Lecture 17. Lower bound for variable-length source codes with error. Coding a sequence of symbols: Rates and scheme (Arithmetic code)

Size: px
Start display at page:

Download "Lecture 17. Lower bound for variable-length source codes with error. Coding a sequence of symbols: Rates and scheme (Arithmetic code)"

Transcription

1 Lecture 17 Agenda for the lecture Lower bound for variable-length source codes with error Coding a sequence of symbols: Rates and scheme (Arithmetic code) Introduction to universal codes 17.1 variable-length source code with error In the previous lecture we saw that variable-length source codes with error can do significantly better than their error-free counterparts. However, it is very easy to convert any error-free source code to one which allows error and gain a factor of roughly (1 ɛ) in the average length. Therefore, as far as code design is concerned, it suffices to design error-free variable-length codes. But can we gain even more than a factor of (1 ɛ) by a more sophisticated design? In other words, do we have a matching lower bound for our upper bound on L ɛ (X) derived in the previous lecture. Well, nearly so. Theorem For a discrete source X and 0 < ɛ < 1, H(X) log(eh(x)) ɛ log X 1 L ɛ (X) (1 ɛ)h(x) c Himanshu Tyagi. Feel free to use with acknowledgement. 1

2 Proof. Proof is very similar to that of the lower bound in Theorem The only problem is that the equality H(X) = H(Y 1,..., Y n ) does not hold anymore since we don t have a oneto-one map between the symbol X and the corresponding codeword Y 1,..., Y n. Nevertheless, using the codeword we can recover X with probability of error less than ɛ. Therefore, by Fano s inequality H(X) H(Y 1,..., Y n ) + H(X Y 1,..., Y N ) H(Y 1,..., Y n ) + ɛ log X + 1. The rest of the proof proceeds exactly as that of Theorem Coding a sequence of symbols Up to this point, we considered coding a single symbol generated by a known source distribution. In practice, however, we don t have just one symbol but a sequence of symbols. Consider a DMS (X 1,..., X n ) with a common distribution P. Before we proceed to the schemes for encoding a sequence of symbols, let us derive some benchmark bounds Optimal rates We have already seen that the optimal rates for fixed-length codes satisfy R(X) = R ɛ (X) = H(X) for every 0 < ɛ < 1. For variable length codes, defining R ɛ (X) analogously to R ɛ (X) with L ɛ (X n ) replacing L ɛ (X n ), the bounds obtained in the previous section give (show this yourself) H(X) ɛ log X R ɛ (X) (1 ɛ)h(x). In fact, an improved lower bound can be obtained and we can show that R ɛ (X) = (1 ɛ)h(x). 2

3 Note that R(X) := lim ɛ 0 R ɛ (X) = H(X). Thus, while the optimal asymptotic rate for variable-length codes is much smaller than that for fixed-length codes when error is allowed, both are same for vanishing error. Furthermore, the optimal rate with error can be obtained simply by modifying an error-free scheme using a randomized encoder. In fact, as noted earlier, we can obtain a prefix-free code of average length less than (1 ɛ)h(x n ) + 1 when error is allowed. The rate of such codes approach the optimal rate (1 ɛ)h(x) as n Arithmetic code for compressing a sequence of symbols We now explore practical schemes for compressing a sequence of symbols. As we have seen, it suffices to design schemes for the error-free case. The first, perhaps naive, scheme will simply apply one of the codes designed above for 1 symbol to each symbol. Recall that all our schemes simply guarantee that we can come within 1 bit of H(X). Therefore, when we apply our schemes to each symbol X i and denote by l(x) the length of codeword assigned to x X, the average length E [ n i=1 l(x i)] can be anywhere between nh(p) and nh(p) + n. Instead, we can treat the entire sequence (X 1,..., X n ) as a single symbol generated from P n and apply, say, Huffman code to this sequence. This will yield a code of average length H(P n ) + 1 = nh(p) + 1; indeed, it will yield a code of optimal length. In fact, this is one of the main lessons of Information theory: DMSs can be compressed better if we process a large number of symbols together. We also encountered this principle in fixed-length code where if we applied the code given by our single-shot results symbol-wise we will not be able to achieve the optimal rate of H(P). Attaining H(P) requires identifying small cardinality subsets of X n of large P n -probability directly. So, are we done here? Well, in theory yes. But we are not even close from an implementation point of view. The main bottleneck in implementing either Shannon-Fano or Huffman code is sorting large sequences. Even if somehow design the code, encoding each sequence will require us to navigate a huge look-up table since we cannot immediately 3

