t5 := t4-t3

19 Storing three-address code Store all instructions in a quadruple table very instruction has four fields: op, arg1, arg2, result The label of instructions è index of instruction in table Quadruple entries xample: Three-address code op arg1 arg2 result := - c t2 := b * t3 := -c t4 := b * t3 t5 := t2 + t4 a := t5 (0) Uminus c (1) Mult b t2 (2) Uminus c t3 (3) Mult b t3 t4 (4) Plus t2 t4 t5 (5) Assign t5 a Alternative: store all the instructions in a singly/doubly linked list What is the tradeoff?

20 Linear IR: xample xample: Linear IR for x 2 * y Stack-machine code two-address code three-address code Push 2 Push y Multiply Push x subtract MOV 2 => MOV y => t2 MULT t2 => MOV x => t4 SUB => t4 := 2 t2 := y t3 := *t2 t4 := x t5 := t4-t3

21 Generating Intermediate Code As we parse, generate IC for the given input. Use attributes to pass information about temporary variables up the tree

22 xample1: a := b *-c + b*-c t0 = b t0 b

23 xample1: a := b *-c + b*-c t0 = b = -c t0 b - (uni) c

24 xample1: a := b *-c + b*-c t0 * b - (uni) t0 = b = -c = * t0 c

25 xample1: a := b *-c + b*-c t0 * b - (uni) b t0 t0 = b = -c = * t0 t0 = b c

26 xample1: a := b *-c + b*-c t0 * b - (uni) c t0 b - (uni) t2 t2 c t0 = b = -c = * t0 t0 = b t2 = -c

27 xample1: a := b *-c + b*-c t0 * * b - (uni) c t0 b t0 - (uni) t2 t2 c t0 = b = -c = * t0 t0 = b t2 = -c t0 = t0 * t2

28 xample1: a := b *-c + b*-c t0 + * * b - (uni) c t0 b t0 - (uni) t2 t2 c t0 = b = -c = * t0 t0 = b t2 = -c t0 = t0 * t2 = t0 +

29 xample1: a := b *-c + b*-c t0 assign a + * * b - (uni) c t0 b t0 - (uni) t2 t2 c t0 = b = -c = * t0 t0 = b t2 = -c t0 = t0 * t2 = t0 + a =

30 xample1: a := b *-c + b*-c t0 = b = -c = * t0 t0 = * a = 0 assign a t0 + t0 b * - (uni) t0 c

31 xpressions xample 2: Grammar: S à id := à + à id S Generate: = b 1 a := b + c + d + e

32 xpressions xample 2: Grammar: S à id := à + à id ach number a := b + c + d + e corresponds to a temporary variable. S 1 2 Generate: = b t2 = c

33 xpressions xample 2: Grammar: S à id := à + à id 3 ach number a := b + c + d + e corresponds to a temporary variable. S 1 2 Generate: = b t2 = c t3 = + t2

34 xpressions xample 2: Grammar: S à id := à + à id 3 ach number a := b + c + d + e corresponds to a temporary variable. S Generate: = b t2 = c t3 = + t2 t4 = d

35 xpressions xample 2: Grammar: S à id := à + à id 3 ach number a := b + c + d + e corresponds to a temporary variable. S Generate: = b t2 = c t3 = + t2 t4 = d t5 = t3 + t4

36 xpressions xample 2: Grammar: S à id := à + à id ach number a := b + c + d + e corresponds to a temporary variable. S Generate: = b t2 = c t3 = + t2 t4 = d t5 = t3 + t4 t6 = e

37 xpressions xample 2: Grammar: S à id := à + à id S ach number a := b + c + d + e corresponds to a temporary variable. Generate: = b t2 = c t3 = + t2 t4 = d t5 = t3 + t4 t6 = e t7 = t5 + t6

38 xpressions xample 2: Grammar: S à id := à + à id S ach number a := b + c + d + e corresponds to a temporary variable. Generate: = b t2 = c t3 = + t2 t4 = d t5 = t3 + t4 t6 = e t7 = t5 + t6 a = t7

39 Other representations SSA: Single Static Assignment RTL: Register transfer language Stack machines: P-code CFG: Control Flow Graph Dominator Trees DJ-graph: dominator tree augmented with join edges PDG: Program Dependence Graph VDG: Value Dependence Graph GURRR: Global unified resource requirement representation. Combines PDG with resource requirements Java intermediate bytecodes The list goes on...

