6. Inference and resolution

Size: px
Start display at page:

Download "6. Inference and resolution"

Transcription

1 Computer Science and Software Engineering University of Wisconsin - Platteville 6. Inference and resolution CS 3030 Lecture Notes Yan Shi UW-Platteville Read: Textbook Chapter 8 Part of the slides are from textbook slides

2 Overview Issue so far: How to reason with FOPL? How to automate the reasoning process? Solution: resolution Normal forms Resolution rule Proof by refutation Unification Horn clauses

3 Normal Forms Conjunctive Normal Form (CNF): A1 A2 An Where each clause Ai is of form B1 B2 Bn Where each Bi is a literal (basic symbol of propositional logic) A set of or phrases anded together! Example: A ( B C) ( A B D) Disjunctive Normal Form (DNF): A set of and phrases ored together

4 Converting to CNF Any wff can be converted to CNF by applying the following equivalences in the exact order: (1) A B (A B) Λ (B A) (2) A B A v B (3) (A Λ B) A v B (4) (A v B) A Λ B (5) A A (6) A v (B Λ C) (A v B) Λ (A v C) Importantly, this can be converted into an algorithm this will be useful when we come to automating resolution. Example: (A B) C A (B C)

5 Clauses Having converted a wff to CNF, it is usual to write it as a set of clauses. E.g.: In CNF is: (A B) C (A V C) Λ ( B V C) In clause form, we write: {(A, C), ( B, C)} 5

6 The Resolution Rule The resolution rule is written as follows: A v B B v C A v C This tells us that if we have two clauses that have a literal and its negation, we can combine them by removing that literal. E.g.: {(A, C), ( A, D)} {C, D} Resolvent: logical consequence of two clauses. More examples: { (B,C,D,E), D, ( D, F)} 6

7 Resolution Refutation Let us resolve: {( A, B), ( A, B, C), A, C} We begin by resolving the first clause with the second clause, thus eliminating B and B: {( A, C), A, C} {C, C} Now we can resolve both remaining literals, which gives falsum: ^ If we reach falsum, we have proved that our initial set of clauses were inconsistent. This is written: {( A, B), ( A, B, C), A, C} ^ 7

8 Proof by Refutation If we want to prove that a logical argument is valid, we negate its conclusion, convert it to clause form, and then try to derive falsum using resolution. If we derive falsum, then our clauses were inconsistent, meaning the original argument was valid, since we negated its conclusion. 8

9 Proof by Refutation - Example Our argument is: (A Λ B) C A Λ B C Negate the conclusion and convert to clauses: {( A, B, C), A, B, C} Now resolve: {(B, C), B, C} {C, C} ^ We have reached falsum, so our original argument was valid. Note: it is not necessary to have all clauses resolved, see textbook example Ch

10 Refutation Proofs in Tree Form It is often sensible to represent a refutation proof in tree form: In this case, the proof has failed, as we are left with E instead of falsum. 10

11 Example: Graph Coloring Resolution refutation can be used to determine if a solution exists for a particular combinatorial problem. For example, for graph coloring, we represent the assignment of colors to the nodes and the constraints regarding edges as propositions, and attempt to prove that the complete set of clauses is consistent. This does not tell us how to color the graph, simply that it is possible. 11

12 Example: Graph Coloring (2) Available colors are r (red), g (green) and b (blue). A r means that node A has been coloured red. Each node must have exactly one color: A r v A g v A b A r v A g ( A r A g ) A g v A b A b v A r If (A,B) is an edge, then: A r v B r A b v B b A g v B g Now we construct the complete set of clauses for our graph, and try to see if they are consistent, using resolution. 12

13 McDonald s Addicts Adam, Brian and Chris go to McDonald s for lunch every day. They eat only beef burgers or chicken sandwiches. 13

14 McDonald s Addicts 1) If Adam buys beef burgers, Brian will definitely buy chicken sandwiches. 2) Either Adam or Chris will have beef burgers. 3) Between Brian and Chris, at least one of them does not eat chicken sandwiches. Who had a beef burger yesterday and who had a chicken sandwich today? 4/15/ :50:46 AM 14

15 Normal Forms in Predicate Calculus A FOPC expression can be put in prenex normal form by converting it to CNF, with the quantifiers moved to the front. For example, the wff: ( x)(a(x) B(x)) ( y)(a(y) Λ B(y)) Converts to prenex normal form as: ( x)( y)(((a(x) v A(y)) Λ ( B(x) v A(y)) Λ (A(x) v B(y)) Λ ( B(x) v B(y)))) HOW??? 15