4 identify any additional structure in the code. A similar obstacle is faced in implementing a Shannon-Fano-Elias code as well. This problem is solved using a variant of the Shannon-Fano-Elias code called an arithmetic code. The key feature of an arithmetic code is that it can compress a symbol x i using just the knowledge of the probability P(x i ) and yet ensure that a sequence x 1,..., x n is compressed to a codeword of length log P(x 1 )...P(x n ). In fact, the coding scheme can be applied to any arbitrary distribution P(x 1,..., x n ) by using distribution P(x i x 1,..., x i 1 ) for the ithe symbol. Furthermore, it satisfies the First In First Out (FIFO) property, namely the symbols are decoded in the order in which they are encoded. Arithmetic coding, too, represents codewords as interval subsets of [0, 1]. Specifically, corresponding to a sequence (x 1,..., x n ), the scheme produces an interval of length P(x 1,..., x n ). Different intervals corresponding to different codewords are disjoint. In each interval we can find a number with binary representation of length l(x) = log P(x 1,..., x n ), which we use to represent the interval. Specifically, each interval of length l(x) must contain one number from the set {0, 2 l(x), 2.2 l(x), 3.2 l(x),..., 1} = { , , , , ,..., }. We use one of these sequences to uniquely represent the interval. It remains to describe the encoding process of obtaining the interval HEAD and the decoding process of recovering the sequence from the interval. ======= and the decoding process of removering the sequence from the interval. The encoder maintains an interval at each step represented by its starting point C and the width A and successively updates the interval for each new symbol. At every step, a new interval is constructed by partitioning the previous interval into parts of length proportional to the probabilities of the symbol and move to the part corresponding to the encoded symbol. We begin with the interval [0, 1]. As such, every new interval is a subset of the previous interval. Furthermore, intervals corresponding to different sequences of the same length constitute a partition of 4

5 [0, 1] as the length of the sequence increases the partition becomes successive finer. The formal description of the encoder is as follows: Input: A sequence of symbols (x 1,..., x n ) X n and associated pmfs (P 1,..., P n ) on X. Output: An interval [C, C + A) [0, 1]; C is called the current code and A the augend. 1. Initialize C = 0 and A = for i =1,..., n (i) update C C + A a<x i 1 P i(a). For convenience, we have assumed an ordering between the symbols of X ; (ii) update A A P i (x i ). As an illustration, consider the sequence acbb where each symbol is generated from the same pmf P such that P(a) = 1/8, P(b) = 1/2, P(c) = 1/4, P(d) = 1/8; we assume the ordering a < b < c < d. For this sequence, the encoder above updates the interval as follows: [0, 0.001) [ , ) [ , ) [ , ). Note that the width of the final interval is 2 9. A number in the final interval which has a binary representation of length 9 is given by Thus, the codeword corresponding to acbb is The decoding process simply inverts the encoding process and is accoplished by magnitude comparisons. At each iteration, we consider the partion of [0, 1] with parts proportional to probabilities used in the encoding that symbol (with the same ordering as the encoding process). The value of the symbol is obtained by simply checking which part the binary value of the codeword lies in. Once the symbol is identified, the codeword is updated by renormalizing the previous interval of the decoded symbol to [0, 1]. 5

