General properties of staircase and convex dual feasible functions

Size: px
Start display at page:

Download "General properties of staircase and convex dual feasible functions"

Transcription

1 General properties of staircase and convex dual feasible functions JÜRGEN RIETZ, CLÁUDIO ALVES, J. M. VALÉRIO de CARVALHO Centro de Investigação Algoritmi da Universidade do Minho, Escola de Engenharia Dept. Produção e Sistemas, Universidade do Minho Braga PORTUGAL juergen_rietz@gmx.de, {claudio, vc}@dps.uminho.pt Abstract: Dual feasible functions have been used successfully to compute lower bounds and valid inequalities for different combinatorial optimization problems. In this paper, we show that some maximal dual feasible functions proposed in the literature are dominated by others under weak prerequisites. Furthermore, we explore the relation between superadditivity and convexity, and we derive new results for the case where dual feasible functions are convex. Computational results are reported to illustrate the results presented in this paper. Key-Words: Dual feasible functions; Maximal functions; Extreme functions; Dominance; Convex functions; Lower bounds. 1 Introduction Dual feasible functions were proposed originally by Johnson in [7]. Since then, different functions were defined and used to compute lower bounds and valid inequalities for general problems including cutting and packing, vehicle routing, and scheduling problems [1, 2, 3, 4, 11]. A function, -, - is called a dual feasible function (DFF), if for any finite set * + of nonnegative real numbers, the following holds Given a DFF, -, - and an instance of the one-dimensional cutting stock problem (1D-CSP) with items of lengths to be cut in the order demands from initial material of length, a valid lower bound for the optimal objective function value of the continuous relaxation (and therefore for the integer problem too) is, A DFF is a maximal dual feasible function (MDFF), if there is no other DFF, -, - with for all, -. A MDFF, -, - is extreme [8], if MDFFs, -, - with for all, - are necessarily identical with. To obtain high values for the bound, -, obviously only MDFFs should be used. Moreover, if are MDFFs with then, -, -, -, hence, - *, -, -+. Therefore extreme MDFFs should be preferred. A first characterization of MDFFs was given in [4]. A function, -, - is a MDFF, if and only if is symmetric, i.e. (1) for all [ ] (2) and the following superadditivity condition holds: for all with To prove that a function, -, - is a MDFF, the superadditivity needs to be shown for and only (see [8]). In [5], the authors surveyed the different DFFs described in the literature. In the sequel, we recall ISSN: Issue 6, Volume 8, June 2011

2 the formal definition of the functions that will be explored in this paper. The parameters will be omitted when it is possible. o, proposed by Fekete and Schepers in [6], with * +: { That is a very weak prerequiste, because usually all data are rational, hence multiplying them by the smallest common multiple of the denominators yields an equivalent instance with integer data only. In Section 3 we will discuss functions, which are convex on 0 1. It comes out that these functions easily lead to MDFFs. Section 4 contains computational tests. Conclusions and summary are given in Section 5. o o, obtained from a function proposed originally in [11], using a procedure to make it maximal [5], for any * +: { * +, proposed by Carlier, Clautiaux and Moukrim in [3], for any and : { 2 Dominance between MDFFs The characteristic mark of a MDFF, -, - is by definition, that there is no other DFF, -, - with for all, -, i.e. there is no dominance relation on the entire interval between both functions. Nevertheless, sometimes one MDFF (even if it is extreme) can be replaced by another MDFF in the calculation of the lower bound, - for the optimal objective function value of an instance of the 1D-CSP, such that, -, - is obtained. This is possible, because the arguments for the functions belong only to a discrete set. 2.1 versus o, proposed by Burdett and Johnson in [2], with and : { } This function is continuous on, - and yields for * + the identity function. Note that the non-integer part of a real value is denoted by, i.e., for. All these functions are maximal, but not always extreme [8], e.g. and are extreme for all possible parameters, while is extreme if and only if [9]. Although and are extreme, we will show in the following section that in the computation of valid lower bounds for the 1D-CSP these functions are dominated by others, i.e. they can be replaced by others without getting worse results, if all data in the given instance are integer. The following proposition shows a dominance between the Fekete and Schepers function and the one by Burdett and Johnson [2]. On the contrary, there is no such relation with respect to the function by Carlier, Clautiaux and Moukrim [3]. Moreover, we will present an example, where [ ] (with a certain parameter choice) cannot be achieved by [ ] for any possible parameter. Proposition 1. For any * +, the choice leads to. /. /. A similar relation does not exist between and for any. Proof. Both functions and are MDFFs, hence the assertion needs to be verified for only. Since * + that allows the assumption. Let with and. Since one obtains ISSN: Issue 6, Volume 8, June 2011

