ECE Homework #3

Size: px
Start display at page:

Download "ECE Homework #3"

Transcription

1 ECE Homework #3 Flow Charts, Binary Inputs, Binary Outputs (LEDs). Due Monday, January 29th The temperature sensor in your lab kits has the temperature-resistance relationship of R = 1000 exp T 298 Ω where T is the temperature in degrees Kelvin (C + 273) 1) Design a circuit which outputs 0V when the temperature is below 0C when the temperature is above 0C At 0C, R = 3381Ω Assume a voltage divider with a 3300 Ohm resistor. Then V = R R+3300 As temperature goes up... = V R goes down Vin goes down Vout goes up Connect the divider to the - input Connect V to the + input V MCP602 Y R Vin 0V 0V 2.53V Hot 0C Cold

2 2) Design a circuit with hysteresis which outputs 0V when the temperature goes below 0C and when the temperature goes above 5C Assume a voltage divider with a 3300 Ohm resistor like problem #1 At 0C R = 3381 Ohms Vin = V Vout goes low At 5C R = 2604 Ohms Vin = Vout goes high As Vin goes low, Vout goes high. Connect the voltage divider to the - input The gain you need is gain = V out V in gain = 0V V = When the output is 0V, you switch at Set the + input to k 3300 Vin 2.20V 10k Y Vout R 10k Vin 0V 0V 2.20V 2.53V 153k hot 5C 0C cold

3 The characteristics for a piranha RGB LED is Red: Vf = 20mA 10,000 20mA Green: Vf = 20mA 10,000 20mA Blue: Vf = 20mA 10,000 20mA 3) Design a circuit so that the PIC can turn on and off each LED at 20mA. Assign the I/O pins to: RC0: Red RC1: Green RC2: Blue Red Green Blue R r = 1.8V 20mA = 160Ω R g = 3.0V 20mA = 100Ω R b = 3.0V 20mA = 100Ω RC2 RC1 RC0 anode Rb Rg Rr cathode 3.0V 3.0V 1.8V blue green red Piranah Package common cathode + cathode + 3.0V - + blue 3.0V green 1.8V red anode Rb Rg Rr RC2 RC1 RC0 Piranah Package common anode

4 The following program turns your PIC into an multi-function flashlight: Requirements: Input: Buttons RB0.. RB5 Output: Piranha RGB LED connected to pins RC0..RC1 Relationship: When you press a button, the color changes to: RB0: All colors off RB1 Red RB2 Green RB3 Blue RB4 White (R, G, B all on) RB5: Random color "On" is defined as 20mA +/- 5mA. Analysis:

5 4) Write an assembler program to implement this LED flashlight #include <p18f4620.inc> COLOR equ 0 ; Start of code: org 0x800 clrf TRISA movlw 0xFF movwf TRISB clrf TRISC clrf TRISD clrf TRISE clrf COLOR movlw 0x0F movwf ADCON1 Main: movf COLOR, W btfsc PORTB,0 ; off movlw 0 btfsc PORTB,1 ; red movlw 1 btfsc PORTB,2 ; green movlw 2 btfsc PORTB,3 ; blue movlw 4 btfsc PORTB,4 ; white movlw 7 btfss PORTB,5 ; random goto Output Random: addlw 1 btfsc PORTB,5 goto Random andlw 0x07 Output: movwf COLOR movff COLOR, PORTC goto Main RB0 RB1 RB2 Start Initialize PORTC = Input PORTC = Output Recall Present Color Button Pressed? none Off Red Green Blue White Random Output Color to PORTC RB3 RB4 RB5 end Compilation Results: Loaded C:\Documents and Settings\Administrator\My Documents\ECE376\Assembler\Flashlight.cof. Debug build of project `C:\Documents and Settings\Administrator\My Documents\ECE376\Assembler\1234.mcp' succeeded. Language tool versions: MPASMWIN.exe v5.51, mplink.exe v4.49, mplib.exe v4.49 Preprocessor symbol ` DEBUG' is defined.mon Jan 22 07:00: BUILD SUCCEEDED