6 Formally, each iteration of the decoder proceeds as follows: Input: A number v in [0, 1] and a pmfs P on X. Output: A symbol x X and the updated (codeword) number 1. Return x such that x 1 i=1 P i v < x i=1 P i; ( 2. update v v ) x 1 i=1 P i /P x. As an illustration, consider our foregoing example once more. Upon observing the codeword , the symbols and the updated codewords at each step produced by the decoder above are as follows: (a, ) (c, ) (b, 0.001) (b, 0). The final value of zero represents the completion of the decoding process. Remark (i) The elegant algorithm above can be easily implemented if one can multiply and divide real numbers with arbitrary precision. Of course, that is not the case. In practice, we are forced to work with finite precision. Nevertheless, variants of arithmetic coding have been implemented to work with finite precision. (ii) Note that in our description above, we have assumed the availability of the probability model both at the encoder and the decoder. In a practical implementation, this model, too, has to be constructed recursively from the data. Even if we make the model available at the encoder, at the decoder the model pmf for decoding the next symbol must be obtained using the previously decoded symbols. We shall encounter one such method for obtaining probability models in universal source coding Universal source coding By now we are in a position to implement basic data compression algorithms, provided someone gives us the probability distribution used to generate the data. In practice, of 6

7 course, this distribution must be ascertained from the data itself. In general, our compression algorithms should include the process of modeling the data. Such source codes which are constructed to operate without the knowledge of the probability distribution generating the data are called universal sorce codes. Clearly, any code can be thought of as a universal source code. The key point is that we would like good performance guarantees for every reasonable probability model for the data. In particular, for this course we shall require guarantees for all i.i.d. pmfs. As before, we shall consider both fixed-length and variable-length codes. The first step is to define our measures of performance for each setup. Specifically, we define what is the benchmark performance that we seek from universal source codes Rate optimality for fixed-length universal source codes A sequence of fixed-length source codes C n for a source alphabet X n is of rate R if their lengths l n satisfy l n lim n n = R. We consier the limit definition for simplicity. Other variants based on lim sup and lim inf can also be considered and lead to the same results for i.i.d. sources. Denote by ɛ(p n, C n ) the probability of error for the code C n under the i.i.d. pmf P n with common distribution P. A sequence of fixed-length source codes of rate R is universally rate optimal if for every pmf P on the common alphabet X such that H(P) < R, the probability of error ɛ(p n, C n ) satisfies lim n ɛ(pn, C n ) = Minmax regret for variable-length universal source codes For variable-length universal source codes, we pursue a slightly different benchmark of performance. For each distribution P on the common alphabet X, we define the regret 7

8 for our universal code for n symbols from X as the difference between its average length under the i.i.d. pmf P n and the average length for the optimal code with the knowledge of P. To make the problem more tractible, we simply use nh(p) as a proxy for the latter quantity; our previous analysis tells us that this will only take us off by at most a bit. Specifically, for a code C which assigns codewords of lengths l(x) to x X n, define the regret for P as r n (C, P) := P n (x)l(x) nh(p). x X n The worst-case regret of code C is given by r n (C) := max r n(c, P). P P(X ) We seek to characterize the minimum of the worst-case regret over all possible uniquely decodable codes C and develop codes which achieve this minmax regret. The desired notion of minmax regret is given by r n = min C:C C u r n(c), where 853f3f922a09036b6dbfb00df81d61f9e76042d4 8

Lecture 15. Error-free variable length schemes: Shannon-Fano code

Lecture 15. Error-free variable length schemes: Shannon-Fano code Lecture 15 Agenda for the lecture Bounds for L(X) Error-free variable length schemes: Shannon-Fano code 15.1 Optimal length nonsingular code While we do not know L(X), it is easy to specify a nonsingular

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Shannon-Fano-Elias Code and Arithmetic Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/12 Roadmap Examples

More information

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class:

COMPSCI 650 Applied Information Theory Feb 2, Lecture 5. Recall the example of Huffman Coding on a binary string from last class: COMPSCI 650 Applied Information Theory Feb, 016 Lecture 5 Instructor: Arya Mazumdar Scribe: Larkin Flodin, John Lalor 1 Huffman Coding 1.1 Last Class s Example Recall the example of Huffman Coding on a

More information

Lecture 13. Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free

Lecture 13. Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free Lecture 13 Agenda for the lecture Introduction to data compression Fixed- and variable-length codes Types of error-free codes: Nonsingular, Uniquely-decodable and Prefix-free 13.1 The data compression

More information

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc.