3 . / {. / Three cases have now to be distinguished: 1. yields. /, hence. 2 3/. /. /. / 2. : since are integers, it follows that. We get, because the nominator of the last fraction equals. /. Therefore,. /. 2 3/. 2 3/. /. 3. : we get and,,, and hence. /. /. 2 3/. 2 We get for 3/. /. from combination of the second and third case } the. /, hence. / and analogously. / because of the monotony. For the second assertion let and * +. That yields the function values 0, and for. /. Suppose there is a with. / and. /. The first equation implies, hence. The second demand yields and due to, leading to the contradiction. /. /. This proposition states mainly that results, which were calculated with, can also be obtained with. On the contrary, it will be shown in the following that sometimes yields better bounds than for any possible parameter. For any instance of the 1D-CSP with integer data only, a valid lower bound for the optimal objective function value of the integer problem arising from the Fekete and Schepersfunction can be achieved also with a Burdett and Johnson-function. Since the latter function may give better results, becomes superfluous for this purpose. To calculate the maximal possible value for [ ], according to [10], only parameters need to be tested, which belong to the set.2 * + 3 / * +. Nevertheless, trying all these possibilities is impossible, because there are still infinite many elements in this set, and in spite of restricting by a certain constant from above, the complexity would be too high. On the other hand, we can try to approximate by an element of using continued fractions, i.e. we are looking for numbers with and. The fraction is never integer, because divides the nominator, but not the denominator, hence the greatest common divider (gcd) of nominator and denominator equals, since. Therefore, the calculation can be done with the following simple algorithm: 1. Initialize the numbers,,,,,, and. Obtain the material bound [ ]. 2. If then calculate [ ( )] and update the best known lower bound if this bound is better than the current one. ISSN: Issue 6, Volume 8, June 2011

4 3. Let,, and. 4. If then go to the step 2. The numbers increase exponentially, such that the loop is left after at most repetitions. In this way, good results can be achieved with small complexity, as illustrated in Section , and the identity function Similarly to the previous subsection, the improved Vanderbeck function is dominated by, but there is no such dominance relation to. Moreover, dominates the identity function. Proposition 2. For any with and any * +, the use of leads to. /. / for all with. Additionally,. / holds for all these. On the other hand, cannot always be replaced in the same way by. Proof. Since and are MDFFs, it is enough for the first and second part to verify the proposition for. Then, it follows that. / and. /. For any, it holds that. One has. /, because. If then. /. / and and therefore. /. /. /. If then. /. /. The choice yields. /, because. For the last assertion, choose any with. Let and. Suppose, there is a with and. /. / and. /. /. The latter case yields. /, i.e., and. The case leads to, hence, implying the contradiction. Therefore, we get and, hence {. One has. /. / } { }. Since and, one gets, hence, therefore and contradiction to. /. Here the same discussion as after Proposition 1 applies. Moreover, the structure of is less complex than the one of. Computational tests to compare both functions are presented in Section 4. The following example illustrates that [ ] can be above every possible value of [ ]. Example. One piece of length 7 and one of length 15 have to be cut from initial material of length 21. That yields [ ]. /. /. This value cannot be reached by for any feasible parameter, because yields. / and of course. /, while the choice leads to. / and. /. This dominance of over can only happen if there are items of sizes in. in /. If there are only small pieces (shorter than ) then the highest values of [ ] are found with a large non-integer part. In that case set. That leads to and for. / and finally, because if then due to. Because of the negative assertions in the propositions 1 and 2, there is no dominance relation ISSN: Issue 6, Volume 8, June 2011