6 If you look at the.lst file: LOC OBJECT CODE VALUE LINE SOURCE TEXT #include <p18f4620.inc> LIST ;========================================================================== ; MPASM PIC18F4620 processor include ; ; (c) Copyright Microchip Technology, All rights reserved ;========================================================================== LIST COLOR equ ; Start of code: org 0x A clrf TRISA EFF movlw 0xFF E movwf TRISB A clrf TRISC A clrf TRISD 00080A 6A clrf TRISE 00080C 6A clrf COLOR E 0E0F movlw 0x0F EC movwf ADCON Main: movf COLOR, W B btfsc PORTB, E movlw B btfsc PORTB, A 0E movlw C B btfsc PORTB, E 0E movlw B btfsc PORTB, E movlw B btfsc PORTB, E movlw AA btfss PORTB, A EF1C F goto Output 00082E Random: 00082E 0F addlw BA btfsc PORTB, EF17 F goto Random B andlw 0x Output: E movwf COLOR 00083A C000 FF movff COLOR, PORTC 00083E EF09 F goto Main MPASM 5.51 FLASHLIGHT.ASM :00:45 PAGE 2

7 If you look at the.hex file : FA : AFF0E936E946A956A966A006A0F0E5A : C16E005081B0000E81B2010E81B4020E93 : B6040E81B8070E81AA1CEF04F0010FF7 : BA17EF04F0070B006E00C082FF09EFCA : F0C2 : FF That's your program. It taks 29 lines of assembler to make a flashlight. Validation: 5) Compile and download your code to your PIC board. Collect data to verify that you met the requirements: The current through each color is 20mA +/- 5mA Each button changes the output color RB5 produces a 'random' color (i.e. a random number from 0 to 7 is output to PORTC when you release RB5)

8 6) For your resulting program... How long does it take your program to loop? (toggle a bit you're not using, such as RC4, in the main loop. Check on the oscilloscope how fast this bit is toggling). How many lines of assembler does it take to implement an LED flashlight?

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

Binary Outputs and Timing

Binary Outputs and Timing Binary Outputs and Timing Each of the I/O pins on a PIC can be inputs or ourputs As an input, the pin is high impedance (meaning it is passive and draws very little current). If you apply 0V to that pin,

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

EXPERIMENT 4: Parallel Input/Output. Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing

EXPERIMENT 4: Parallel Input/Output. Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing EXPERIMENT 4: Parallel Input/Output Objectives Introduction to the Parallel Input/Output (I/O) Familiarization to Interfacing Components' List: 1. Protoboard 2. 4 x pushbutton 3. 4 x 330Ω resistor 4. 4

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

The University of Texas at Arlington Lecture 5

The University of Texas at Arlington Lecture 5 The University of Texas at Arlington Lecture 5 CSE 3442/5442 LCD Discussed in Chapter 12 RS, R/W, E Signals Are Used to Send/Receive Data on D0-D7 2 PIC PROGRAMMING IN C CHAPTER 7 Chapter 7 discusses the

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

Arithmetic,logic Instruction and Programs

Arithmetic,logic Instruction and Programs Arithmetic,logic Instruction and Programs 1 Define the range of numbers possible in PIC unsigned data Code addition and subtraction instructions for unsigned data Perform addition of BCD Code PIC unsigned

More information

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller 1 von 8 24.02.2010 21:53 More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller As with the FPGA board previously, the connections are made by soldering standard IDC

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC18 Serial Port Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Serial vs. parallel data transfer 2 Simplex, half-, and full-duplex transfers 3

More information

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle.

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle. PIC PROGRAMMING You have been introduced to PIC chips and the assembly language used to program them in the past number of lectures. The following is a revision of the ideas and concepts covered to date.