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc. David Rappaport School of Computing Queen s University CANADA Copyright, 1996 Dale Carnegie & Associates, Inc. Data Compression There are two broad categories of data compression: Lossless Compression

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 29 Source Coding (Part-4) We have already had 3 classes on source coding

More information

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II)

Chapter 5 VARIABLE-LENGTH CODING Information Theory Results (II) Chapter 5 VARIABLE-LENGTH CODING ---- Information Theory Results (II) 1 Some Fundamental Results Coding an Information Source Consider an information source, represented by a source alphabet S. S = { s,

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Peter Bro Miltersen September 29, 2005 Version 2.0 1 Kolmogorov Complexity In this section, we present the concept of Kolmogorov Complexity

More information

Move-to-front algorithm

Move-to-front algorithm Up to now, we have looked at codes for a set of symbols in an alphabet. We have also looked at the specific case that the alphabet is a set of integers. We will now study a few compression techniques in

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 11 Coding Strategies and Introduction to Huffman Coding The Fundamental

More information

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding Huffman codes require us to have a fairly reasonable idea of how source symbol probabilities are distributed. There are a number of applications

More information

Distributed source coding

Distributed source coding Distributed source coding Suppose that we want to encode two sources (X, Y ) with joint probability mass function p(x, y). If the encoder has access to both X and Y, it is sufficient to use a rate R >

More information

Achievable Rate Regions for Network Coding

Achievable Rate Regions for Network Coding Achievable Rate Regions for Network oding Randall Dougherty enter for ommunications Research 4320 Westerra ourt San Diego, A 92121-1969 Email: rdough@ccrwest.org hris Freiling Department of Mathematics

More information

Lecture 19. Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer

Lecture 19. Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer CS-621 Theory Gems November 21, 2012 Lecture 19 Lecturer: Aleksander Mądry Scribes: Chidambaram Annamalai and Carsten Moldenhauer 1 Introduction We continue our exploration of streaming algorithms. First,

More information

Subset sum problem and dynamic programming

Subset sum problem and dynamic programming Lecture Notes: Dynamic programming We will discuss the subset sum problem (introduced last time), and introduce the main idea of dynamic programming. We illustrate it further using a variant of the so-called

More information

Compressing Data. Konstantin Tretyakov

Compressing Data. Konstantin Tretyakov Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

More information

16 Greedy Algorithms

16 Greedy Algorithms 16 Greedy Algorithms Optimization algorithms typically go through a sequence of steps, with a set of choices at each For many optimization problems, using dynamic programming to determine the best choices

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017 CS6 Lecture 4 Greedy Algorithms Scribe: Virginia Williams, Sam Kim (26), Mary Wootters (27) Date: May 22, 27 Greedy Algorithms Suppose we want to solve a problem, and we re able to come up with some recursive

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions:

OUTLINE. Paper Review First Paper The Zero-Error Side Information Problem and Chromatic Numbers, H. S. Witsenhausen Definitions: OUTLINE Definitions: - Source Code - Expected Length of a source code - Length of a codeword - Variable/fixed length coding - Example: Huffman coding - Lossless coding - Distortion - Worst case length

More information

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Michiel Smid October 14, 2003 1 Introduction In these notes, we introduce a powerful technique for solving geometric problems.