16 A further set of rules can be generated by replacing with in rules Rules to convert to prenex normal form In addition to rules 1-6, apply: only when B doesn t contain x

17 Skolemization Before resolution can be applied, must be removed, using skolemization. Variables that are existentially quantified are replaced by a constant: (x) P(x) is converted to: P(c) c is a constant that must not already exist in the expression. 17

18 Skolem functions If the existentially quantified variable is within the scope of a universally quantified variable, it must be replaced by a skolem function, which is a function of the universally quantified variable. Sounds complicated, but is actually simple: ( x)( y)(p(x,y)) Is Skolemized to give: ( x)(p(x,f(x)) After skolemization, is dropped, and the expression converted to clauses in the usual manner. Example: ( x)( y)( z)(p(x) Q(y,z)) ( w)( x)( y)( z)(p(x) Q(w,y,z)) 18

19 Unification (1) To resolve clauses we often need to make substitutions. For example: {(P(w,x)), ( P(y,z))} To resolve, we need to substitute w with y, and x with z, giving: {(P(y,z)), ( P(y,z))} Now these resolve to give falsum. A substitution that enables us to resolve a set of clauses is called a unifier. We write the unifier we used above as: new/old {y/w, z/x} Unification: given two terms a and b, find a substitution σ such that applying σ to both a and b gives the same result: aσ = bσ 19

20 Unification (2) Given multiple substitutions, we must define how to combine them: "{x/y, A/z} {B/x}" means apply "{x/y,a/z}" then "{B/x}" combination is "{B/y,A/z,B/x}" A unifier (u) is a most general unifier (mgu) if any other unifier can be formed by the composition of u with some other unifier. example: F(x,y) and F(u,v) Unifiers: {A/x, A/y, A/u, A/v}, {u/x, y/v}, {w/x, z/y, w/u, z/v}, Unification algorithm (ch 8.6.5): an algorithm can be generated which obtains a most general unifier for any set of clauses. 20

21 Unification (3) What is against the substitution rule? A constant cannot be replaced by a variable: {x/c} wrong!!! A variable x cannot be replaced by a term that contains x: {f(x)/x} wrong!!! In general, mgu(a, b) is {b/a} if a is a variable not occurring in b Example: Married(Alice, x), Married(Alice, y): {y/x} Married(Alice, x), Married (Alice, Bob): {Bob/x} Married(x, y), Married(sister(x), y) :??? Married(x, brother(y)), Married(Alice, father(chris)):??? Parents(x, father(x), mother(x)), Parents(Bill, father(bill), y) : {Bill/x, mother(bill)/y}

22 The Resolution Algorithm 1 First, negate the conclusion and add it to the list of assumptions. 2 Now convert the assumptions into Prenex Normal Form 3 Next, skolemize the resulting expression 4 Now convert the expression into a set of clauses 5 Now resolve the clauses using suitable unifiers. This algorithm means we can write programs that automatically prove theorems using resolution. 22

23 Example Consider the following axioms: All dogs bark at night. Anyone who has any cats will not have any mice. Light sleepers do not have anything which barks at night. John has either a cat or a dog or both. Is it true that if John is a light sleeper, then John does not have any mice? Note: Use predicate only when necessary. In this example, do we need P(x) to indicate x is a person? Remember: and are often used together; and are often used together.

24 Horn Clauses in PROLOG (1) PROLOG uses resolution. A Horn clause has at most one positive literal: A v B v C v D v E This can also be written as an implication: B Λ C Λ D Λ E A In PROLOG, this is written: A :- B, C, D, E Conclusion on the left, Premises on the right. 24

25 Horn Clauses in PROLOG (2) Horn clauses can express rules: A :- B, C, D Or facts: A :- Or goals: :- B, C, D, E If a set of clauses is valid, PROLOG will definitely prove it using resolution and depth first search. 25

26 Convert FOPL to Prolog Syntax: A B B:-A Λ, constants: lower case variables: upper case Sentences end with a period. Each fact or rule is a sentence comments: % to end of line Semantics: Variables appearing on left-hand-side of rules are implicitly universally quantified. Variables appearing on the right-hand-side are implicitly existentially quantified Prolog constructs a database of facts and rules.

27 Prolog Example: Family % facts: father(bill, jake). % read bill is father of jake father(bill, shelly). father(george, bill). mother(mary, jake). mother(mary, shelly). mother(peg, mary). % rules: parent(x,y) :- mother(x,y). parent(x, Y) :- father(x, Y). grandparent(x,y) :- parent(x,z), parent(z,y). sibling(x,y) :- parent(z,x), parent(z,y).

