By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

Size: px
Start display at page:

Download "By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab"

Transcription

1 By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy and paste C code Compile and run Get checked off on Lab 1-1 if not already done Start Lab 1-2 Quiz 2 next class on RPILMS Timers and Interrupts 2 3 Homework 5 C8051F020 Block Diagram (pg 18) Homework 5 is a programming assignment that is due before the start of the next class A basic template is provided, edit and add to the code For your own development you will not need your protoboard, but will need a SecureCRT window You probably should come to open shop to test your code or work on it in class Submit a working version of the code on LMS 4 5

2 Major topic 1 Timer 0 There are counters available They can count clock cycles or pulses on an external pin. If a counter counts clock cycles, it then is a timer. Today we will use Timer0. Major topic 2 Interrupts Software or Hardware can interrupt your code. Think of it as a phone call while you are watching a DVD Stop your watch DVD code (pause) The DVD player remembers where you are Pick up the phone Take care of the interruption Interrupt Service Routine Go back to watch DVD code Pick up where you were before the interruption There are many possible interrupts: Phone (external trigger) Hunger pains (internal trigger) Time to go to class (timer interrupt type we will use today.) 6 7 Lab 1, part 2 Description Lab 1, part 2: On RPILMS Hardware: You will need to add one additional LED (LED1) to the Lab 1, part 1 hardware Keep the remaining circuitry from Lab 1, part 1. Basic idea player tries to match randomly lit LEDs by pressing buttons Wait for slide switch, then loop 10 times Light random LED combination Wait for 1 second Check for correct reaction indicate correct or wrong with Bicolor LED Keep track of correct and wrong results Pause if slide switch is off Print the results Start another loop only after the slide switch has been switched off and back on. 8 9

3 Lab 1, part 2 Representation Lab 1, part 2 C code Switches (pushbuttons, slide switch) Input Output Ports 2 and 3 Ports 2 and 3 LED0, LED1, bicolor LED, Buzzer In the software, you need to generate a random number. Refer to sample code at end of lab description Sample code is available on LMS #include <stdlib.h> for rand() function Your code will also need to keep track of time in order to implement a delay. How can we count the passage of time? Counting Counting on Microprocessors A basic feature of the microcontroller is the ability to count something Can count some type of electronic signal that is an input to the microcontroller Signal comes from outside the microcontroller, so this is called an external event Can count the passage of time Internal clock cycles of the microprocessor represent time. We will count clock cycles for this lab assignment Start at a count of 0 Counter register has a limited size Next count after maximum causes an overflow Counter resets to 0 System can be set so that this overflow will trigger something to occur Counter may continue to be incremented after overflow Similar to a clock Minutes count from 0 to 59, then overflows to 0 and continues to count. Also triggers something else increment hours

4 Timers see LITEC manual Ch. 4 - Timers T0 Mode 0 Bock Diagram In the C8051 microcontroller, Timers are used as a type of counter Five Timers are available (see C8051 manual page 225) Timer 0, Timer 1, Timer 4 Timer 0 is of interest now Timers are extra hardware on chip Don t require the CPU independent of C8051 (8 bits) Figure 4.2 in manual Using Timers We can configure the Timer to count external event signals as well as to count clock cycles for the passage of time. When counting clock cycles, remember that the system clock is fast. Our system clock runs at megahertz. The timer will overflow many times Timer keeps resetting making it difficult to track longer periods of time It may be easier to keep track of the number of overflows that have passed How can overflows be counted? Interrupts later topic in this lecture. Timers Given the clock frequency Calculate the count rate (i.e., counts per second) Calculate the time per counter overflow Example: clock frequency, MHz 16 17

5 Timer 0 see Ch. 4 Timers of LITEC manual Can be a 16 bit, 13 bit, or 8 bit counter Can count: The system clock (SYSCLK) The system clock/12 External events Count can be gated, (counting can be turned on and off): By an external event By software, (using TR0) Let s look at the SFRs needed to configure Timer 0 for keeping track of the passage of time Configuring Timer 0 CKCON (see Ch. 4 - Timers of LITEC manual or pg 226 of C8051 manual) Bit 3 select counting rate: clock or clock 12 Timer 1 is used for printf, don t change the settings! Warning, don t change T1M, used for printf Configuring Timer 0 Configuring Timer 0 TMOD (see Ch. 4 Timers of LITEC manual or pg 232 of C8051 manual) Bits 0 and 1 set number of bits (8, 13, or 16) for counter Bit 2 select increment on count clock or external pin Bit 3 control counting using TR0 with or without external input pin T0 ( /INT0 ) TR0 is a bit of TCON Warning: Don t change these bits, used for printf. TCON (see Ch. 4 - Timers of LITEC manual or p 231 of C8051 manual ) Bit 4 enable or disable counting 0 will disable Timer 0 1 will enable Timer 0 Same warning don t change Bit-addressable Special Function Registers Specific bits of bit-addressable SFRs can be accessed with their individual names Example: TR0 = 1; // Sets bit 4 of TCON 20 21