More information

Input/Output Ports and Interfacing

Input/Output Ports and Interfacing Input/Output Ports and Interfacing ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic I/O Concepts Peripherals such as LEDs and keypads are essential

More information

Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011

Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011 Jordan University of Science and Technology Electrical Engineering Department Microcontrollers and Embedded Systems Spring 2011 Microcontrollers andembedded Systems and and EE445 Embedded Embedded Microcontrollers

More information

Application Note - PIC Source Code v1.1.doc

Application Note - PIC Source Code v1.1.doc Programmable, RGB-backlit LCD Keyswitches APPLICATION NOTE PIC SOURCE CODE 2004-2006 copyright [E³] Engstler Elektronik Entwicklung GmbH. All rights reserved. PIC Source Code The following Assembler source

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13)

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13) C and Embedded Systems A µp-based system used in a device (i.e, a car engine) performing control and monitoring functions is referred to as an embedded system. The embedded system is invisible to the user

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Bank Switching, Table, Macros & Modules Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu PIC18 memory access up to 2 MB of program memory Inside the

More information

Laboratory Exercise 5 - Analog to Digital Conversion

Laboratory Exercise 5 - Analog to Digital Conversion Laboratory Exercise 5 - Analog to Digital Conversion The purpose of this lab is to control the blinking speed of an LED through the Analog to Digital Conversion (ADC) module on PIC16 by varying the input

More information

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors Input/Output 1 Introduction Embedded system functionality aspects Processing Transformation of data Implemented using processors Storage Retention of data Implemented using memory Communication Transfer

More information

D:\PICstuff\PartCounter\PartCounter.asm

D:\PICstuff\PartCounter\PartCounter.asm 1 ;********************************************************************** 2 ; This file is a basic code template for assembly code generation * 3 ; on the PICmicro PIC16F84A. This file contains the basic

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

Figure 1: Pushbutton without Pull-up.

Figure 1: Pushbutton without Pull-up. Chapter 7: Using the I/O pins as Inputs. In addition to working as outputs and being able to turn the I/O pins on and off, these same pins can be used as inputs. In this mode the PIC is able to determine

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

PIC Architecture & Assembly Language Programming. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC Architecture & Assembly Language Programming Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw ALU with working register (WREG) and literal value 2 MOVLW

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Work Completed: Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Last week started with the goal to complete writing the overall program for the game.

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

CONNECT TO THE PIC. A Simple Development Board

CONNECT TO THE PIC. A Simple Development Board CONNECT TO THE PIC A Simple Development Board Ok, so you have now got your programmer, and you have a PIC or two. It is all very well knowing how to program the PIC in theory, but the real learning comes

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller Maxim > App Notes > 1-Wire DEVICES BATTERY MANAGEMENT Keywords: 1-wire, PICmicro, Microchip PIC, 1-Wire communication, PIC microcontroller, PICmicro microcontroller, 1 wire communication, PICs, micros,

More information

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!!

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF APRIL MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: MidTerm Date and Time: Thursday April 14th 2005 8AM Duration:

More information

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Arithmetic and Logic Instructions Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Find the sum of the values from 40H to 43H. Put the sum in filereg locations

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

Physics 335 Intro to MicroControllers and the PIC Microcontroller

Physics 335 Intro to MicroControllers and the PIC Microcontroller Physics 335 Intro to MicroControllers and the PIC Microcontroller May 4, 2009 1 The Pic Microcontroller Family Here s a diagram of the Pic 16F84A, taken from Microchip s data sheet. Note that things are

More information

Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code.

Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code. Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code. 1S. Prior to execution of the following code segment,

More information

Inverted Pendulum Microprocessor and FPGA Manual Sheldon Logan July 3, 2006

Inverted Pendulum Microprocessor and FPGA Manual Sheldon Logan July 3, 2006 Inverted Pendulum Microprocessor and FPGA Manual Sheldon Logan July 3, 2006 1 1 Table of Contents 1 Table of Contents... 2 2 Table of Figures... 3 3 Introduction... 4 4 PIC Programming Instructions...