28 Prolog Example: Hanoi Tower move(1,x,y,_) :- % _ is a anonymous variable write('move top disk from '), % write to the screen write(x), write(' to '), write(y), nl. move(n,x,y,z) :- N>1, % comparison operators: <, >, =<, >=. = has other meaning! M is N-1, % use is for assignment move(m,x,z,y), move(1,x,y,_), move(m,z,y,x).

29 Using Prolog On IO, type prolog To load a file:?- consult( family.pl ) To ask questions:?- grandparent(peg,jake). Press ; to see the next solution. Press a to see all solutions. Press RETURN to stop. To exit:?- halt. (or ctrl-d) Resources to learn prolog: Learning prolog via examples GNU prolog manual

30 Summary CNF is useful to solve many logic problems Key is to translate natural language into logic language, convert to CNFs and then resolve! The resolution algorithm Proof by refutation Prenex normal form Skolemization Unification Resolution rule Prolog Horn clauses Facts and rules How to use prolog.

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13.

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13. 13 Automated Reasoning 13.0 Introduction to Weak Methods in Theorem Proving 13.1 The General Problem Solver and Difference Tables 13.2 Resolution Theorem Proving 13.3 PROLOG and Automated Reasoning 13.4

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 37 Resolution Rules If some literals can be unified, the same algorithm should be able

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

First Order Logic and Resolution

First Order Logic and Resolution Artificial Intelligence CS 6364 Professor Dan Moldovan Section 6 First Order Logic and Resolution First Order Logic (First Order Predicate Calculus) n n There is need to access components of a sentence.

More information

THE PREDICATE CALCULUS

THE PREDICATE CALCULUS 2 THE PREDICATE CALCULUS Slide 2.1 2.0 Introduction 2.1 The Propositional Calculus 2.2 The Predicate Calculus 2.3 Using Inference Rules to Produce Predicate Calculus Expressions 2.4 Application: A Logic-Based

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) Lesson 15 Inference in FOL - I 6.2.8 Resolution We have introduced the inference rule Modus Ponens. Now we introduce another inference rule

More information

Automatic Reasoning (Section 8.3)

Automatic Reasoning (Section 8.3) Automatic Reasoning (Section 8.3) Automatic Reasoning Can reasoning be automated? Yes, for some logics, including first-order logic. We could try to automate natural deduction, but there are many proof

More information

Resolution (14A) Young W. Lim 6/14/14

Resolution (14A) Young W. Lim 6/14/14 Copyright (c) 2013-2014. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free

More information

Logical reasoning systems

Logical reasoning systems Logical reasoning systems Theorem provers and logic programming languages Production systems Frame systems and semantic networks Description logic systems CS 561, Session 19 1 Logical reasoning systems

More information

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques

Lecture 17 of 41. Clausal (Conjunctive Normal) Form and Resolution Techniques Lecture 17 of 41 Clausal (Conjunctive Normal) Form and Resolution Techniques Wednesday, 29 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Chapter 9,

More information

Knowledge Representation and Reasoning Logics for Artificial Intelligence

Knowledge Representation and Reasoning Logics for Artificial Intelligence Knowledge Representation and Reasoning Logics for Artificial Intelligence Stuart C. Shapiro Department of Computer Science and Engineering and Center for Cognitive Science University at Buffalo, The State

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi is another way of showing that an argument is correct. Definitions: Literal: A variable or a negation of a variable is called a literal. Sum and Product: A disjunction of literals is called a sum and a

More information

Logic Programming Languages

Logic Programming Languages Logic Programming Languages Introduction Logic programming languages, sometimes called declarative programming languages Express programs in a form of symbolic logic Use a logical inferencing process to

More information

Chapter 16. Logic Programming Languages

Chapter 16. Logic Programming Languages Chapter 16 Logic Programming Languages Chapter 16 Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic Programming The Origins of

More information

Chapter 16. Logic Programming Languages ISBN

Chapter 16. Logic Programming Languages ISBN Chapter 16 Logic Programming Languages ISBN 0-321-49362-1 Chapter 16 Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic Programming

More information

Lecture 4: January 12, 2015

Lecture 4: January 12, 2015 32002: AI (First Order Predicate Logic, Interpretation and Inferences) Spring 2015 Lecturer: K.R. Chowdhary Lecture 4: January 12, 2015 : Professor of CS (VF) Disclaimer: These notes have not been subjected

More information

Introduction to predicate calculus

Introduction to predicate calculus Logic Programming Languages Logic programming systems allow the programmer to state a collection of axioms from which theorems can be proven. Express programs in a form of symbolic logic Use a logical

More information

6.034 Notes: Section 10.1

6.034 Notes: Section 10.1 6.034 Notes: Section 10.1 Slide 10.1.1 A sentence written in conjunctive normal form looks like ((A or B or not C) and (B or D) and (not A) and (B or C)). Slide 10.1.2 Its outermost structure is a conjunction.