Principles of Compiler Design

Principles of Compiler Design Principles of Compiler Design Intermediate Representation Compiler Lexical Analysis Syntax Analysis Semantic Analysis Source Program Token stream Abstract Syntax tree Unambiguous Program representation

More information

Computer Science Department Carlos III University of Madrid Leganés (Spain) David Griol Barres

Computer Science Department Carlos III University of Madrid Leganés (Spain) David Griol Barres Computer Science Department Carlos III University of Madrid Leganés (Spain) David Griol Barres dgriol@inf.uc3m.es Compiler Architecture Source language Scanner (lexical analysis) tokens Parser (syntax

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation In the analysis-synthesis model of a compiler, the front end analyzes a source program and creates an intermediate representation, from which the back end generates target

More information

opt. front end produce an intermediate representation optimizer transforms the code in IR form into an back end transforms the code in IR form into

opt. front end produce an intermediate representation optimizer transforms the code in IR form into an back end transforms the code in IR form into Intermediate representations source code front end ir opt. ir back end target code front end produce an intermediate representation (IR) for the program. optimizer transforms the code in IR form into an

More information

Intermediate Representations

Intermediate Representations COMP 506 Rice University Spring 2018 Intermediate Representations source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students

More information

Front End. Hwansoo Han

Front End. Hwansoo Han Front nd Hwansoo Han Traditional Two-pass Compiler Source code Front nd IR Back nd Machine code rrors High level functions Recognize legal program, generate correct code (OS & linker can accept) Manage

More information

Intermediate Representations

Intermediate Representations Intermediate Representations Where In The Course Are We? Rest of the course: compiler writer needs to choose among alternatives Choices affect the quality of compiled code time to compile There may be

More information

Intermediate Representations

Intermediate Representations Intermediate Representations Intermediate Representations (EaC Chaper 5) Source Code Front End IR Middle End IR Back End Target Code Front end - produces an intermediate representation (IR) Middle end

More information

tokens parser 1. postfix notation, 2. graphical representation (such as syntax tree or dag), 3. three address code

tokens parser 1. postfix notation, 2. graphical representation (such as syntax tree or dag), 3. three address code Intermediate generation source program lexical analyzer tokens parser parse tree generation intermediate language The intermediate language can be one of the following: 1. postfix notation, 2. graphical

More information

Alternatives for semantic processing

Alternatives for semantic processing Semantic Processing Copyright c 2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies

More information

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit Intermediate Representations Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies

More information

CSE 401/M501 Compilers

CSE 401/M501 Compilers CSE 401/M501 Compilers Intermediate Representations Hal Perkins Autumn 2018 UW CSE 401/M501 Autumn 2018 G-1 Agenda Survey of Intermediate Representations Graphical Concrete/Abstract Syntax Trees (ASTs)

More information

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1 CSE P 501 Compilers Intermediate Representations Hal Perkins Spring 2018 UW CSE P 501 Spring 2018 G-1 Administrivia Semantics/types/symbol table project due ~2 weeks how goes it? Should be caught up on

More information

Semantic Analysis. Compiler Architecture

Semantic Analysis. Compiler Architecture Processing Systems Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Source Compiler Architecture Front End Scanner (lexical tokens Parser (syntax Parse tree Semantic Analysis

More information

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Language Processing Systems Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Semantic Analysis Compiler Architecture Front End Back End Source language Scanner (lexical analysis)

More information

6. Intermediate Representation

6. Intermediate Representation 6. Intermediate Representation Oscar Nierstrasz Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes. http://www.cs.ucla.edu/~palsberg/

More information

COMPILER CONSTRUCTION (Intermediate Code: three address, control flow)