6 Timers - summary Know how to read and write the present count in a timer TL0 & TH0 for Timer 0 (or 16-bit TMR0) TL1 & TH1 for Timer 1 (or 16-bt TMR1) Example: unsigned int count; // count needs to be 16-bit variable count = TH0 * TL0; (or count = TH0<<8 + TL0;) Also: count = TMR0 // using 16-bit SFR Know which SFRs are used to configure the timers. CKCON TCON TMOD Interrupts second major topic for today It was mentioned previously that an event can be triggered when an overflow occurs. We call this event an interrupt. It is called an interrupt because the main code is stopped, and another piece of code, the Interrupt Service Routine (ISR), is executed. Original code is resumed upon completion of the ISR function You write the code for the ISR For this example, a variable can be incremented every time the ISR is executed to keep track of how many overflows have occurred Interrupts Configuring Interrupts Interrupts cause the code to do the following procedure: Stop Store all variables Record location in code Transfer control to the Interrupt Service Routine function, ISR. When the ISR has handled the interrupt (function has finished), control is transferred back to the original code. It picks up where it left off. Think of it like a phone ringing while you are watching a DVD. Pause player, answer phone, talk, hang up, return to DVD We can control which interrupts we allow, there are 22 available in the C8051F020 Refer pg 43 of LITEC (or inside cover,) 117 of C8051 manual We will start with the use of the Timer 0 Overflow An interrupt is triggered when both its interrupt enable & interrupt flag are set Interrupts need to be enabled & disabled because interrupts may not be needed in all applications in which Timer 0 is used The interrupt flag is used as the trigger to run the ISR Timer 0 Overflow Flag is a specific bit in a SFR It is set automatically when Timer 0 overflows It is cleared automatically when the interrupt service routine is called

7 Interrupt Service Routine - ISR When an interrupt occurs, a function needs to exist in the program this is the ISR This function is specified as void ISR_name (void) interrupt N { // code for interrupt } Where ISR_name is a name you give the function and N is a number in the range of 0-21 that corresponds to the appropriate interrupt number. For Timer 0 Overflow, N = 1 Each type of interrupt used needs a different ISR Interrupt numbers are assigned the same value as the Interrupt Priority Number in C8051 manual pages , and the LITEC manual Table 4.2, and on the inside front cover. Interrupt Number (C8051 Man. pg. 117, LITEC manual Table 4.2) Use the Priority Number that corresponds to the desired type of interrupt as the Interrupt number in the Interrupt function Interrupt Source Interrupt Vector Interrupt Priority type Order # Interrupt Source Interrupt Vector Priority Order Reset 0x0000 Top Comparator 0 Falling Edge 0x External Interrupt 0 (/INT0) 0x Comparator 0 Rising Edge 0x005B 11 Timer 0 Overflow 0x000B 1 Comparator 1 Falling Edge 0x External Interrupt 1 (/INT1) 0x Comparator 1 Rising Edge 0x006B 13 Timer 1 Overflow 0x001B 3 Timer 3 Overflow 0x UART0 0x ADC0 End of Conversion 0x007B 15 Timer 2 Overflow (or RXF2) 0x002B 5 Timer 4 Overflow 0x Serial Peripheral Interface 0x ADC1 End of Conversion 0x008B 17 SMBus Interface 0x003B 7 External Interrupt 6 0x ADC0 Window Comparator 0x External Interrupt 7 0x009B 19 Programmable Counter Array 0x004B 9 UART1 0x00A3 20 External Crystal OSC Ready 0x00AB IE Interrupt Enable Configuring Interrupts Ch. 4 of LITEC Manual Interrupt enable bit for Timer 0 is ET0 (bit 1) in the IE register (see C8051 manual page 119) Overflow of Timer 0 will set the TF0 flag (bit 5) in the TCON register (see C8051 manual page 231) 28 29