More information

Greedy Algorithms CHAPTER 16

Greedy Algorithms CHAPTER 16 CHAPTER 16 Greedy Algorithms In dynamic programming, the optimal solution is described in a recursive manner, and then is computed ``bottom up''. Dynamic programming is a powerful technique, but it often

More information

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding Fundamentals of Multimedia Lecture 5 Lossless Data Compression Variable Length Coding Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Fundamentals of Multimedia 1 Data Compression Compression

More information

SIGNAL COMPRESSION Lecture Lempel-Ziv Coding

SIGNAL COMPRESSION Lecture Lempel-Ziv Coding SIGNAL COMPRESSION Lecture 5 11.9.2007 Lempel-Ziv Coding Dictionary methods Ziv-Lempel 77 The gzip variant of Ziv-Lempel 77 Ziv-Lempel 78 The LZW variant of Ziv-Lempel 78 Asymptotic optimality of Ziv-Lempel

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007 3413 Relay Networks With Delays Abbas El Gamal, Fellow, IEEE, Navid Hassanpour, and James Mammen, Student Member, IEEE Abstract The

More information

Topology and Topological Spaces

Topology and Topological Spaces Topology and Topological Spaces Mathematical spaces such as vector spaces, normed vector spaces (Banach spaces), and metric spaces are generalizations of ideas that are familiar in R or in R n. For example,

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

UC San Diego UC San Diego Previously Published Works

UC San Diego UC San Diego Previously Published Works UC San Diego UC San Diego Previously Published Works Title Universal lossless compression via multilevel pattern matching Permalink https://escholarshiporg/uc/item/39k54514 Journal IEEE Transactions on

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

Text Compression through Huffman Coding. Terminology

Text Compression through Huffman Coding. Terminology Text Compression through Huffman Coding Huffman codes represent a very effective technique for compressing data; they usually produce savings between 20% 90% Preliminary example We are given a 100,000-character

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

16.Greedy algorithms

16.Greedy algorithms 16.Greedy algorithms 16.1 An activity-selection problem Suppose we have a set S = {a 1, a 2,..., a n } of n proposed activities that with to use a resource. Each activity a i has a start time s i and a

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 1: Introduction and Huffman Coding Juha Kärkkäinen 31.10.2017 1 / 21 Introduction Data compression deals with encoding information in as few bits

More information

6. Advanced Topics in Computability

6. Advanced Topics in Computability 227 6. Advanced Topics in Computability The Church-Turing thesis gives a universally acceptable definition of algorithm Another fundamental concept in computer science is information No equally comprehensive

More information

Sources for this lecture. 3. Matching in bipartite and general graphs. Symmetric difference

Sources for this lecture. 3. Matching in bipartite and general graphs. Symmetric difference S-72.2420 / T-79.5203 Matching in bipartite and general graphs 1 3. Matching in bipartite and general graphs Let G be a graph. A matching M in G is a set of nonloop edges with no shared endpoints. Let

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

On Generalization of Fuzzy Concept Lattices Based on Change of Underlying Fuzzy Order

On Generalization of Fuzzy Concept Lattices Based on Change of Underlying Fuzzy Order On Generalization of Fuzzy Concept Lattices Based on Change of Underlying Fuzzy Order Pavel Martinek Department of Computer Science, Palacky University, Olomouc Tomkova 40, CZ-779 00 Olomouc, Czech Republic

More information

Engineering Mathematics II Lecture 16 Compression

Engineering Mathematics II Lecture 16 Compression 010.141 Engineering Mathematics II Lecture 16 Compression Bob McKay School of Computer Science and Engineering College of Engineering Seoul National University 1 Lossless Compression Outline Huffman &

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that D D Chapter 4 xtensions of the CUB MTOD e present several generalizations of the CUB MTOD In section 41 we analyze the query algorithm GOINGCUB The difference to the CUB MTOD occurs in the case when the

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Source Coding with Distortion through Graph Coloring

Source Coding with Distortion through Graph Coloring Source Coding with Distortion through Graph Coloring Vishal Doshi, Devavrat Shah, and Muriel Médard Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, MA 02139

More information

6. Finding Efficient Compressions; Huffman and Hu-Tucker

6. Finding Efficient Compressions; Huffman and Hu-Tucker 6. Finding Efficient Compressions; Huffman and Hu-Tucker We now address the question: how do we find a code that uses the frequency information about k length patterns efficiently to shorten our message?