COMPILER CONSTRUCTION (Intermediate Code: three address, control flow) COMPILER CONSTRUCTION (Intermediate Code: three address, control flow) Prof. K R Chowdhary Email: kr.chowdhary@jietjodhpur.ac.in Campus Director, JIET, Jodhpur Thursday 18 th October, 2018 kr chowdhary

More information

A Simple Syntax-Directed Translator

A Simple Syntax-Directed Translator Chapter 2 A Simple Syntax-Directed Translator 1-1 Introduction The analysis phase of a compiler breaks up a source program into constituent pieces and produces an internal representation for it, called

More information

UNIT IV INTERMEDIATE CODE GENERATION

UNIT IV INTERMEDIATE CODE GENERATION UNIT IV INTERMEDIATE CODE GENERATION 2 Marks 1. Draw syntax tree for the expression a=b*-c+b*-c 2. Explain postfix notation. It is the linearized representation of syntax tree.it is a list of nodes of

More information

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou COMP-421 Compiler Design Presented by Dr Ioanna Dionysiou Administrative! Any questions about the syllabus?! Course Material available at www.cs.unic.ac.cy/ioanna! Next time reading assignment [ALSU07]

More information

Intermediate representation

Intermediate representation Intermediate representation Goals: encode knowledge about the program facilitate analysis facilitate retargeting facilitate optimization scanning parsing HIR semantic analysis HIR intermediate code gen.

More information

Intermediate Representations & Symbol Tables

Intermediate Representations & Symbol Tables Intermediate Representations & Symbol Tables Copyright 2014, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University of Southern California have explicit permission

More information

6. Intermediate Representation!

6. Intermediate Representation! 6. Intermediate Representation! Prof. O. Nierstrasz! Thanks to Jens Palsberg and Tony Hosking for their kind permission to reuse and adapt the CS132 and CS502 lecture notes.! http://www.cs.ucla.edu/~palsberg/!

More information

Intermediate Representation (IR)

Intermediate Representation (IR) Intermediate Representation (IR) Components and Design Goals for an IR IR encodes all knowledge the compiler has derived about source program. Simple compiler structure source code More typical compiler

More information

CSc 453. Compilers and Systems Software. 13 : Intermediate Code I. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 13 : Intermediate Code I. Department of Computer Science University of Arizona CSc 453 Compilers and Systems Software 13 : Intermediate Code I Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2009 Christian Collberg Introduction Compiler Phases

More information

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation Concepts Introduced in Chapter 2 A more detailed overview of the compilation process. Parsing Scanning Semantic Analysis Syntax-Directed Translation Intermediate Code Generation Context-Free Grammar A

More information

Programming Languages & Translators PARSING. Baishakhi Ray. Fall These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Programming Languages & Translators PARSING. Baishakhi Ray. Fall These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) Programming Languages & Translators PARSING Baishakhi Ray Fall 2018 These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) Languages and Automata Formal languages are very important in

More information

Intermediate Representations Part II

Intermediate Representations Part II Intermediate Representations Part II Types of Intermediate Representations Three major categories Structural Linear Hybrid Directed Acyclic Graph A directed acyclic graph (DAG) is an AST with a unique

More information

Compilers. Intermediate representations and code generation. Yannis Smaragdakis, U. Athens (original slides by Sam

Compilers. Intermediate representations and code generation. Yannis Smaragdakis, U. Athens (original slides by Sam Compilers Intermediate representations and code generation Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts) Today Intermediate representations and code generation Scanner Parser Semantic

More information

Compiler Theory. (Intermediate Code Generation Abstract S yntax + 3 Address Code)

Compiler Theory. (Intermediate Code Generation Abstract S yntax + 3 Address Code) Compiler Theory (Intermediate Code Generation Abstract S yntax + 3 Address Code) 006 Why intermediate code? Details of the source language are confined to the frontend (analysis phase) of a compiler, while

More information

Compiler Optimization Intermediate Representation

Compiler Optimization Intermediate Representation Compiler Optimization Intermediate Representation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology

More information

CS606- compiler instruction Solved MCQS From Midterm Papers

CS606- compiler instruction Solved MCQS From Midterm Papers CS606- compiler instruction Solved MCQS From Midterm Papers March 06,2014 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 Final Term MCQ s and Quizzes CS606- compiler instruction If X is a