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

S w e d i s h c r. w e e b l y. c o m j a l i l a h m e l i v e. c o m Page 1

S w e d i s h c r. w e e b l y. c o m j a l i l a h m e l i v e. c o m Page 1 ********************************************************************** This file is a basic code template for assembly code generation * on the PICmicro PIC12C508. This file contains the basic code * building

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt

movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt movlw 0x20 #endif call scan movlw 0xfd tris PORTB ; select colb (RB1) #ifdef MODE_CH8 movlw 0x04 #endif #ifdef MODE_CH4 movlw 0x30 #endif call scan movf cod, W bz loop2 ; if no buton is pressed, skip subwf

More information

Chapter 3: Further Microcontrollers

Chapter 3: Further Microcontrollers Chapter 3: Further Microcontrollers Learning Objectives: At the end of this topic you will be able to: recall and describe the structure of microcontrollers as programmable assemblies of: memory; input

More information

Embedded Systems Programming and Architectures

Embedded Systems Programming and Architectures Embedded Systems Programming and Architectures Lecture No 10 : Data acquisition and data transfer Dr John Kalomiros Assis. Professor Department of Post Graduate studies in Communications and Informatics

More information

The University of Texas at Arlington Lecture 3

The University of Texas at Arlington Lecture 3 The University of Texas at Arlington Lecture 3 CSE 3442/5442 Tuesday, We Began Chapter 2, Architecture & Assembly Language Programming, Introduced the PIC WREG (Working Register) 8 bit register in PIC

More information

EECE.3170: Microprocessor Systems Design I Spring 2016

EECE.3170: Microprocessor Systems Design I Spring 2016 EECE.3170: Microprocessor Systems Design I Spring 2016 Lecture 31: Key Questions April 20, 2016 1. (Review) Explain how interrupts can be set up and managed in the PIC microcontrollers. 1 EECE.3170: Microprocessor

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 04 September 28, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling Interfacing PIC Microcontrollers ADC8BIT2 Schematic This application demonstrates analogue input sampling A manually adjusted test voltage 0-5V is provided at AN0 input A reference voltage of 2.56V is

More information

The University of Texas at Arlington Lecture 7

The University of Texas at Arlington Lecture 7 The University of Texas at Arlington Lecture 7 CSE 3442/5442 Agenda HW 2 due today Begin Chapter 5 In class assignment. Reading Assignment for Tuesday, Continue Reading Chapter 6. Assignment 3 and 4 due

More information

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 August 13, 2012 Name: ID #: Section: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic

More information

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

Laboratory Exercise 7 - Extended I/O & Parallel Processing

Laboratory Exercise 7 - Extended I/O & Parallel Processing Laboratory Exercise 7 - Extended I/O & Parallel Processing The purpose of this lab is to make an LED blink first by using the extended I/O function of the Microcontroller, and then by parallel processing

More information

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model)

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model) ELCD SERIES INTRODUCTION ALCD is Serial LCD module which is controlled through Serial communication. Most of existing LCD adopts Parallel communication which needs lots of control lines and complicated

More information

Discrete Logic Replacement A Keypad Controller for Bi-directional Key Matrix

Discrete Logic Replacement A Keypad Controller for Bi-directional Key Matrix A Keypad Controller for Bi-directional Key Matrix Author: Vladimir Velchev AVEX - Vladimir Velchev Sofia, Bulgaria email:avex@iname.com APPLICATION OPERATION: The PIC microcontroller can replace the traditional

More information

Experiment 7:The USART

Experiment 7:The USART University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 7 Experiment 7:The USART Objectives Introduce the USART module of the PIC

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Section 30. In-Circuit Serial Programming (ICSP )

Section 30. In-Circuit Serial Programming (ICSP ) Section 30. In-Circuit Serial Programming (ICSP ) HIGHLIGHTS This section of the manual contains the following major topics: 30. Introduction... 30-2 30.2 Entering In-Circuit Serial Programming Mode...