8 Timer & Interrupt Summary Worksheet #5 Timers can be used to count passage of time (focus on Timer 0) CKCON: set clock rate TMOD: set how timer will count TCON: enable counter TH0: Timer 0 value high order 8 bits TL0: Timer 0 value low order 8 bits Interrupts can be used to trigger the execution of certain portions of code IE: enable interrupt TCON: interrupt flag (handled automatically) ISR: function that runs when interrupt occurs Now that we have some basic understanding of using timers and interrupts to keep track of time, lets try an application of these concepts. Laboratory Worksheet #5 for Lab 1, part 2 Use hardware already built in Lab 1, part 1 Copy code from website (Sample Codes) Compile, download and run program and answer questions on worksheet Enter your procedure and results in Lab Notebook Have a TA check your answers Sample Code - Worksheet #5 for Lab 1, part 2 Counter Overflows This code will demonstrate the use of a T0 interrupt to count the number of T0 overflows that occur while a slide switch connected to P3.0 is in the OFF position Rate: clock cycles/12 (CKCON) Number of bits: 16 bit counting (TMOD) Uses software to start and stop, TR0 (TMOD, TCON) Enable interrupts for Timer 0 (IE) Can use this code as a reference when writing your code for Lab 1, part 2 Counters have a size based on the number of memory bits assigned to the counter Maximum count for a 16 bit counter is 0xFFFF (decimal value is 65,535) Maximum count for a 13 bit counter is 0x1FFF (decimal value is 8,191) Max count for an 8 bit counter is 0xFF (decimal 255) An overflow results in a count of zero The overflow can trigger another event. We will use a timer overflow to trigger an interrupt 32 33

9 TMOD Timer Mode Register Lab 1, part 2: Description Be able to configure either T0 or T1 Wait for slide switch, then loop 10 times Light random LED combination Wait for 1 second Check for correct reaction (PB held down for 1s) Keep track of correct and wrong results Print the results Start another loop only after the slide switch has been switched off and back on Lab 1, part 2 Pseudo-Code compiler directives declare global variables function prototypes main function declare local variables configure ports 2 and 3 Initialize Timer0, including allowing interrupts, don t start counting while (TRUE) turn off LEDs and buzzer if (slideswitch)... end if (slideswitch) wait for slideswitch to be toggled off end while (TRUE) end main function Lab 1, part 2 Pseudo-Code if (slideswitch) start Timer 0 for 10 loops get random number repeat until it is different than previous number display correct combination of LEDs reset Interrupt_counts and Timer 0 contents wait 1 second check switches if correct, increment count end for loop clear LED output stop Timer 0 print results end if (slideswitch) 36 37

10 Lab 1, part 2 Pseudo-Code Interrupt Service Routine increment Interrupt_counts End ISR Today s Lab Work IMPORTANT get checked off for Lab 1-1 Finish Laboratory Worksheet #5 Wire circuit for Lab 1, part 2 Start writing code for Lab 1, part 2 Next Class Homework #5 is due before class begins Quiz #2 Timers & Interrupts Check-off Lab 1, part Quiz 2 -Timers Configure Timer 0 and Timer 1 Set up any mode, (fully understand mode 0 and mode 1) 13 bit counting, mode 0 16 bit counting, mode 1 8 bit, mode 2, or two 8 bit counters, mode 3 Count at a rate equal to the system clock or the (system clock) 12 Know that the timers are capable of counting external events Know how to start and stop the counting 40 42

11 Timers Know how to read and write the present count in a timer TL0 & TH0 for Timer 0 (or 16-bit TMR0) TL1 & TH1 for Timer 1 (or 16-bt TMR1) Example: unsigned int count; // count needs to be 16-bit variable count = TH0 * TL0; (or count = TH0<<8 + TL0;) Also: count = TMR0 // using 16-bit SFR Know which SFRs are used to configure the timers. CKCON TCON TMOD CKCON: Clock Control Register TCON: Timer Control Register TMOD Timer Mode Register Be able to configure either T0 or T

12 Quiz 2 - Interrupts Understand what an interrupt is Know what interrupts are available on the 8051 Know what is necessary in code for interrupts Enable interrupts Allow all interrupts, EA=1; or IE = 0x80; Just Timer 0 Overflow interrupt enable with ET0 of IE Just Timer 1 Overflow interrupt enable with ET1 of IE Write an Interrupt Service Routine Include correct interrupt number Be able to find the interrupt number for any type of interrupt, not just Timer interrupts. Interrupt Summary Start Lab 1, part 2 Today s Class If you haven t finish Lab 1-1 yet, come in during open shop to complete it, and get checked-off Lab 1-2 Check-off should be done in the next class o Complete entries in lab notebook prior to check-off o Both members of a pair must be present for check-off Leave hardware intact for Lab 2 Turn in Notebook for Lab 1, after completing and getting checked off on both parts of the lab Homework 5 will become available after we post this semester s version of Lab 2! 49

Announcements Homework #3 due today. Ports. Outline for Today C8051 SFRs & Port I/O Worksheet #4 - simple I/O code. Using Ports

Announcements Homework #3 due today. Ports. Outline for Today C8051 SFRs & Port I/O Worksheet #4 - simple I/O code. Using Ports Announcements Homework #3 due today Online LMS Assessment Everybody submits their own on LMS You should have a lab notebook by now You should have the Lab Manual by now Outline for Today C8051 SFRs & Port