More information

PSD3A Principles of Compiler Design Unit : I-V. PSD3A- Principles of Compiler Design

PSD3A Principles of Compiler Design Unit : I-V. PSD3A- Principles of Compiler Design PSD3A Principles of Compiler Design Unit : I-V 1 UNIT I - SYLLABUS Compiler Assembler Language Processing System Phases of Compiler Lexical Analyser Finite Automata NFA DFA Compiler Tools 2 Compiler -

More information

CS415 Compilers. Intermediate Represeation & Code Generation

CS415 Compilers. Intermediate Represeation & Code Generation CS415 Compilers Intermediate Represeation & Code Generation These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Review - Types of Intermediate Representations

More information

Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known.

Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known. SEMANTIC ANALYSIS: Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known. Parsing only verifies that the program consists of tokens

More information

Intermediate Representations

Intermediate Representations Compiler Design 1 Intermediate Representations Compiler Design 2 Front End & Back End The portion of the compiler that does scanning, parsing and static semantic analysis is called the front-end. The translation

More information

Dixita Kagathara Page 1

Dixita Kagathara Page 1 2014 Sem-VII Intermediate Code Generation 1) What is intermediate code? Intermediate code is: The output of the parser and the input to the Code Generator. Relatively machine-independent: allows the compiler

More information

Concepts Introduced in Chapter 6

Concepts Introduced in Chapter 6 Concepts Introduced in Chapter 6 types of intermediate code representations translation of declarations arithmetic expressions boolean expressions flow-of-control statements backpatching EECS 665 Compiler

More information

UNIT-3. (if we were doing an infix to postfix translator) Figure: conceptual view of syntax directed translation.

UNIT-3. (if we were doing an infix to postfix translator) Figure: conceptual view of syntax directed translation. UNIT-3 SYNTAX-DIRECTED TRANSLATION: A Grammar symbols are associated with attributes to associate information with the programming language constructs that they represent. Values of these attributes are

More information

NARESHKUMAR.R, AP\CSE, MAHALAKSHMI ENGINEERING COLLEGE, TRICHY Page 1

NARESHKUMAR.R, AP\CSE, MAHALAKSHMI ENGINEERING COLLEGE, TRICHY Page 1 SEM / YEAR : VI / III CS2352 PRINCIPLES OF COMPLIERS DESIGN UNIT III INTERMEDIATE CODE GENERATION PART A 1. What are the benefits of intermediate code generation? (A.U May 2008) A Compiler for different

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall http://www.cse.buffalo.edu/faculty/alphonce/sp17/cse443/index.php https://piazza.com/class/iybn4ndqa1s3ei Announcements Be sure to

More information

CMPT 379 Compilers. Parse trees

CMPT 379 Compilers. Parse trees CMPT 379 Compilers Anoop Sarkar http://www.cs.sfu.ca/~anoop 10/25/07 1 Parse trees Given an input program, we convert the text into a parse tree Moving to the backend of the compiler: we will produce intermediate

More information

Intermediate Representations

Intermediate Representations Most of the material in this lecture comes from Chapter 5 of EaC2 Intermediate Representations Note by Baris Aktemur: Our slides are adapted from Cooper and Torczon s slides that they prepared for COMP

More information

Some Basic Definitions. Some Basic Definitions. Some Basic Definitions. Language Processing Systems. Syntax Analysis (Parsing) Prof.

Some Basic Definitions. Some Basic Definitions. Some Basic Definitions. Language Processing Systems. Syntax Analysis (Parsing) Prof. Language Processing Systems Prof. Mohamed Hamada Software ngineering Lab. he University of Aizu Japan Syntax Analysis (Parsing) Some Basic Definitions Some Basic Definitions syntax: the way in which words

More information

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation

COMP 181. Prelude. Intermediate representations. Today. High-level IR. Types of IRs. Intermediate representations and code generation Prelude COMP 181 Lecture 14 Intermediate representations and code generation October 19, 2006 Who is Seth Lloyd? Professor of mechanical engineering at MIT, pioneer in quantum computing Article in Nature:

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Basic Approach and Application to Assignment and xpressions Array xpressions Boolean xpressions Copyright 2017, Pedro C. Diniz, all rights reserved. Students enrolled in the

More information

Acknowledgement. CS Compiler Design. Intermediate representations. Intermediate representations. Semantic Analysis - IR Generation

Acknowledgement. CS Compiler Design. Intermediate representations. Intermediate representations. Semantic Analysis - IR Generation Acknowledgement CS3300 - Compiler Design Semantic Analysis - IR Generation V. Krishna Nandivada IIT Madras Copyright c 2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all

More information

Syntax-directed translation. Context-sensitive analysis. What context-sensitive questions might the compiler ask?

Syntax-directed translation. Context-sensitive analysis. What context-sensitive questions might the compiler ask? Syntax-directed translation Context-sensitive analysis The compilation process is driven by the syntactic structure of the program as discovered by the parser Semantic routines: interpret meaning of the

More information

Concepts Introduced in Chapter 6

Concepts Introduced in Chapter 6 Concepts Introduced in Chapter 6 types of intermediate code representations translation of declarations arithmetic expressions boolean expressions flow-of-control statements backpatching EECS 665 Compiler

More information

Page No 1 (Please look at the next page )

Page No 1 (Please look at the next page ) Salman Bin Abdul Aziz University Collage of Computer Engineering and Sciences Computer Science Department 1433-1434 (2012-2013) First Term CS 4300 Compiler Construction 8 th Level Final Exam 120 Minutes

More information

2.2 Syntax Definition

2.2 Syntax Definition 42 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR sequence of "three-address" instructions; a more complete example appears in Fig. 2.2. This form of intermediate code takes its name from instructions

More information

PRINCIPLES OF COMPILER DESIGN UNIT I INTRODUCTION TO COMPILERS

PRINCIPLES OF COMPILER DESIGN UNIT I INTRODUCTION TO COMPILERS Objective PRINCIPLES OF COMPILER DESIGN UNIT I INTRODUCTION TO COMPILERS Explain what is meant by compiler. Explain how the compiler works. Describe various analysis of the source program. Describe the

More information

Context-sensitive analysis. Semantic Processing. Alternatives for semantic processing. Context-sensitive analysis

Context-sensitive analysis. Semantic Processing. Alternatives for semantic processing. Context-sensitive analysis Semantic Processing The compilation process is driven by the syntactic structure of the program as discovered by the parser Semantic routines: interpret meaning of the program based on its syntactic structure

More information

CS 406/534 Compiler Construction Putting It All Together

CS 406/534 Compiler Construction Putting It All Together CS 406/534 Compiler Construction Putting It All Together Prof. Li Xu Dept. of Computer Science UMass Lowell Fall 2004 Part of the course lecture notes are based on Prof. Keith Cooper, Prof. Ken Kennedy

More information

Semantic analysis and intermediate representations. Which methods / formalisms are used in the various phases during the analysis?

Semantic analysis and intermediate representations. Which methods / formalisms are used in the various phases during the analysis? Semantic analysis and intermediate representations Which methods / formalisms are used in the various phases during the analysis? The task of this phase is to check the "static semantics" and generate

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Translating source program into an intermediate language. Simple CPU Indepent, yet, close in spirit to machine language. Three Address Code (quadruples) Two Address Code, etc.

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Basic Approach and Application to Assignment and xpressions Array xpressions Boolean xpressions Copyright 2015, Pedro C. Diniz, all rights reserved. Students enrolled in the

More information

Intermediate Code & Local Optimizations

Intermediate Code & Local Optimizations Lecture Outline Intermediate Code & Local Optimizations Intermediate code Local optimizations Compiler Design I (2011) 2 Code Generation Summary We have so far discussed Runtime organization Simple stack

More information

G Compiler Construction Lecture 12: Code Generation I. Mohamed Zahran (aka Z)

G Compiler Construction Lecture 12: Code Generation I. Mohamed Zahran (aka Z) G22.2130-001 Compiler Construction Lecture 12: Code Generation I Mohamed Zahran (aka Z) mzahran@cs.nyu.edu semantically equivalent + symbol table Requirements Preserve semantic meaning of source program