5 between and, hence both functions should be used to calculate valid bounds. 3 Convex functions In this section, a connection between superadditivity and convexity is developed and the resulting MDFFs are analyzed. If a real function is continuous and obeys the equation for all, then is necessarily linear. Since superadditivity allows also greater than, convex functions could be very useful for generating MDFFs under the prerequisite (1). Let be a convex set. A function is convex if for all and it holds that ( ). Theorem 1. Let be a constant. Any convex function, - fulfilling the condition (1) is superadditive in the entire domain, -. Moreover, if, - fulfills the conditions (1) and (2) and is convex on 0 1 then is a MDFF. this yields, hence is superadditive in the interval, -. To prove the second assertion, the superadditivity on the entire interval 1 1 must be shown. For that purpose assume now. Since f is symmetric, one has. /. Because is convex on 0 1, it holds that. /. / for all, hence ( ) for all. Therefore,, and, implying. Any convex function is continuous in the inner of its domain, but not necessarily differentiable, for instance. Therefore, the prerequisite, that should be convex on 0 1, is strong, but not too strong. This leads to a wide range of MDFFs. However, many of these functions will not be extreme as shown at the end of this section. Example. The following function, -, - is a MDFF: Proof. Let be given with. First it is shown, that, where describes the straight line through the points ( ) and ( ), i.e. { (3) Since is convex in the interval, -, one has, hence ( ) In the same way, can be shown. Taking yields. The straight line can be written generally in the form with certain. For Proof. fulfills the conditions (1) and (2) obviously. For one obtains and, hence is strictly convex in. /. Since is continuous, Theorem 1 can be applied. The following assertion will be used at the end of this section to simplify the proof of Proposition 4, where we show that there are only two extreme piecwise linear MDFFs, which are convex on 0 1. Proposition 3. If an extreme MDFF, -, -, different from the Fekete and Schepersfunction with, is convex in. /, then is continuous on, -. Proof. Due to the convexity in. / it follows immediately that is continuous in. /. Since ISSN: Issue 6, Volume 8, June 2011

6 for, the continuity holds also at the spot 0. Let. Clearly, due to the restriction on. If would hold, then let 2 3 and define functions, -, - as { For one has. The convexity of in. / implies in conjuction with that are convex in. / too. Moreover and are MDFFs due to Theorem 1. Therefore, would not be extreme. This contradiction proves, hence is continuous at too. A clue to disprove that a given differentiable function like (3), which is constructed from a convex function according to Theorem 1, is extreme, is the following. Draw the tangents to the graph of in the points and. /. If isn't the identity function, then both tangents have a unique common point with because of the convexity of in 0 1. Let {. /. /, - (4) Then, -, - is obviously a MDFF. If the function, -, - with for all, - is superadditive, then is not extreme. In the case of the function (3) one has and. /, hence. This approach needs not to work always. To show that, a special differentiable convex (but not strict convex) function is constructed, which can be used with Theorem 1 as counter example. First choose a very small. Let initially { Now replace in an environment of by a strict convex function, such that becomes differentiable in the whole interval. /. That yields and. /, hence. For some. / it follows that, but, where is the function (4). Hence,, yielding that the other function is not monotonous and therefore not a MDFF. Let and be metrical spaces with metrics and, respectively. A uniform continuous function has the property that for each there is a, such that for any with it holds that ( ). Any continuous function on a compact set is there uniformly continuous. If the domain of is not compact, then this property of is more than the point-by-point continuity where may depend on the point or. In the following, sometimes a derivative of a function will be discussed on a closed interval, -. In that case we mean that exists in an open set, which contains, -. Theorem 2. Let, -, - be a MDFF, such that is convex on 0 1. If there is an. /, such that is twice continuously differentiable in an environment of and if ( ), then is not extreme. Proof. Due to the continuity of in an environment of and ( ) there are numbers with and, such that has a continuous second derivative on, - and for all, -. As a MDFF, is monotonous, hence. For an enough small 1 1, let and {. / ISSN: Issue 6, Volume 8, June 2011