More information

Chapter 5 Lempel-Ziv Codes To set the stage for Lempel-Ziv codes, suppose we wish to nd the best block code for compressing a datavector X. Then we ha

Chapter 5 Lempel-Ziv Codes To set the stage for Lempel-Ziv codes, suppose we wish to nd the best block code for compressing a datavector X. Then we ha Chapter 5 Lempel-Ziv Codes To set the stage for Lempel-Ziv codes, suppose we wish to nd the best block code for compressing a datavector X. Then we have to take into account the complexity of the code.

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

Recitation 4: Elimination algorithm, reconstituted graph, triangulation

Recitation 4: Elimination algorithm, reconstituted graph, triangulation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 4: Elimination algorithm, reconstituted graph, triangulation

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}.

Greedy Algorithms 1 {K(S) K(S) C} For large values of d, brute force search is not feasible because there are 2 d {1,..., d}. Greedy Algorithms 1 Simple Knapsack Problem Greedy Algorithms form an important class of algorithmic techniques. We illustrate the idea by applying it to a simplified version of the Knapsack Problem. Informally,

More information

Lecture 25 Spanning Trees

Lecture 25 Spanning Trees Lecture 25 Spanning Trees 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning, Iliano Cervesato The following is a simple example of a connected, undirected graph with 5 vertices (A,

More information

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles

Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Theory and Applications of Graphs Volume 4 Issue 2 Article 2 November 2017 Edge Colorings of Complete Multipartite Graphs Forbidding Rainbow Cycles Peter Johnson johnspd@auburn.edu Andrew Owens Auburn

More information

Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes

Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes Venkatesan Guruswami Carnegie Mellon University Pittsburgh, PA 53 Email: guruswami@cmu.edu Ray Li Carnegie Mellon University

More information

Interval Algorithm for Homophonic Coding

Interval Algorithm for Homophonic Coding IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 47, NO 3, MARCH 2001 1021 Interval Algorithm for Homophonic Coding Mamoru Hoshi, Member, IEEE, and Te Sun Han, Fellow, IEEE Abstract It is shown that the idea

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Michael Mo 10770518 6 February 2016 Abstract An introduction to error-correcting codes will be given by discussing a class of error-correcting codes, called linear block codes. The

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets?

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? Diagonalization Cardinalities The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? We say that a set S has at least as great cardinality as set T, written S T, if

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson zhuyongxin@sjtu.edu.cn 2 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information

More information

BELOW, we consider decoding algorithms for Reed Muller

BELOW, we consider decoding algorithms for Reed Muller 4880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006 Error Exponents for Recursive Decoding of Reed Muller Codes on a Binary-Symmetric Channel Marat Burnashev and Ilya Dumer, Senior

More information

4 Fractional Dimension of Posets from Trees

4 Fractional Dimension of Posets from Trees 57 4 Fractional Dimension of Posets from Trees In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets We start with a few simple definitions to develop the language

More information

CSC 310, Fall 2011 Solutions to Theory Assignment #1

CSC 310, Fall 2011 Solutions to Theory Assignment #1 CSC 310, Fall 2011 Solutions to Theory Assignment #1 Question 1 (15 marks): Consider a source with an alphabet of three symbols, a 1,a 2,a 3, with probabilities p 1,p 2,p 3. Suppose we use a code in which

More information

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14

Graph Contraction. Graph Contraction CSE341T/CSE549T 10/20/2014. Lecture 14 CSE341T/CSE549T 10/20/2014 Lecture 14 Graph Contraction Graph Contraction So far we have mostly talking about standard techniques for solving problems on graphs that were developed in the context of sequential

More information

Data Compression - Seminar 4

Data Compression - Seminar 4 Data Compression - Seminar 4 October 29, 2013 Problem 1 (Uniquely decodable and instantaneous codes) Let L = p i l 100 i be the expected value of the 100th power of the word lengths associated with an

More information

EE67I Multimedia Communication Systems Lecture 4

EE67I Multimedia Communication Systems Lecture 4 EE67I Multimedia Communication Systems Lecture 4 Lossless Compression Basics of Information Theory Compression is either lossless, in which no information is lost, or lossy in which information is lost.