More information

PRINCIPLES OF COMPILER DESIGN UNIT I INTRODUCTION TO COMPILING

PRINCIPLES OF COMPILER DESIGN UNIT I INTRODUCTION TO COMPILING PRINCIPLES OF COMPILER DESIGN 2 MARKS UNIT I INTRODUCTION TO COMPILING 1. Define compiler? A compiler is a program that reads a program written in one language (source language) and translates it into

More information

Chapter 6 Intermediate Code Generation

Chapter 6 Intermediate Code Generation Chapter 6 Intermediate Code Generation Outline Variants of Syntax Trees Three-address code Types and declarations Translation of expressions Type checking Control flow Backpatching Introduction Intermediate

More information

Group B Assignment 9. Code generation using DAG. Title of Assignment: Problem Definition: Code generation using DAG / labeled tree.

Group B Assignment 9. Code generation using DAG. Title of Assignment: Problem Definition: Code generation using DAG / labeled tree. Group B Assignment 9 Att (2) Perm(3) Oral(5) Total(10) Sign Title of Assignment: Code generation using DAG. 9.1.1 Problem Definition: Code generation using DAG / labeled tree. 9.1.2 Perquisite: Lex, Yacc,

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grammars Lecture 7 http://webwitch.dreamhost.com/grammar.girl/ Outline Scanner vs. parser Why regular expressions are not enough Grammars (context-free grammars) grammar rules derivations

More information

CS 4201 Compilers 2014/2015 Handout: Lab 1

CS 4201 Compilers 2014/2015 Handout: Lab 1 CS 4201 Compilers 2014/2015 Handout: Lab 1 Lab Content: - What is compiler? - What is compilation? - Features of compiler - Compiler structure - Phases of compiler - Programs related to compilers - Some

More information

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Language Processing Systems Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Semantic Analysis Compiler Architecture Front End Back End Source language Scanner (lexical analysis)

More information

An Overview to Compiler Design. 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1

An Overview to Compiler Design. 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1 An Overview to Compiler Design 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1 Outline An Overview of Compiler Structure Front End Middle End Back End 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 2 Reading

More information

Introduction to Compiler

Introduction to Compiler Formal Languages and Compiler (CSE322) Introduction to Compiler Jungsik Choi chjs@khu.ac.kr 2018. 3. 8 Traditional Two-pass Compiler Source Front End Back End Compiler Target High level functions Recognize

More information

Static Checking and Intermediate Code Generation Pat Morin COMP 3002

Static Checking and Intermediate Code Generation Pat Morin COMP 3002 Static Checking and Intermediate Code Generation Pat Morin COMP 3002 Static Checking and Intermediate Code Generation Parser Static Checker Intermediate Code Generator Intermediate Code Generator Parse

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών Lecture 5a Syntax Analysis lias Athanasopoulos eliasathan@cs.ucy.ac.cy Syntax Analysis Συντακτική Ανάλυση Context-free Grammars (CFGs) Derivations Parse trees

More information

Intermediate Representations

Intermediate Representations Intermediate Representations A variety of intermediate representations are used in compilers Most common intermediate representations are: Abstract Syntax Tree Directed Acyclic Graph (DAG) Three-Address

More information

Code Generation. Frédéric Haziza Spring Department of Computer Systems Uppsala University

Code Generation. Frédéric Haziza Spring Department of Computer Systems Uppsala University Code Generation Frédéric Haziza Department of Computer Systems Uppsala University Spring 2008 Operating Systems Process Management Memory Management Storage Management Compilers Compiling

More information

Time : 1 Hour Max Marks : 30

Time : 1 Hour Max Marks : 30 Total No. of Questions : 6 P4890 B.E/ Insem.- 74 B.E ( Computer Engg) PRINCIPLES OF MODERN COMPILER DESIGN (2012 Pattern) (Semester I) Time : 1 Hour Max Marks : 30 Q.1 a) Explain need of symbol table with

More information

Life Cycle of Source Program - Compiler Design

Life Cycle of Source Program - Compiler Design Life Cycle of Source Program - Compiler Design Vishal Trivedi * Gandhinagar Institute of Technology, Gandhinagar, Gujarat, India E-mail: raja.vishaltrivedi@gmail.com Abstract: This Research paper gives

More information

TACi: Three-Address Code Interpreter (version 1.0)

TACi: Three-Address Code Interpreter (version 1.0) TACi: Three-Address Code Interpreter (version 1.0) David Sinclair September 23, 2018 1 Introduction TACi is an interpreter for Three-Address Code, the common intermediate representation (IR) used in compilers.