More information

Logic (or Declarative) Programming Foundations: Prolog. Overview [1]

Logic (or Declarative) Programming Foundations: Prolog. Overview [1] Logic (or Declarative) Programming Foundations: Prolog In Text: Chapter 12 Formal logic Logic programming Prolog Overview [1] N. Meng, S. Arthur 2 1 Logic Programming To express programs in a form of symbolic

More information

First-Order Predicate Logic. CSCI 5582, Fall 2007

First-Order Predicate Logic. CSCI 5582, Fall 2007 First-Order Predicate Logic CSCI 5582, Fall 2007 What Can t We Do in FOPL? We can t take anything back once we ve asserted it. We can t make statements about relations themselves (e.g., Brother is a commutative

More information

References. Topic #16: Logic Programming. Motivation. What is a program? Prolog Program Structure

References. Topic #16: Logic Programming. Motivation. What is a program? Prolog Program Structure References Topic #16: Logic Programming CSE 413, Autumn 2004 Programming Languages Slides from CSE 341 S. Tanimoto See Chapter 16 of the text Read 16.1, 16.4, 16.5, 16.6 (skip 16.6.7) Skim 16.7, 16.8 http://www.cs.washington.edu/education/courses/413/04au/

More information

Knowledge Representation and Reasoning Logics for Artificial Intelligence

Knowledge Representation and Reasoning Logics for Artificial Intelligence Knowledge Representation and Reasoning Logics for Artificial Intelligence Stuart C. Shapiro Department of Computer Science and Engineering and Center for Cognitive Science University at Buffalo, The State

More information

Chapter 16. Logic Programming. Topics. Predicate Calculus and Proving Theorems. Resolution. Resolution: example. Unification and Instantiation

Chapter 16. Logic Programming. Topics. Predicate Calculus and Proving Theorems. Resolution. Resolution: example. Unification and Instantiation Topics Chapter 16 Logic Programming Proving Theorems Resolution Instantiation and Unification Prolog Terms Clauses Inference Process Backtracking 2 Predicate Calculus and Proving Theorems A use of propositions

More information

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation CSE560 Class 10: 1 c P. Heeman, 2010 Integrity Constraints Overview Disjunctive & Negative Knowledge Resolution Rule Bottom-Up Proof by Refutation Top-Down CSE560 Class 10: 2 c P. Heeman, 2010 Integrity

More information

CS 561: Artificial Intelligence

CS 561: Artificial Intelligence CS 561: Artificial Intelligence Instructor: TAs: Sofus A. Macskassy, macskass@usc.edu Nadeesha Ranashinghe (nadeeshr@usc.edu) William Yeoh (wyeoh@usc.edu) Harris Chiu (chiciu@usc.edu) Lectures: MW 5:00-6:20pm,

More information

Chapter 16. Logic Programming Languages ISBN

Chapter 16. Logic Programming Languages ISBN Chapter 16 Logic Programming Languages ISBN 0-321-49362-1 Chapter 16 Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic Programming

More information

CS 321 Programming Languages and Compilers. Prolog

CS 321 Programming Languages and Compilers. Prolog CS 321 Programming Languages and Compilers Prolog Prolog PROgramming LOGic Algorithm = Logic + Control Logic programming deals with computing relations rather than functions. To understand Prolog one must

More information

CPS 506 Comparative Programming Languages. Programming Language Paradigm

CPS 506 Comparative Programming Languages. Programming Language Paradigm CPS 506 Comparative Programming Languages Logic Programming Language Paradigm Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic

More information

COMP4418 Knowledge Representation and Reasoning

COMP4418 Knowledge Representation and Reasoning COMP4418 Knowledge Representation and Reasoning Week 3 Practical Reasoning David Rajaratnam Click to edit Present s Name Practical Reasoning - My Interests Cognitive Robotics. Connect high level cognition

More information

Resolution in FO logic (Ch. 9)

Resolution in FO logic (Ch. 9) Resolution in FO logic (Ch. 9) Review: CNF form Conjunctive normal form is a number of clauses stuck together with ANDs Each clause can only contain ORs, and logical negation must appears right next to