More information

Lecture 9. Timer Operations and Programming

Lecture 9. Timer Operations and Programming Lecture 9 Timer Operations and Programming Timer Operations and Programming Introduction Summary of timers Timer programming sequence Summary of timer SFRs Timer 0-1: 8-bit auto-reload mode (mode 2) Programming

More information

8051 Peripherals. On-Chip Memory Timers Serial Port Interrupts. Computer Engineering Timers

8051 Peripherals. On-Chip Memory Timers Serial Port Interrupts. Computer Engineering Timers 8051 Peripherals On-Chip Memory Timers Serial Port Interrupts Computer Engineering 2 2-1 8051 Timers 8051 Timers The 8051 has 2 internal 16-bit timers named Timer 0 and Timer 1 Each timer is a 16-bit counter

More information

Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document. Solutions to Number Systems Worksheet. Announcements.

Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document. Solutions to Number Systems Worksheet. Announcements. August 15, 2016 Before Class Install SDCC Instructions in Installing_SiLabs-SDCC- Drivers document Install SiLabs Instructions in Installing_SiLabs-SDCC- Drivers document Install SecureCRT On LMS, also

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

Outline for Today. Lab Equipment & Procedures. Teaching Assistants. Announcements

Outline for Today. Lab Equipment & Procedures. Teaching Assistants. Announcements Announcements Homework #2 (due before class) submit file on LMS. Submit a soft copy using LMS, everybody individually. Log onto the course LMS site Online Assignments Homework 2 Upload your corrected HW2-vn.c

More information

80C51 Block Diagram. CSE Overview 1

80C51 Block Diagram. CSE Overview 1 80C51 Block Diagram CSE 477 8051 Overview 1 80C51 Memory CSE 477 8051 Overview 3 8051 Memory The data width is 8 bits Registers are 8 bits Addresses are 8 bits i.e. addresses for only 256 bytes! PC is

More information

Timers and interrupts

Timers and interrupts Timers and interrupts CSCI 255: Introduction to Embedded Systems Keith Vertanen Copyright 2011 Timers Overview Creating fixed pauses Calculate length of events Counts events Generate baud rate for serial

More information

Interrupts, timers and counters

Interrupts, timers and counters Interrupts, timers and counters Posted on May 10, 2008, by Ibrahim KAMAL, in Micro-controllers, tagged Most microcontrollers come with a set of ADD-ONs called peripherals, to enhance the functioning of

More information

Microprocessors B (17.384) Spring Lecture Outline

Microprocessors B (17.384) Spring Lecture Outline Microprocessors B (17.384) Spring 2013 Lecture Outline Class # 04 February 12, 2013 Dohn Bowden 1 Today s Lecture Administrative Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

8051 Timers. Class 7 EE4380 Fall Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 Timers Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Introduction Timers Timing devices - Generate specific time delay Event

More information

Chapter 09. Programming in Assembly

Chapter 09. Programming in Assembly Chapter 09 Programming in Assembly Lesson 05 Programming Examples for Timers Programming TMOD Register 3 Write instructions to run T0 in Mode 0, external count inputs, internal start/stop control ANL TMOD,

More information

Welcome to Lab! You do not need to keep the same partner from last lab. We will come around checking your prelabs after we introduce the lab

Welcome to Lab! You do not need to keep the same partner from last lab. We will come around checking your prelabs after we introduce the lab Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: http://users.wpi.edu/~ndemarinis/ece2049/ You do not need to keep the same partner from

More information

Lesson-3: Counters and Timers

Lesson-3: Counters and Timers 8051 AND ADVANCED PROCESSOR ARCHITECTURES Lesson-3: Counters and Timers 1 Timing and counting devices Two T0 and T1 in classic 8051 family and three T0, T1 and T2 in 8052 family (an extension of 8051).

More information

Magic 8 Ball. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name

Magic 8 Ball. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name MPS Magic 8 Ball Lab Exercise Magic 8 Ball Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name Notes: You must work on this assignment with your partner. Hand in a printer

More information

8051 Microcontroller Interrupts

8051 Microcontroller Interrupts 8051 Microcontroller Interrupts There are five interrupt sources for the 8051, which means that they can recognize 5 different events that can interrupt regular program execution. Each interrupt can be

More information

Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website:

Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: Welcome to Lab! Feel free to get started until we start talking! The lab document is located on the course website: https://users.wpi.edu/~sjarvis/ece2049_smj/ We will come around checking your pre-labs

More information

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 Subject: Microcontroller and Interfacing (151001) Class: B.E.Sem V (EC-I & II) Q-1 Explain RISC

More information

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag Timer0..Timer3 Timers are pretty useful: likewise, Microchip provides four different timers for you to use. Like all interrupts, you have to Enable the interrupt, Set the conditions of the interrupt, and