More information

Compiler Design. Computer Science & Information Technology (CS) Rank under AIR 100

Compiler Design. Computer Science & Information Technology (CS) Rank under AIR 100 GATE- 2016-17 Postal Correspondence 1 Compiler Design Computer Science & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

More information

Comp 204: Computer Systems and Their Implementation. Lecture 22: Code Generation and Optimisation

Comp 204: Computer Systems and Their Implementation. Lecture 22: Code Generation and Optimisation Comp 204: Computer Systems and Their Implementation Lecture 22: Code Generation and Optimisation 1 Today Code generation Three address code Code optimisation Techniques Classification of optimisations

More information

Compiler Design (40-414)

Compiler Design (40-414) Compiler Design (40-414) Main Text Book: Compilers: Principles, Techniques & Tools, 2 nd ed., Aho, Lam, Sethi, and Ullman, 2007 Evaluation: Midterm Exam 35% Final Exam 35% Assignments and Quizzes 10% Project

More information

COMPILER CONSTRUCTION Seminar 03 TDDB

COMPILER CONSTRUCTION Seminar 03 TDDB COMPILER CONSTRUCTION Seminar 03 TDDB44 2016 Martin Sjölund (martin.sjolund@liu.se) Mahder Gebremedhin (mahder.gebremedhin@liu.se) Department of Computer and Information Science Linköping University LABS

More information

Principles of Compiler Design

Principles of Compiler Design Principles of Compiler Design Code Generation Compiler Lexical Analysis Syntax Analysis Semantic Analysis Source Program Token stream Abstract Syntax tree Intermediate Code Code Generation Target Program

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Rupesh Nasre. CS3300 Compiler Design IIT Madras July 2018 Character stream Lexical Analyzer Machine-Independent Code Code Optimizer F r o n t e n d Token stream Syntax Analyzer

More information

PRINCIPLES OF COMPILER DESIGN

PRINCIPLES OF COMPILER DESIGN PRINCIPLES OF COMPILER DESIGN 2 MARK QUESTIONS WITH ANSWERS UNIT I 1. What is a Complier? A Complier is a program that reads a program written in one language-the source language-and translates it in to

More information

Examples of attributes: values of evaluated subtrees, type information, source file coordinates,

Examples of attributes: values of evaluated subtrees, type information, source file coordinates, 1 2 3 Attributes can be added to the grammar symbols, and program fragments can be added as semantic actions to the grammar, to form a syntax-directed translation scheme. Some attributes may be set by

More information

Program Analysis ( 软件源代码分析技术 ) ZHENG LI ( 李征 )

Program Analysis ( 软件源代码分析技术 ) ZHENG LI ( 李征 ) Program Analysis ( 软件源代码分析技术 ) ZHENG LI ( 李征 ) lizheng@mail.buct.edu.cn Lexical and Syntax Analysis Topic Covered Today Compilation Lexical Analysis Semantic Analysis Compilation Translating from high-level

More information

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13 Run-time Environments Lecture 13 by Prof. Vijay Ganesh) Lecture 13 1 What have we covered so far? We have covered the front-end phases Lexical analysis (Lexer, regular expressions,...) Parsing (CFG, Top-down,

More information

Principle of Compilers Lecture VIII: Intermediate Code Generation. Alessandro Artale

Principle of Compilers Lecture VIII: Intermediate Code Generation. Alessandro Artale Free University of Bolzano Principles of Compilers. Lecture VIII, 2003/2004 A.Artale (1 Principle of Compilers Lecture VIII: Intermediate Code Generation Alessandro Artale Faculty of Computer Science Free