More information

Prolog Programming. Lecture Module 8

Prolog Programming. Lecture Module 8 Prolog Programming Lecture Module 8 Prolog Language Prolog is unique in its ability to infer facts from the given facts and rules. In Prolog, an order of clauses in the program and goals in the body of

More information

PHIL 240, Introduction to Logic, Sections Fall 2011 FINAL EXAM 14 December Name (5 points): Section (5 points):

PHIL 240, Introduction to Logic, Sections Fall 2011 FINAL EXAM 14 December Name (5 points): Section (5 points): Section I True / False questions (2 points each) 1. TRUE Any argument that is sound is also valid. 2. FALSE_ If the premises of an argument are all true, then that argument is sound. 3. TRUE Every universal

More information

Full Clausal Logic - Syntax: clauses

Full Clausal Logic - Syntax: clauses Full Clausal Logic - Syntax: clauses compound terms aggregate objects Add function symbols (functors), with an arity; constants are 0-ary functors. object proposition functor : single word starting with

More information

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions The AI War How machines should learn: inductive or deductive? Deductive: Expert => rules =>

More information

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture Homework 1 Due Date: Wednesday 11/26/07 - at the beginning of the lecture Problems marked with a [*] are a littlebit harder and count as extra credit. Note 1. For any of the given problems make sure that

More information

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation Chapter 1.3 Quantifiers, Predicates, and Validity Reading: 1.3 Next Class: 1.4 1 Motivation Propositional logic allows to translate and prove certain arguments from natural language If John s wallet was

More information

Inference in First-Order Logic

Inference in First-Order Logic Inference in First-Order Logic Proofs Unification Generalized modus ponens Forward and backward chaining Completeness Resolution Logic programming CS 561, Session 16-18 1 Inference in First-Order Logic

More information

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy Topics Chapter 16 Logic Programming Summary (resolution, unification, Prolog search strategy ) Disjoint goals The cut operator Negative goals Predicate fail Debugger / tracer Lists 2 Resolution Resolution

More information

Prolog Cut: Summary. CSC324 Logic & Relational Programming Illustrated in Prolog. Prolog Cut: Summary. Non-deterministic Programming

Prolog Cut: Summary. CSC324 Logic & Relational Programming Illustrated in Prolog. Prolog Cut: Summary. Non-deterministic Programming Prolog Cut: Summary CSC324 Logic & Relational Programming Illustrated in Prolog Afsaneh Fazly Cut (! ) can be used to: remove duplicate (& unnecessary) responses. remove incorrect responses. improve efficiency

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 16 Cornell Cinema Thursday, April 13 7:00pm Friday, April 14 7:00pm Sunday, April 16 4:30pm Cornell Cinema

More information

Logic Languages. Hwansoo Han

Logic Languages. Hwansoo Han Logic Languages Hwansoo Han Logic Programming Based on first-order predicate calculus Operators Conjunction, disjunction, negation, implication Universal and existential quantifiers E A x for all x...

More information

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence

Knowledge Representation. CS 486/686: Introduction to Artificial Intelligence Knowledge Representation CS 486/686: Introduction to Artificial Intelligence 1 Outline Knowledge-based agents Logics in general Propositional Logic& Reasoning First Order Logic 2 Introduction So far we

More information

Mathematical Logics. 17 Resolution and Unification. Luciano Serafini. Fondazione Bruno Kessler, Trento, Italy

Mathematical Logics. 17 Resolution and Unification. Luciano Serafini. Fondazione Bruno Kessler, Trento, Italy 17 Resolution and Fondazione Bruno Kessler, Trento, Italy November 26, 2014 The rule of Propositional Resolution A C, C B RES A B The formula A B is called a resolvent of A C and B C, denoted Res(A C,

More information

Logic and its Applications

Logic and its Applications Logic and its Applications Edmund Burke and Eric Foxley PRENTICE HALL London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Contents Preface xiii Propositional logic 1 1.1 Informal introduction

More information

Prolog. Intro to Logic Programming

Prolog. Intro to Logic Programming Prolog Logic programming (declarative) Goals and subgoals Prolog Syntax Database example rule order, subgoal order, argument invertibility, backtracking model of execution, negation by failure, variables

More information

Constraint Solving. Systems and Internet Infrastructure Security

Constraint Solving. Systems and Internet Infrastructure Security Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Constraint Solving Systems

More information

Predicate Calculus. Problems? Syntax. Atomic Sentences. Complex Sentences. Truth

Predicate Calculus. Problems? Syntax. Atomic Sentences. Complex Sentences. Truth Problems? What kinds of problems exist for propositional logic? Predicate Calculus A way to access the components of an individual assertion Predicate Calculus: used extensively in many AI programs, especially

More information

What is all the Fuzz about?