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text In this lecture embedded C program for interrupt handling

More information

ELEG3923 Microprocessor Ch.9 Timer Programming

ELEG3923 Microprocessor Ch.9 Timer Programming Department of Electrical Engineering University of Arkansas ELEG3923 Microprocessor Ch.9 Timer Programming Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Programming 8051 Timers Counter programming Timer programming

More information

Lecture 10. Serial Communication

Lecture 10. Serial Communication Lecture 10 Serial Communication Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs

More information

UBC104 Embedded Systems. Review: Introduction to Microcontrollers

UBC104 Embedded Systems. Review: Introduction to Microcontrollers UBC104 Embedded Systems Review: Introduction to Microcontrollers Processors General purpose processors: 80386 Pentium Core Duo Large number of pins External memory External peripherals * Figure from Intel

More information

Measuring Duty Cycles with an Intel MCS-51 Microcontroller

Measuring Duty Cycles with an Intel MCS-51 Microcontroller Measuring Duty Cycles with an Intel MCS-51 Microcontroller Paul C. de Jong and Ferry N. Toth The fastest way of measuring duty cycles is with the aid of hardware. The MCS-51 type of microcontrollers offers

More information

8051 Microcontroller memory Organization and its Applications

8051 Microcontroller memory Organization and its Applications 8051 Microcontroller memory Organization and its Applications Memory mapping in 8051 ROM memory map in 8051 family 0000H 4k 0000H 8k 0000H 32k 0FFFH DS5000-32 8051 1FFFH 8752 7FFFH from Atmel Corporation

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

EE 354 September 16, 2016 C Sample Programs

EE 354 September 16, 2016 C Sample Programs EE 354 September 16, 2016 C Sample Programs //DataArray /* This program creates an array of data in code memory * that is 32 bytes long. Fill this array with the ascii codes for * the capital letters plus

More information

ECE 362 Experiment 4: Interrupts

ECE 362 Experiment 4: Interrupts ECE 362 Experiment 4: Interrupts 1.0 Introduction Microprocessors consistently follow a straight sequence of instructions, and you have likely only worked with this kind of programming until now. In this

More information

#include <stdio.h> // // Global CONSTANTS

#include <stdio.h> // // Global CONSTANTS Distance.c Author: Baylor Electromechanical Systems Operates on an external 18.432 MHz oscillator. Target: Cygnal Educational Development Board / C8051F020 Tool chain: KEIL C51 6.03 / KEIL EVAL C51 Utilizes

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language Interrupts on PIC18F252 Part 2 Interrupts Programming in C Language Programming interrupts in C language using XC8 compiler is significantly simplified compared to C18 compiler. This note explains the

More information

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1.

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. Counters and Timers: The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. As their names suggest, timer counts internal clock pulse i.e. machine cycle to provide delay. Counter counts

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

CHAPTER TIMER PROGRAMMING

CHAPTER TIMER PROGRAMMING CHAPTER 9 8051 TIMER PROGRAMMING 8051 Timers The 8051 has two timers/counters, they can be used as Timers to generate a time delay Event counters to count events happening outside the microcontroller Both

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

Lecture 1. Course Overview and The 8051 Architecture

Lecture 1. Course Overview and The 8051 Architecture Lecture 1 Course Overview and The 8051 Architecture MCUniversity Program Lectures 8051 architecture t System overview of C8051F020 8051 instruction set System clock, crossbar and GPIO Assembler directives

More information

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 - Interrupts EE4380 Fall 2001 Class 9 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Polling Vs Interrupts Polling: MCU monitors all served devices continuously,

More information

Interrupts. Embedded Systems Interfacing. 08 September 2011

Interrupts. Embedded Systems Interfacing. 08 September 2011 08 September 2011 An iterrupt is an internal or external event that forces a hardware call to a specified function called an interrupt service routine Interrupt enable must be set (initialization) The

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 03 Low Power Mode and Port Interrupts Goals: Bonus: Pre Lab Questions:

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems (Timers/Input Capture) Instructors: Dr. Phillip Jones 1 Announcements HW 4, Due Wed 6/13 Quiz 5 (15 min): Wed 6/13, Textbook reading: Section 9.1, 9.2 (your one-side

More information

Chapter 09. Programming in Assembly

Chapter 09. Programming in Assembly Chapter 09 Programming in Assembly Lesson 03 Programming Approach for Main and Interrupt Service Routines in 8051 Program Approach for programming Main Program Instructions 3 Main program initial instructions

More information

CPEG300 Embedded System Design. Lecture 8 Timer

CPEG300 Embedded System Design. Lecture 8 Timer CPEG300 Embedded System Design Lecture 8 Timer Hamad Bin Khalifa University, Spring 2018 Review 8051 port and port schematic Internal read/write data path Serial communication vs. parallel communication