7 The function is once continuously differentiable, and it holds that for all, because. The functions are defined by and { ( ) hence for 0 1. Moreover, are continuously differentiable on, -, even twice in. It remains to show that are monotonously increasing on, - and. For one has and, hence has turning points at with and. Therefore,, i.e. is strictly monotonous, hence for all, -. Since for, one has for, i.e.. Because of for all it follows for that ( ) ( ). /. /, hence is monotonously increasing on, - due to the mean value theorem of differential calculus. Investigating, one has first ( ). /. Since is uniformly continuous on, -, there is a constant, such that for all, - with. If then and therefore ( )., hence. 4 / 5 / The new restriction. 2 3 guarantees for all and therefore also the monotony of. One opportunity to avoid the prerequisites of Theorem 2 is the usage of piecewise linear functions, but that does not guarantee extremality, as the following proposition shows. Proposition 4. Let, -, - be a MDFF different from and from the identity function, such that is convex in. / and piecewise linear. Then is not extreme. Proof. Suppose that is extreme. Then Proposition 3 states that is continuous on, -. We have to distinguish several cases about the intervals of different slopes. A. Let us begin with the case of many such intervals, i.e. assume that there are with and for * +, such that and for all, -, * +. The idea will be to replace in the interval by two other piecewise linear functions, such that they remain convex in 0 1. Let { Now will be shown. Indeed, we have and, hence, implying and again 0 1 by {. Define the functions 0 1, -, - } ISSN: Issue 6, Volume 8, June 2011

8 and, - D. If has a constant slope in the entire interval 0 1 and is continuous on, -, then is the identity function, but this case was disclosed in the prerequisites. Therefore, all cases were checked. {, - Both functions are convex, as shown next. They are piecewise linear and continuous. It remains to check the slopes: implies and. The definition of yields the other two needed inequalities, namely since, and implies, as desired. Since and are convex on 0 1, both functions can be used according to Theorem 1 to construct MDFFs different from. Since it holds that for all 0 1 and, the function is not extreme. To finish the proof, we need to check the situation of at most two intervals of different slopes in 0 1. B. If there are with and for * +, such that and for, - and * +, then the same proof can be used with. C. If has the same behaviour as in case (B.) except instead of, then we get, such that becomes the Burdett ad Johnson-function with parameter. As proved in [9], Proposition 1, is not extreme for, hence is not extreme in this case too. Theorem 2 and Proposition 4 imply that MDFFs, which are convex in. extreme. 4 Computational tests /, are generally not To illustrate the observation that dominates in the 1D-CSP with integer data, fast feasible lower bounds for instances of 1D-BPP (with order demands 1 for all items, which may occur repeatedly) were calculated with very low complexity as described in Subsection 2.1. Each of the following classes contained 1000 instances: 1. Container size a) all item sizes between 1 and 100 A) items B) items C) items b) like classes 1aA 1aC, but item sizes between 20 and 100 c) like classes 1aA 1aC, but item sizes between 35 and Same instances as in classes 1aA 1cC except the changed container size 3. Same instances as in classes 1aA 1cC except the changed container size 4. Same instances as in classes 1aA 1cC except the changed container size 5. Same instances as in classes 1aA 1cC except the changed container size 6. Same instances as in classes 1aA 1cC except the changed container size The only change between the classes (for the same subclass) was the container size; the item sizes and their order demands were exactly the same. The idea for this approach was that the ISSN: Issue 6, Volume 8, June 2011

9 instances of the classes 1cA 1cC can be solved easily to optimality. Increasing the container size, such that three small items may fit in one container, makes the instances harder to solve them exactly. For each instance, the material bound and the bounds [ ] and [ ] were calculated. The parameters for the MDFFs and were chosen on the base of continued fractions. The results presented in Table 1 were obtained in each class for the sum of the material bounds ( ), the sum and the minimum of the differences [ ], i.e. ( [ ] ) and { [ ] }, and the sum and the minimum of the differences [ ] [ ], i.e. ( [ ] [ ]) and { [ ] [ ]}. Class 2bB bC cA cB cC Table 1: Computational results (part I) For the set of instances that are not reported in Table 1, the sum was less than 20. Clearly, if there are DFFs and with, -, -, then multiplying the order demands by an integer above 1 increases the difference between the found bounds. Therefore, the highest values of could occur for large numbers of items only. The function clearly dominates, particularly in the classes 3cC and 3cB, while the computational effort remained very small. That confirms the stated opportunity to replace by. The comparison between and is much more impressive (see Table 2). We used the same instances again. The parameter was also chosen based on continued fractions. Let denote the sum of the differences [ ] [ ], i.e. ( [ ] [ ]). The minimum { [ ] [ ]} was always zero. For ease of compactness, only classes with are shown in Table 2. Class [ ] 1aA aA aB aB aC bA bA bB bB bC bC cA cA cA cB cB cB cC cC Table 2: Computational results (part II) Of course, the largest difference between the two calculated bounds occurred normally, when the order demands were the highest, namely in class 1cC. On the other hand, the effect of no dominance in the case of small items only (classes 4 6) could also be verified. Then always [ ] [ ] was found. 5 Conclusion In this paper, we proved that the MDFFs and are dominated by other MDFFs under the very weak prerequisite that all data are integer. Therefore, these functions can be replaced by others without getting worse results. On the other hand, none of the MDFFs and is dominated by the other, therefore both functions should be used to calculate valid bounds. Since it is impossible to try all feasible parameters for to replace, we proposed an algorithm to find useful parameters with very small complexity and tested it with success. Convex functions can be used to construct MDFFs. In this paper, we have shown that, except the identity function and, there is no ISSN: Issue 6, Volume 8, June 2011