What is all the Fuzz about? What is all the Fuzz about? Fuzzy Systems: Introduction CPSC 533 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Fuzzy Systems in Knowledge Engineering

More information

for all x, the assertion P(x) is false. there exists x, for which the assertion P(x) is true.

for all x, the assertion P(x) is false. there exists x, for which the assertion P(x) is true. You can t prove a predicate is true because a predicate is not an assertion, you can t prove it is valid as it is not a deduction! If someone asks you to prove P(x), it is not totally clear what they mean.

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Logic Programming with Prolog Lists CMSC 330 Spring 2017 1 Review: Execution = Search Prolog execution: Goal-directed search Query = predicate you wish to

More information

Quick n Dirty Prolog Tutorial

Quick n Dirty Prolog Tutorial CSc 245 Introduction to Discrete Structures Quick n Dirty Prolog Tutorial (McCann) Last Revised: February 2014 Background: Prolog, whose name is from the phrase PROgramming in LOGic, is a special purpose

More information

Lecture 7: January 15, 2014

Lecture 7: January 15, 2014 32002: AI (First order Predicate Logic, Syntax and Semantics) Spring 2014 Lecturer: K.R. Chowdhary Lecture 7: January 15, 2014 : Professor of CS (GF) Disclaimer: These notes have not been subjected to

More information

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems DATABASE THEORY Lecture 11: Introduction to Datalog Markus Krötzsch Knowledge-Based Systems TU Dresden, 12th June 2018 Announcement All lectures and the exercise on 19 June 2018 will be in room APB 1004

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 9 Normal Forms In the last class we have seen some consequences and some equivalences,

More information

6.034 Notes: Section 11.1

6.034 Notes: Section 11.1 6.034 Notes: Section 11.1 Slide 11.1.1 We've now spent a fair bit of time learning about the language of first-order logic and the mechanisms of automatic inference. And, we've also found that (a) it is

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) FOL consists of the following parts: Objects/terms Quantified variables Predicates Logical connectives Implication Objects/Terms FOL is a formal system that allows us to reason

More information

Linear Clause Generation by Tableaux and DAGs

Linear Clause Generation by Tableaux and DAGs kovasznai 2007/8/10 11:27 page 109 #1 5/1 (2007), 109 118 tmcs@inf.unideb.hu http://tmcs.math.klte.hu Linear Clause Generation by Tableaux and DAGs Gergely Kovásznai Abstract. Clause generation is a preliminary

More information

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.3 1.4 of Rosen cse235@cse.unl.edu Introduction

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Advanced Logic and Functional Programming

Advanced Logic and Functional Programming Advanced Logic and Functional Programming Lecture 1: Programming paradigms. Declarative programming. From first-order logic to Logic Programming. Programming paradigms Programming paradigm (software engineering)

More information

Losp for Predicate Calculus

Losp for Predicate Calculus Losp for Predicate Calculus William Bricken June 1985 Contents 1 Extension to Predicate Calculus 1 1.1 Representation of Terms....................... 1 1.2 The Theory of Equality.......................

More information

Inference in First-Order Logic

Inference in First-Order Logic Inference in First-Order Logic Proofs Unification Generalized modus ponens Forward and backward chaining Completeness Resolution Logic programming CS 460, Session 16-18 1 Inference in First-Order Logic

More information

First-Order Predicate Logic. Introduction to Intelligent Systems

First-Order Predicate Logic. Introduction to Intelligent Systems First-Order Predicate Logic Introduction to Intelligent Systems First-Order (Predicate) Logic Propositional logic assumes the world contains facts Predicate logic (like natural language) assumes the world

More information

Lecture 5 - Axiomatic semantics

Lecture 5 - Axiomatic semantics Program Verification March 2014 Lecture 5 - Axiomatic semantics Lecturer: Noam Rinetzky Scribes by: Nir Hemed 1.1 Axiomatic semantics The development of the theory is contributed to Robert Floyd, C.A.R

More information

Knowledge & Reasoning

Knowledge & Reasoning Knowledge & Reasoning Logical Reasoning: to have a computer automatically perform deduction or prove theorems Knowledge Representations: modern ways of representing large bodies of knowledge 1 Logical