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text 1. Interrupt An interrupt is the occurrence of a condition--an event --

More information

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #11: More Clocks and Timers

ECE2049: Embedded Computing in Engineering Design C Term Spring Lecture #11: More Clocks and Timers ECE2049: Embedded Computing in Engineering Design C Term Spring 2018 Lecture #11: More Clocks and Timers Reading for Today: Davie's Ch 8.3-8.4, 8.9-8.10, User's Guide Ch. 17 Reading for Next Class: User's

More information

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1

Department of EIE / Pondicherry Engineering College. Timer/Counters. Department of EIE / Pondicherry Engineering College 1 Timer/Counters Department of EIE / Pondicherry Engineering College 1 The 8051 has two internal sixteen bit hardware Timer/Counters. Each Timer/Counter can be configured in various modes, typically based

More information

EECS 373 Midterm 2 Fall 2018

EECS 373 Midterm 2 Fall 2018 EECS 373 Midterm 2 Fall 2018 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Nor did I discuss this exam with anyone after

More information

Embedded Controller Programming II. I/O Device Programming in C Part 1: Input and Interrupts

Embedded Controller Programming II. I/O Device Programming in C Part 1: Input and Interrupts Discovery.com Embedded Controller Programming II I/O Device Programming in C Part 1: Input and Interrupts Ken Arnold Copyright (c)2006 Ken Arnold 051221 1 Overview Basic Input Devices Switch Input Matrix

More information

Real Time Embedded Systems. Lecture 10 January 31, 2012 Interrupts

Real Time Embedded Systems.  Lecture 10 January 31, 2012 Interrupts Interrupts Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 10 January 31, 2012 Interrupts Section Topic Where in the books Catsoulis chapter 1 (pg 10-12) Simon chapter4 Zilog UM197 (ZNEO

More information

Using Timers of Microchip PIC18F Microcontrollers

Using Timers of Microchip PIC18F Microcontrollers Using Timers of Microchip PIC18F Microcontrollers ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it L.A.P.

More information

Summer 2003 Lecture 21 07/15/03

Summer 2003 Lecture 21 07/15/03 Summer 2003 Lecture 21 07/15/03 Simple I/O Devices Simple i/o hardware generally refers to simple input or output ports. These devices generally accept external logic signals as input and allow the CPU

More information

CHAPTER 11 INTERRUPTS PROGRAMMING

CHAPTER 11 INTERRUPTS PROGRAMMING CHAPTER 11 INTERRUPTS PROGRAMMING Interrupts vs. Polling An interrupt is an external or internal event that interrupts the microcontroller To inform it that a device needs its service A single microcontroller

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52 Features Compatible with MCS -51 Products 8K Bytes of In-System Programmable (ISP) Flash Memory Endurance: 10,000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz

More information

Chapter 2. Overview of Architecture and Microcontroller-Resources

Chapter 2. Overview of Architecture and Microcontroller-Resources Chapter 2 Overview of Architecture and Microcontroller-Resources Lesson 4 Timers, Real Time Clock Interrupts and Watchdog Timer 2 Microcontroller-resources Port P1 Port P0 Port P2 PWM Timers Internal Program

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Using programmed I/O on the M16C; and Writing an Interrupt Service Routine (ISR)

Using programmed I/O on the M16C; and Writing an Interrupt Service Routine (ISR) Tutorial 2 Basic M16C Programming 1 Introduction The goal for Tutorial 2 is to take a more in-depth look at the sample program from the previous tutorial, and make use of it as a foundation for writing

More information

C:\CYGNAL\Examples\C8051F02x\C\Edu_Board_Source_Code\Magcard.c

C:\CYGNAL\Examples\C8051F02x\C\Edu_Board_Source_Code\Magcard.c Magcard.c Author: Baylor Electromechanical Systems Operates on an external 18.432 MHz oscillator. Target: Cygnal Educational Development Board / C8051F020 Tool chain: KEIL C51 6.03 / KEIL EVAL C51 This

More information

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07)

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07) Serial I-O for 8051 Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai 400 076 (version 14/10/07) 1 Motivation Serial communications means sending data a single bit at a time. But

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

Microcontroller and Embedded Systems:

Microcontroller and Embedded Systems: Microcontroller and Embedded Systems: Branches: 1. Electronics & Telecommunication Engineering 2. Electrical & Electronics Engineering Semester: 6 th Semester / 7 th Semester 1. Explain the differences

More information

For more notes of DAE

For more notes of DAE Created by ARSLAN AHMED SHAAD ( 1163135 ) AND MUHMMAD BILAL ( 1163122 ) VISIT : www.vbforstudent.com Also visit : www.techo786.wordpress.com For more notes of DAE CHAPTER # 8 INTERRUPTS COURSE OUTLINE