10 piecewise linear extreme MDFF, which is convex in. /. [11] F. Vanderbeck. Exact algorithm for minimizing the number of setups in the one-dimensional cutting stock problem. Operations Research, 46(6): , Acknowledgement This work was partially supported by the Portuguese Science and Technology Foundation through the postdoctoral grant SFRH/BPD/45157/2008 for Jürgen Rietz and by the Algoritmi Research Center of the University of Minho for Cláudio Alves and José Valério de Carvalho. References: [1] C. Alves and J. M. Valério de Carvalho. A branch-and-price-and-cut algorithm for the pattern minimization problem. RAIRO Operations Research, 42: , [2] C. A. Burdett and E. L. Johnson. A subadditive approach to solve linear integer programs. Annals of Discrete Mathematics, 1: , [3] J. Carlier, F. Clautiaux and A. Moukrim. New reduction procedures and lower bounds for the two-dimensional bin-packing problem with fixed orientation. Computers and Operations Research, 34: , [4] J. Carlier and E. Néron. Computing redundant resources for the resource constrained project scheduling problem. European Journal of Operational Research, 176(3): , [5] F. Clautiaux, C. Alves and J. Valério de Carvalho. A survey of dual-feasible and superadditive functions. Annals of Operations Research, 179: , [6] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems. Mathematical Programming, 91:11 31, [7] D. S. Johnson. Near optimal bin packing algorithms, Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts. [8] J. Rietz, C. Alves and J. M. Valério de Carvalho. Theoretical investigations on maximal dual feasible functions. Operations Research Letters, 38: , [9] J. Rietz, C. Alves and J. M. Valério de Carvalho. On the extremality of maximal dual feasible functions. Submitted, [10] J. Rietz, C. Alves and J. M. Valério de Carvalho. Worst case analysis of maximal dual feasible functions. Submitted, ISSN: Issue 6, Volume 8, June 2011

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Rita Macedo Cláudio Alves J. M. Valério de Carvalho Centro de Investigação Algoritmi, Universidade do Minho Escola de Engenharia, Universidade

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs Nicolas Lichiardopol Attila Pór Jean-Sébastien Sereni Abstract In 1981, Bermond and Thomassen conjectured that every digraph

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Topology and Topological Spaces

Topology and Topological Spaces Topology and Topological Spaces Mathematical spaces such as vector spaces, normed vector spaces (Banach spaces), and metric spaces are generalizations of ideas that are familiar in R or in R n. For example,

More information

6th Bay Area Mathematical Olympiad

6th Bay Area Mathematical Olympiad 6th Bay Area Mathematical Olympiad February 4, 004 Problems and Solutions 1 A tiling of the plane with polygons consists of placing the polygons in the plane so that interiors of polygons do not overlap,

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

On median graphs and median grid graphs

On median graphs and median grid graphs On median graphs and median grid graphs Sandi Klavžar 1 Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia e-mail: sandi.klavzar@uni-lj.si Riste Škrekovski

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI February 7, 009 Second Round Three Hours (1) An equilateral triangle is inscribed in a circle which is circumscribed by a square. This square is inscribed in

More information

Lower bounds and recursive methods for the problem of adjudicating conflicting claims

Lower bounds and recursive methods for the problem of adjudicating conflicting claims Lower bounds and recursive methods for the problem of adjudicating conflicting claims Diego Dominguez University of Rochester March 31, 006 Abstract For the problem of adjudicating conflicting claims,

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM

BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM International Journal on Computational Science & Applications (IJCSA) Vol.5,No.6, December 2015 BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM Abdolahad Noori Zehmakan Department