More information

Resolution in FOPC. Deepak Kumar November Knowledge Engineering in FOPC

Resolution in FOPC. Deepak Kumar November Knowledge Engineering in FOPC Resolution in FOPC Deepak Kumar November 2017 Knowledge Engineering in FOPC Identify the task Assemble relevant knowledge Decide on a vocabulary of predicates, functions, and constants Encode general knowledge

More information

Prolog. Logic Programming vs Prolog

Prolog. Logic Programming vs Prolog Language constructs Prolog Facts, rules, queries through examples Horn clauses Goal-oriented semantics Procedural semantics How computation is performed? Comparison to logic programming 1 Logic Programming

More information

Programming Systems in Artificial Intelligence Introduction

Programming Systems in Artificial Intelligence Introduction Click to add Text Programming Systems in Artificial Intelligence Introduction Siegfried Nijssen 23/02/16 Discover thediscover world at the Leiden world University at Leiden University Programming Paradigms

More information

First-Order Logic Syntax

First-Order Logic Syntax First-Order Logic Syntax Reading: Chapter 8, 9.1-9.2, 9.5.1-9.5.5 FOL Syntax and Semantics read: 8.1-8.2 FOL Knowledge Engineering read: 8.3-8.5 FOL Inference read: Chapter 9.1-9.2, 9.5.1-9.5.5 (Please

More information

For next Tuesday. Read chapter 8 No written homework Initial posts due Thursday 1pm and responses due by class time Tuesday

For next Tuesday. Read chapter 8 No written homework Initial posts due Thursday 1pm and responses due by class time Tuesday For next Tuesday Read chapter 8 No written homework Initial posts due Thursday 1pm and responses due by class time Tuesday Any questions? Program 1 Imperfect Knowledge What issues arise when we don t know

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences.

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences. Quantification In this and subsequent chapters, we will develop a more formal system of dealing with categorical statements, one that will be much more flexible than traditional logic, allow a deeper analysis

More information

INF5390 Kunstig intelligens. First-Order Logic. Roar Fjellheim

INF5390 Kunstig intelligens. First-Order Logic. Roar Fjellheim INF5390 Kunstig intelligens First-Order Logic Roar Fjellheim Outline Logical commitments First-order logic First-order inference Resolution rule Reasoning systems Summary Extracts from AIMA Chapter 8:

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grammars Carl Pollard yntax 2 (Linguistics 602.02) January 3, 2012 Context-Free Grammars (CFGs) A CFG is an ordered quadruple T, N, D, P where a. T is a finite set called the terminals; b.

More information

CSE 452: Programming Languages. Prolog Statements. Loading the Knowledge Base. Logical Programming Languages Part 2

CSE 452: Programming Languages. Prolog Statements. Loading the Knowledge Base. Logical Programming Languages Part 2 CSE 452: Programming Languages Logical Programming Languages Part 2 Prolog Statements Prolog statements consist of facts, rules, and queries. Example of facts (written as headless Horn clauses) male(tony).

More information

1. Define admissibility and suggest an admissible heuristic functions for the Rubik s cube. (half-twist is counted as a single move).

1. Define admissibility and suggest an admissible heuristic functions for the Rubik s cube. (half-twist is counted as a single move). 1. Define admissibility and suggest an admissible heuristic functions for the Rubik s cube. (half-twist is counted as a single move). (5p) 2. Prove that A* never terminates with the suboptimal goal G 2

More information

Context-Free Grammars

Context-Free Grammars Department of Linguistics Ohio State University Syntax 2 (Linguistics 602.02) January 3, 2012 (CFGs) A CFG is an ordered quadruple T, N, D, P where a. T is a finite set called the terminals; b. N is a

More information

Declarative Programming. 2: theoretical backgrounds

Declarative Programming. 2: theoretical backgrounds Declarative Programming 2: theoretical backgrounds 1 Logic Systems: structure and meta-theoretical properties logic system syntax semantics proof theory defines which sentences are legal in the logical

More information

Conjunctive queries. Many computational problems are much easier for conjunctive queries than for general first-order queries.