More information

Microchip 18F4550 Interface, Signal conditioning, USB, USB- RS-232, 16x2 LCD Interface

Microchip 18F4550 Interface, Signal conditioning, USB, USB- RS-232, 16x2 LCD Interface Emtron Technologies Pvt. Ltd. Flat No-101, B3 Wing, 1 st Floor, Divyam Hights, Gilbert Hill, Shreenath Nagar, Andheri West, Mumbai-58 +91-8080181911 E-mail: emtron.tech@gmail.com, www.emtrontech.in Microchip

More information

MPASM 5.46 AT89C2051_PROGRAMMER.ASM :21:50 PAGE 1 VALUE

MPASM 5.46 AT89C2051_PROGRAMMER.ASM :21:50 PAGE 1 VALUE MPASM 5.46 AT89C2051_PROGRAMMER.ASM 7-30-2013 8:21:50 PAGE 1 00001 LIST N=102 00002 ; 00003 ; 00004 ; 00005 ; 00006 ; 00007 ; 00008 ; 00009 ; 00010 ; 00011 ; 00012 ; 00013 ; 00014 ; 00015 ; 00016 ; 00017

More information

Professor E. Ambikairajah UNSW Sydney

Professor E. Ambikairajah UNSW Sydney ELEC2117 Chapter 3a: PIC16F886 Instruction set Professor Eliathamby Ambikairajah Head of School of Electrical Engineering and Telecommunications, UNSW, Sydney 06 March 2017 Prof E Ambikairajah Instruction

More information

CHAPTER 0: INTRODUCTION TO COMPUTING SECTION 0.1: NUMBERING AND CODING SYSTEMS 1. (a) 1210 = 11002 (b) 12310 = 0111 10112 (c) 6310 = 0011 11112 (d) 12810 = 1000 00002 (e) 100010 = 0011 1110 10002 2. (a)

More information

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER Amey Arvind Madgaonkar 1, Sumit Dhere 2 & Rupesh Ratnakar Kadam 3 1. Block diagram International Journal of Latest Trends in Engineering

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Interrupts and Resets Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Interrupts An event that will cause the CPU to stop the normal program execution

More information

THE UNIVERSITY OF THE WEST INDIES

THE UNIVERSITY OF THE WEST INDIES THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF MOCK 2004 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: Three Hours INSTRUCTIONS TO CANDIDATES: This paper

More information

Tutorial for PICMON18 Debug Monitor

Tutorial for PICMON18 Debug Monitor Tutorial for PICMON18 Debug Monitor Version 2.6 DRAFT Shu-Jen Chen 5/26/2004 Copyright 2004 Shu-Jen Chen 1. What is PICMON18? PICMON18 is a ROM resident debug monitor program for the Microchip PIC18 family

More information

Chapter 11: Interrupt On Change

Chapter 11: Interrupt On Change Chapter 11: Interrupt On Change The last two chapters included examples that used the external interrupt on Port C, pin 1 to determine when a button had been pressed. This approach works very well on most

More information

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning Interrupts ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic Concepts of Interrupts An interrupt is a communication process A device Requests

More information

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 134 CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 6.1 CONCLUSION Many industrial processes such as assembly lines have to operate at different speeds for different products. Process control may demand

More information

ME 515 Mechatronics. A microprocessor

ME 515 Mechatronics. A microprocessor ME 515 Mechatronics Microcontroller Based Control of Mechanical Systems Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk A microprocessor

More information

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ /* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF ;***** VARIABLE DEFINITIONS COUNT_L EQU 0x01 ;**********************************************************************

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

Week1. EEE305 Microcontroller Key Points

Week1. EEE305 Microcontroller Key Points Week1 Harvard Architecture Fig. 3.2 Separate Program store and Data (File) stores with separate Data and Address buses. Program store Has a 14-bit Data bus and 13-bit Address bus. Thus up to 2 13 (8K)