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

2017 SOLUTIONS (PRELIMINARY VERSION)

2017 SOLUTIONS (PRELIMINARY VERSION) SIMON MARAIS MATHEMATICS COMPETITION 07 SOLUTIONS (PRELIMINARY VERSION) This document will be updated to include alternative solutions provided by contestants, after the competition has been mared. Problem

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

On 2-Subcolourings of Chordal Graphs

On 2-Subcolourings of Chordal Graphs On 2-Subcolourings of Chordal Graphs Juraj Stacho School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, B.C., Canada V5A 1S6 jstacho@cs.sfu.ca Abstract. A 2-subcolouring

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips

A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips A Constant Bound for the Periods of Parallel Chip-firing Games with Many Chips Paul Myer Kominers and Scott Duke Kominers Abstract. We prove that any parallel chip-firing game on a graph G with at least

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Chapter S:V. V. Formal Properties of A*

Chapter S:V. V. Formal Properties of A* Chapter S:V V. Formal Properties of A* Properties of Search Space Graphs Auxiliary Concepts Roadmap Completeness of A* Admissibility of A* Efficiency of A* Monotone Heuristic Functions S:V-1 Formal Properties

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees

The Complexity of Minimizing Certain Cost Metrics for k-source Spanning Trees The Complexity of Minimizing Certain Cost Metrics for ksource Spanning Trees Harold S Connamacher University of Oregon Andrzej Proskurowski University of Oregon May 9 2001 Abstract We investigate multisource

More information

arxiv: v1 [math.co] 12 Dec 2017

arxiv: v1 [math.co] 12 Dec 2017 arxiv:1712.04381v1 [math.co] 12 Dec 2017 Semi-reflexive polytopes Tiago Royer Abstract The Ehrhart function L P(t) of a polytope P is usually defined only for integer dilation arguments t. By allowing

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

An Eternal Domination Problem in Grids

An Eternal Domination Problem in Grids Theory and Applications of Graphs Volume Issue 1 Article 2 2017 An Eternal Domination Problem in Grids William Klostermeyer University of North Florida, klostermeyer@hotmail.com Margaret-Ellen Messinger

More information

3 Fractional Ramsey Numbers

3 Fractional Ramsey Numbers 27 3 Fractional Ramsey Numbers Since the definition of Ramsey numbers makes use of the clique number of graphs, we may define fractional Ramsey numbers simply by substituting fractional clique number into

More information

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that D D Chapter 4 xtensions of the CUB MTOD e present several generalizations of the CUB MTOD In section 41 we analyze the query algorithm GOINGCUB The difference to the CUB MTOD occurs in the case when the

More information

Interleaving Schemes on Circulant Graphs with Two Offsets

Interleaving Schemes on Circulant Graphs with Two Offsets Interleaving Schemes on Circulant raphs with Two Offsets Aleksandrs Slivkins Department of Computer Science Cornell University Ithaca, NY 14853 slivkins@cs.cornell.edu Jehoshua Bruck Department of Electrical

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Network Topology and Equilibrium Existence in Weighted Network Congestion Games

Network Topology and Equilibrium Existence in Weighted Network Congestion Games Network Topology and Equilibrium Existence in Weighted Network Congestion Games Igal Milchtaich, Bar-Ilan University August 2010 Abstract. Every finite noncooperative game can be presented as a weighted

More information

3186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 9, SEPTEMBER Zero/Positive Capacities of Two-Dimensional Runlength-Constrained Arrays

3186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 9, SEPTEMBER Zero/Positive Capacities of Two-Dimensional Runlength-Constrained Arrays 3186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 51, NO 9, SEPTEMBER 2005 Zero/Positive Capacities of Two-Dimensional Runlength-Constrained Arrays Tuvi Etzion, Fellow, IEEE, and Kenneth G Paterson, Member,

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Scan Scheduling Specification and Analysis

Scan Scheduling Specification and Analysis Scan Scheduling Specification and Analysis Bruno Dutertre System Design Laboratory SRI International Menlo Park, CA 94025 May 24, 2000 This work was partially funded by DARPA/AFRL under BAE System subcontract

More information

The complement of PATH is in NL

The complement of PATH is in NL 340 The complement of PATH is in NL Let c be the number of nodes in graph G that are reachable from s We assume that c is provided as an input to M Given G, s, t, and c the machine M operates as follows:

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

A Note on Polyhedral Relaxations for the Maximum Cut Problem

A Note on Polyhedral Relaxations for the Maximum Cut Problem A Note on Polyhedral Relaxations for the Maximum Cut Problem Alantha Newman Abstract We consider three well-studied polyhedral relaxations for the maximum cut problem: the metric polytope of the complete

More information

MATH 54 - LECTURE 4 DAN CRYTSER

MATH 54 - LECTURE 4 DAN CRYTSER MATH 54 - LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an

More information

On Soft Topological Linear Spaces

On Soft Topological Linear Spaces Republic of Iraq Ministry of Higher Education and Scientific Research University of AL-Qadisiyah College of Computer Science and Formation Technology Department of Mathematics On Soft Topological Linear

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Weak Dynamic Coloring of Planar Graphs

Weak Dynamic Coloring of Planar Graphs Weak Dynamic Coloring of Planar Graphs Caroline Accurso 1,5, Vitaliy Chernyshov 2,5, Leaha Hand 3,5, Sogol Jahanbekam 2,4,5, and Paul Wenger 2 Abstract The k-weak-dynamic number of a graph G is the smallest

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

An Integer Programming Approach to Packing Lightpaths on WDM Networks 파장분할다중화망의광경로패킹에대한정수계획해법. 1. Introduction

An Integer Programming Approach to Packing Lightpaths on WDM Networks 파장분할다중화망의광경로패킹에대한정수계획해법. 1. Introduction Journal of the Korean Institute of Industrial Engineers Vol. 32, No. 3, pp. 219-225, September 2006. An Integer Programming Approach to Packing Lightpaths on WDM Networks Kyungsik Lee 1 Taehan Lee 2 Sungsoo

More information

SPERNER S LEMMA MOOR XU

SPERNER S LEMMA MOOR XU SPERNER S LEMMA MOOR XU Abstract. Is it possible to dissect a square into an odd number of triangles of equal area? This question was first answered by Paul Monsky in 970, and the solution requires elements

More information

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1 CONSUMPTION BASICS MICROECONOMICS Principles and Analysis Frank Cowell July 2017 Frank Cowell: Consumption Basics 1 Overview Consumption: Basics The setting The environment for the basic consumer optimisation

More information

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev

APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS. J. Mark Keil, Tzvetalin S. Vassilev Serdica J. Computing 4 00, 3 334 APPROXIMATING THE MAXMIN AND MINMAX AREA TRIANGULATIONS USING ANGULAR CONSTRAINTS J. Mark Keil, Tzvetalin S. Vassilev Abstract. We consider sets of points in the two-dimensional

More information

Lecture 11: Maximum flow and minimum cut

Lecture 11: Maximum flow and minimum cut Optimisation Part IB - Easter 2018 Lecture 11: Maximum flow and minimum cut Lecturer: Quentin Berthet 4.4. The maximum flow problem. We consider in this lecture a particular kind of flow problem, with

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Po-Shen Loh June 2010 1 Warm-up 1. (Russia 1996/4 In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees

More information

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM EXERCISES Prepared by Natashia Boland 1 and Irina Dumitrescu 2 1 Applications and Modelling 1.1

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Section 1.7 Sequences, Summations Cardinality of Infinite Sets Section 1.7 Sequences, Summations Cardinality of Infinite Sets Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and

More information

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems.

In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2 Basics In this chapter we introduce some of the basic concepts that will be useful for the study of integer programming problems. 2.1 Notation Let A R m n be a matrix with row index set M = {1,...,m}

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

On the Robustness of Distributed Computing Networks

On the Robustness of Distributed Computing Networks 1 On the Robustness of Distributed Computing Networks Jianan Zhang, Hyang-Won Lee, and Eytan Modiano Lab for Information and Decision Systems, Massachusetts Institute of Technology, USA Dept. of Software,

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

2 The Fractional Chromatic Gap

2 The Fractional Chromatic Gap C 1 11 2 The Fractional Chromatic Gap As previously noted, for any finite graph. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Approximability Results for the p-center Problem

Approximability Results for the p-center Problem Approximability Results for the p-center Problem Stefan Buettcher Course Project Algorithm Design and Analysis Prof. Timothy Chan University of Waterloo, Spring 2004 The p-center

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane Rom Pinchasi August 2, 214 Abstract We prove the following isoperimetric inequality in R 2, conjectured by Glazyrin

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information