More information

// and verify that there is a sine wave with frequency <FREQUENCY> and

// and verify that there is a sine wave with frequency <FREQUENCY> and F330DC_IDA0_SineWave.c Copyright 2006 Silicon Laboratories, Inc. http:www.silabs.com Program Description: This program outputs a sine wave using IDA0. IDA0's output is scheduled to update at a rate determined

More information

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051: DEPARTMENT OF ECE MICROPROCESSORS AND MICROCONTROLLERS MATERIAL UNIT V 8051 MICROCONTROLLERS To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to add other

More information

Department of Electronics and Instrumentation Engineering Question Bank

Department of Electronics and Instrumentation Engineering Question Bank www.examquestionpaper.in Department of Electronics and Instrumentation Engineering Question Bank SUBJECT CODE / NAME: ET7102 / MICROCONTROLLER BASED SYSTEM DESIGN BRANCH : M.E. (C&I) YEAR / SEM : I / I

More information

EE251: Thursday November 30

EE251: Thursday November 30 EE251: Thursday November 30 Course Evaluation Forms-fill out Memory Subsystem continued Timing requirements Adding memory beyond 4 Gbyte Time Allowing: Begin Review for Final Exam Homework due next Tuesday,

More information

Capture Mode of Pic18F252

Capture Mode of Pic18F252 Capture Mode of Pic18F252 PIC18F253 has two Capture/Compare/Pulse Width Modulation modules. Some devices such as ADCs, Sensors (position, velocity, accelearstion, temperature [MAX6577 converts the ambient

More information

Lab 5: EBI and ADC: Digital Voltmeter

Lab 5: EBI and ADC: Digital Voltmeter Page 1/5 OBJECTIVES Learn how to use C (as an alternative to Assembly) in your programs. Learn how to use an analog-to-digital conversion (ADC, also known as A/D) system on a microcontroller. Use the ADC

More information

C Language Programming, Interrupts and Timer Hardware

C Language Programming, Interrupts and Timer Hardware C Language Programming, Interrupts and Timer Hardware In this sequence of three labs, you will learn how to write simple C language programs for the MC9S12 microcontroller, and how to use interrupts and

More information

اصول ميکروکامپيوترها استاد درس: دکتر http://ee.iust.ac.ir/rahmati/index.htm rahmati@iust.ac.ir ا درس Email و Website برای تکاليف و... : http://eel.iust.ac.ir/rahmati/ ١ هجدهم فصل ا شنايی با تايمرهای 8051

More information

1. Attempt any three of the following: 15

1. Attempt any three of the following: 15 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

EE6502- MICROPROCESSOR AND MICROCONTROLLER

EE6502- MICROPROCESSOR AND MICROCONTROLLER . EE6502- MICROPROCESSOR AND MICROCONTROLLER UNIT III - 8051 MICROCONTROLLER PART - A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial

More information

Embedded World Television, Radio, CD player, Washing Machine Microwave Oven Card readers, Palm devices

Embedded World Television, Radio, CD player, Washing Machine Microwave Oven Card readers, Palm devices A presentation on INTRODUCTION We are living in the Embedded World. We are surrounded with many embedded products and our daily life largely depends on the proper functioning of these gadgets. Television,

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

8051 Training Kit Lab Book

8051 Training Kit Lab Book 8051 Training Kit Lab Book Date: 25 September 2009 Document Revision: 1.05 BiPOM Electronics 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: (713) 283-9970 Fax: (281) 416-2806 E-mail: info@bipom.com

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 7: MCS-51 Architecture I : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Architecture I Page 2 Outlines: 8051 Microcontroller Hardware

More information

Timer programming

Timer programming 5.8051 Timer programming In this tutorial, we are going to discuss the Timer module of 8051. First, we will see what are timers, their working and later we will configure the 8051 timers to generate the

More information

CPEG300 Embedded System Design. Lecture 6 Interrupt System

CPEG300 Embedded System Design. Lecture 6 Interrupt System CPEG300 Embedded System Design Lecture 6 Interrupt System Hamad Bin Khalifa University, Spring 2018 Correction Lecture 3, page 18: Only direct addressing mode is allowed for pushing or popping the stack:

More information

Interrupt Programming: Interrupts vs. Polling Method:

Interrupt Programming: Interrupts vs. Polling Method: UNIT 4: INTERRUPT PROGRAMMING & SERIAL COMMUNICATION WITH 8051: Definition of an interrupt, types of interrupts, Timers and Counter programming with interrupts in assembly. 8051 Serial Communication: Data