Conjunctive queries. Many computational problems are much easier for conjunctive queries than for general first-order queries. Conjunctive queries Relational calculus queries without negation and disjunction. Conjunctive queries have a normal form: ( y 1 ) ( y n )(p 1 (x 1,..., x m, y 1,..., y n ) p k (x 1,..., x m, y 1,..., y

More information

Logic Programming and Resolution Lecture notes for INF3170/4171

Logic Programming and Resolution Lecture notes for INF3170/4171 Logic Programming and Resolution Lecture notes for INF3170/4171 Leif Harald Karlsen Autumn 2015 1 Introduction This note will explain the connection between logic and computer programming using Horn Clauses

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

CS221 / Autumn 2017 / Liang & Ermon. Lecture 17: Logic II

CS221 / Autumn 2017 / Liang & Ermon. Lecture 17: Logic II CS221 / Autumn 2017 / Liang & Ermon Lecture 17: Logic II Review: ingredients of a logic Syntax: defines a set of valid formulas (Formulas) Example: Rain Wet Semantics: for each formula, specify a set of

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Logic as a Programming Language

Logic as a Programming Language Logic as a Programming Language! Logic can be considered the oldest programming language! Aristotle invented propositional logic over 2000 years ago in order to prove properties of formal arguments! Propositions

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 19 Tuesday, April 3, 2018 1 Introduction to axiomatic semantics The idea in axiomatic semantics is to give specifications

More information

Today s Lecture 4/13/ WFFs/ Free and Bound Variables 9.3 Proofs for Pred. Logic (4 new implicational rules)!

Today s Lecture 4/13/ WFFs/ Free and Bound Variables 9.3 Proofs for Pred. Logic (4 new implicational rules)! Today s Lecture 4/13/10 9.1 WFFs/ Free and Bound Variables 9.3 Proofs for Pred. Logic (4 new implicational rules)! Announcements Welcome Back! Answers to latest symbolizations HW are posted on-line Homework:

More information

Back to the knights and knaves island

Back to the knights and knaves island Back to the knights and knaves island During your Thanksgiving trip, you found another island with knights and knaves (you have a feeling that you may encounter many such islands this semester). Knights

More information

Logic Programming. Let us have airline flight information of the form: 1. Application Domains: 2. Definitions

Logic Programming. Let us have airline flight information of the form: 1. Application Domains: 2. Definitions Logic Programming 1. Application Domains: Logic programming language application areas include natural language processing, expert systems, specifications checking, theorem proving, and control systems

More information

ITCS 6150 Intelligent Systems. Lecture 13 First-Order Logic Chapter 8

ITCS 6150 Intelligent Systems. Lecture 13 First-Order Logic Chapter 8 ITCS 6150 Intelligent Systems Lecture 13 First-Order Logic Chapter 8 First-order logic We saw how propositional logic can create intelligent behavior But propositional logic is a poor representation for

More information

PdOd Kev Events I Re-world war I1 rwa

PdOd Kev Events I Re-world war I1 rwa I PdOd Kev Events I Re-world war I rwa LECTURE: Knowledge Representation Overview 0 'Qpes of knowledge: objects, events, meta-knowledge, etc. 0 Characteristics of representation: expressive adequacy vs.

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 1 Swarat Chaudhuri January 22, 2015 Reasoning about programs A program is a mathematical object with rigorous meaning. It should be possible

More information

(More) Propositional Logic and an Intro to Predicate Logic. CSCI 3202, Fall 2010

(More) Propositional Logic and an Intro to Predicate Logic. CSCI 3202, Fall 2010 (More) Propositional Logic and an Intro to Predicate Logic CSCI 3202, Fall 2010 Assignments Next week: Guest lectures (Jim Martin and Nikolaus Correll); Read Chapter 9 (but you can skip sections on logic

More information

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

More information

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog CS 360: Programming Languages Lecture 10: Logic Programming with Prolog Geoffrey Mainland Drexel University Section 1 Administrivia Midterm Tuesday Midterm is Tuesday, February 14! Study guide is on the

More information

CSE & CSE6002E - Soft Computing Fall Semester, 2013

CSE & CSE6002E - Soft Computing Fall Semester, 2013 CSE4403 3.0 & CSE6002E - Soft Computing Fall Semester, 2013 Introduction to Logic and Resolution Principle Theorem Proving Andrew, Bernard, Claude, Donald, and Eugene have summer houses along the Atlantic

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Computational Logic. SLD resolution. Damiano Zanardini

Computational Logic. SLD resolution. Damiano Zanardini Computational Logic SLD resolution Damiano Zanardini UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid damiano@fi.upm.es Academic Year 2009/2010

More information

Introduction to Prolog

Introduction to Prolog Introduction to Prolog David Woods dwoods@scss.tcd.ie Week 3 - HT Declarative Logic The Prolog programming language is, at its theoretical core, a declarative language. This is unlike more commonly used

More information

Introduction to dependent types in Coq

Introduction to dependent types in Coq October 24, 2008 basic use of the Coq system In Coq, you can play with simple values and functions. The basic command is called Check, to verify if an expression is well-formed and learn what is its type.

More information