More information

UNIT -1 1.1 OVERVIEW OF LANGUAGE PROCESSING SYSTEM 1.2 Preprocessor A preprocessor produce input to compilers. They may perform the following functions. 1. Macro processing: A preprocessor may allow a

More information

CST-402(T): Language Processors

CST-402(T): Language Processors CST-402(T): Language Processors Course Outcomes: On successful completion of the course, students will be able to: 1. Exhibit role of various phases of compilation, with understanding of types of grammars

More information

A simple syntax-directed

A simple syntax-directed Syntax-directed is a grammaroriented compiling technique Programming languages: Syntax: what its programs look like? Semantic: what its programs mean? 1 A simple syntax-directed Lexical Syntax Character

More information

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Administration Design reports due Friday Current demo schedule on web page send mail with preferred times if you haven

More information

Semantic actions for declarations and expressions

Semantic actions for declarations and expressions Semantic actions for declarations and expressions Semantic actions Semantic actions are routines called as productions (or parts of productions) are recognized Actions work together to build up intermediate

More information

About the Authors... iii Introduction... xvii. Chapter 1: System Software... 1

About the Authors... iii Introduction... xvii. Chapter 1: System Software... 1 Table of Contents About the Authors... iii Introduction... xvii Chapter 1: System Software... 1 1.1 Concept of System Software... 2 Types of Software Programs... 2 Software Programs and the Computing Machine...

More information

CMPSC 160 Translation of Programming Languages. Three-Address Code

CMPSC 160 Translation of Programming Languages. Three-Address Code CMPSC 160 Translation of Programming Languages Lectures 16: Code Generation: Three- Address Code Three-Address Code Each instruction can have at most three operands Each operand corresponds to a memory

More information

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM.

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. IR Generation Announcements My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. This is a hard deadline and no late submissions will be

More information

Semantic actions for declarations and expressions. Monday, September 28, 15

Semantic actions for declarations and expressions. Monday, September 28, 15 Semantic actions for declarations and expressions Semantic actions Semantic actions are routines called as productions (or parts of productions) are recognized Actions work together to build up intermediate

More information

LECTURE 3. Compiler Phases

LECTURE 3. Compiler Phases LECTURE 3 Compiler Phases COMPILER PHASES Compilation of a program proceeds through a fixed series of phases. Each phase uses an (intermediate) form of the program produced by an earlier phase. Subsequent

More information

Compiler Architecture

Compiler Architecture Code Generation 1 Compiler Architecture Source language Scanner (lexical analysis) Tokens Parser (syntax analysis) Syntactic structure Semantic Analysis (IC generator) Intermediate Language Code Optimizer

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation Rupesh Nasre. CS3300 Compiler Design IIT Madras Aug 2015 Character stream Lexical Analyzer Machine-Independent Code Optimizer F r o n t e n d Token stream Syntax Analyzer Syntax

More information

Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM

Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM 1 Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM Sungkyunkwan University Contents JerryScript Execution Flow JerryScript Parser Execution Flow Lexing Parsing Compact Bytecode (CBC) JerryScript

More information

Sardar Vallabhbhai Patel Institute of Technology (SVIT), Vasad M.C.A. Department COSMOS LECTURE SERIES ( ) (ODD) Code Optimization

Sardar Vallabhbhai Patel Institute of Technology (SVIT), Vasad M.C.A. Department COSMOS LECTURE SERIES ( ) (ODD) Code Optimization Sardar Vallabhbhai Patel Institute of Technology (SVIT), Vasad M.C.A. Department COSMOS LECTURE SERIES (2018-19) (ODD) Code Optimization Prof. Jonita Roman Date: 30/06/2018 Time: 9:45 to 10:45 Venue: MCA

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Subject Name: CS2352 Principles of Compiler Design Year/Sem : III/VI

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Subject Name: CS2352 Principles of Compiler Design Year/Sem : III/VI DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Subject Name: CS2352 Principles of Compiler Design Year/Sem : III/VI UNIT I - LEXICAL ANALYSIS 1. What is the role of Lexical Analyzer? [NOV 2014] 2. Write

More information