More information

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller Maxim/Dallas > App Notes > REAL-TIME CLOCKS Keywords: DS1305, SPI, PIC, real time clock, RTC, spi interface, pic microcontroller Aug 20, 2003 APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with

More information

DESIGN AND FABRICATION OF FARE METER OF TAXICAB USING MICROCONTROLLER

DESIGN AND FABRICATION OF FARE METER OF TAXICAB USING MICROCONTROLLER Proceedings of the International Conference on Mechanical Engineering 00 (ICME00) 8-0 December 00, Dhaka, Bangladesh ICME0-AM-0 DESIGN AND FABRICATION OF FARE METER OF TAXICAB USING MICROCONTROLLER Md.

More information

EE 367 Introduction to Microprocessors Homework 6

EE 367 Introduction to Microprocessors Homework 6 EE 367 Introduction to Microprocessors Homework 6 Due Wednesday, March 13, 2019 Announcements: Midterm on March 27 th The exam will cover through Lecture notes, Part 6; Lab 3, Homework 6, and readings

More information

LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6

LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6 LPTCOM By Bruce Misner Lakehead University LPTCOM is a demonstration of a robust bi-directional communcation between the PIC microcontroller and the printer port of your PC. Incorporating more handshaking

More information

CREATING FIRST PROJECT in mikropascal PRO for PIC32

CREATING FIRST PROJECT in mikropascal PRO for PIC32 CREATING FIRST PROJECT in mikropascal PRO for PIC32 Project mikropascal PRO for PIC32 organizes applications into projects consisting of a single project file (file with the.mpp32 extension) and one or

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Name Lab Day Lab Time PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Introduction: The Pic Dev 14 SMD is a simple 8-bit Microchip Pic microcontroller breakout board for learning and experimenting

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 6 Lecture outline Reading:Ch7 of text Today s lecture: Microcontroller 2 7.1 MICROPROCESSORS Hardware solution: consists of a selection of specific

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses ECE 354 Computer Systems Lab II Interrupts, Strings, and Busses Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system

More information

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada A Better Mouse Trap Author: APPLICATION OPERATION: My application uses a PIC12C508 to produce realistic sounding mouse-like coos that all mice are sure to find seductive. The entire circuit should be imbedded

More information

PIC Dev 14 Through hole PCB Assembly and Test Lab 1

PIC Dev 14 Through hole PCB Assembly and Test Lab 1 Name Lab Day Lab Time PIC Dev 14 Through hole PCB Assembly and Test Lab 1 Introduction: The Pic Dev 14 is a simple 8-bit Microchip Pic microcontroller breakout board for learning and experimenting with

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag Timer0..Timer3 Timers are pretty useful: likewise, Microchip provides four different timers for you to use. Like all interrupts, you have to Enable the interrupt, Set the conditions of the interrupt, and

More information

Microcontroller Overview

Microcontroller Overview Microcontroller Overview Microprocessors/Microcontrollers/DSP Microcontroller components Bus Memory CPU Peripherals Programming Microcontrollers vs. µproc. and DSP Microprocessors High-speed information

More information

LED Knight Rider. Yanbu College of Applied Technology. Project Description

LED Knight Rider. Yanbu College of Applied Technology. Project Description LED Knight Rider Yanbu College of Applied Technology Project Description This simple circuit functions as a 12 LED chaser. A single illuminated LED 'walks' left and right in a repeating sequence, similar

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

Learning Objectives:

Learning Objectives: Topic 5.2.1 PIC microcontrollers Learning Objectives: At the end of this topic you will be able to; Recall the architecture of a PIC microcontroller, consisting of CPU, clock, data memory, program memory

More information

MPLAB -ICD USER S GUIDE

MPLAB -ICD USER S GUIDE MPLAB -ICD USER S GUIDE Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information