More information

EE251: Tuesday December 4

EE251: Tuesday December 4 EE251: Tuesday December 4 Memory Subsystem continued Timing requirements Adding memory beyond 4 Gbyte Time Allowing: Begin Review for Final Exam Homework #9 due Thursday at beginning of class Friday is

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

Interrupts L33-1. Interrupts

Interrupts L33-1. Interrupts L33-1 Interrupts Interrupts Interrupts are like receiving a telephone call while you are in a face-to-face meeting: The phone rings (ie, an interrupt is sent) Tell the person you are meeting with to please

More information

Timer1 Capture Mode:

Timer1 Capture Mode: Timer1 Capture Mode: Interrupt Description Input Conditions Enable Flag Timer 1 Trigger after N events N = 1.. 2 19 100ns to 0.52 sec RC0 TMR1CS = 1 TMR1IF Timer 1 Capture Mode 1 Timer 1 Capture Mode 2

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 04 Timer Interrupts Goals: Learn about Timer Interrupts. Learn how to

More information

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families The Microcontroller Lecture Set 3 Architecture of the 8051 Microcontroller Microcontrollers can be considered as self-contained systems with a processor, memory and I/O ports. In most cases, all that is

More information

UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING CMPE13/L: INTRODUCTION TO PROGRAMMING IN C SPRING 2013

UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING CMPE13/L: INTRODUCTION TO PROGRAMMING IN C SPRING 2013 Introduction Reading Concepts UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING CMPE13/L: INTRODUCTION TO PROGRAMMING IN C SPRING 2013 Lab 2 Bouncing LEDs In this lab, you will

More information

Mod-3: Interrupts,Timer operation,serial communication 1

Mod-3: Interrupts,Timer operation,serial communication 1 Mod-3: Interrupts,Timer operation,serial communication 1 Module-3 Contents: Interrupts - interrupt sources - interrupt handling programming examples. Timers operation different modes waveform generation-

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

UNIVERSITY OF CONNECTICUT. ECE 3411 Microprocessor Application Lab: Fall Quiz III

UNIVERSITY OF CONNECTICUT. ECE 3411 Microprocessor Application Lab: Fall Quiz III Department of Electrical and Computing Engineering UNIVERSITY OF CONNECTICUT ECE 3411 Microprocessor Application Lab: Fall 2015 Quiz III There are 5 questions in this quiz. There are 11 pages in this quiz

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Laboratory 10. Programming a PIC Microcontroller - Part II

Laboratory 10. Programming a PIC Microcontroller - Part II Laboratory 10 Programming a PIC Microcontroller - Part II Required Components: 1 PIC16F88 18P-DIP microcontroller 1 0.1 F capacitor 3 SPST microswitches or NO buttons 4 1k resistors 1 MAN 6910 or LTD-482EC

More information

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives:

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: This lab will introduce basic embedded systems programming concepts by familiarizing the user with an embedded programming

More information

8051 MICROCONTROLLER

8051 MICROCONTROLLER 8051 MICROCONTROLLER Mr.Darshan Patel M.Tech (Power Electronics & Drives) Assistant Professor Department of Electrical Engineering Sankalchand Patel College of Engineering-Visnagar WHY DO WE NEED TO LEARN

More information

BASICS OF THE RENESAS SYNERGY TM

BASICS OF THE RENESAS SYNERGY TM BASICS OF THE RENESAS SYNERGY TM PLATFORM Richard Oed 2018.11 02 CHAPTER 9 INCLUDING A REAL-TIME OPERATING SYSTEM CONTENTS 9 INCLUDING A REAL-TIME OPERATING SYSTEM 03 9.1 Threads, Semaphores and Queues

More information

2. (2 pts) If an external clock is used, which pin of the 8051 should it be connected to?

2. (2 pts) If an external clock is used, which pin of the 8051 should it be connected to? ECE3710 Exam 2. Name _ Spring 2013. 5 pages. 102 points, but scored out of 100. You may use any non-living resource to complete this exam. Any hint of cheating will result in a 0. Part 1 Short Answer 1.

More information

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes Course Introduction Purpose: This course provides an overview of the Direct Memory Access Controller and the Interrupt Controller on the SH-2 and SH-2A families of 32-bit RISC microcontrollers, which are

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine MPLAB SIM MPLAB IDE Software Simulation Engine 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine Slide 1 Welcome to this web seminar on MPLAB SIM, the software simulator that

More information

IAS0430 MICROPROCESSOR SYSTEMS

IAS0430 MICROPROCESSOR SYSTEMS IAS0430 MICROPROCESSOR SYSTEMS Fall 2018 Arduino and assembly language Martin Jaanus U02-308 martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Learning environment : http://isc.ttu.ee Materials : http://isc.ttu.ee/martin

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information