More information

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code Entropy Coding } different probabilities for the appearing of single symbols are used - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic

More information

Computational Geometry: Lecture 5

Computational Geometry: Lecture 5 Computational Geometry: Lecture 5 Don Sheehy January 29, 2010 1 Degeneracy In many of the algorithms that we have discussed so far, we have run into problems when that input is somehow troublesome. For

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

Multidimensional Divide and Conquer 2 Spatial Joins

Multidimensional Divide and Conquer 2 Spatial Joins Multidimensional Divide and Conque Spatial Joins Yufei Tao ITEE University of Queensland Today we will continue our discussion of the divide and conquer method in computational geometry. This lecture will

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi.

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi. Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 18 Tries Today we are going to be talking about another data

More information

Algorithms Dr. Haim Levkowitz

Algorithms Dr. Haim Levkowitz 91.503 Algorithms Dr. Haim Levkowitz Fall 2007 Lecture 4 Tuesday, 25 Sep 2007 Design Patterns for Optimization Problems Greedy Algorithms 1 Greedy Algorithms 2 What is Greedy Algorithm? Similar to dynamic

More information

CSC 373: Algorithm Design and Analysis Lecture 4

CSC 373: Algorithm Design and Analysis Lecture 4 CSC 373: Algorithm Design and Analysis Lecture 4 Allan Borodin January 14, 2013 1 / 16 Lecture 4: Outline (for this lecture and next lecture) Some concluding comments on optimality of EST Greedy Interval

More information

MOST attention in the literature of network codes has

MOST attention in the literature of network codes has 3862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010 Efficient Network Code Design for Cyclic Networks Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE Abstract This paper introduces

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

1 (15 points) LexicoSort

1 (15 points) LexicoSort CS161 Homework 2 Due: 22 April 2016, 12 noon Submit on Gradescope Handed out: 15 April 2016 Instructions: Please answer the following questions to the best of your ability. If you are asked to show your

More information

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016 AM : Advanced Optimization Spring 06 Prof. Yaron Singer Lecture 0 April th Overview Last time we saw the problem of Combinatorial Auctions and framed it as a submodular maximization problem under a partition

More information

CS 337 Project 1: Minimum-Weight Binary Search Trees

CS 337 Project 1: Minimum-Weight Binary Search Trees CS 337 Project 1: Minimum-Weight Binary Search Trees September 6, 2006 1 Preliminaries Let X denote a set of keys drawn from some totally ordered universe U, such as the set of all integers, or the set

More information

princeton univ. F 15 cos 521: Advanced Algorithm Design Lecture 2: Karger s Min Cut Algorithm

princeton univ. F 15 cos 521: Advanced Algorithm Design Lecture 2: Karger s Min Cut Algorithm princeton univ. F 5 cos 5: Advanced Algorithm Design Lecture : Karger s Min Cut Algorithm Lecturer: Pravesh Kothari Scribe:Pravesh (These notes are a slightly modified version of notes from previous offerings

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation-6: Hardness of Inference Contents 1 NP-Hardness Part-II

More information

Lecture 15 : Review DRAFT

Lecture 15 : Review DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/10/2011 Lecture 15 : Review Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Today slectureservesasareviewofthematerialthatwillappearonyoursecondmidtermexam.

More information

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I

Department of Computer Applications. MCA 312: Design and Analysis of Algorithms. [Part I : Medium Answer Type Questions] UNIT I MCA 312: Design and Analysis of Algorithms [Part I : Medium Answer Type Questions] UNIT I 1) What is an Algorithm? What is the need to study Algorithms? 2) Define: a) Time Efficiency b) Space Efficiency

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

Towards the Proof of the PCP Theorem

Towards the Proof of the PCP Theorem CS640 Computational Complexity Towards the Proof of the PCP Theorem Instructor: Manindra Agrawal Scribe: Ramprasad Saptharishi Last class we saw completed our discussion on expander graphs. We shall now

More information

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting CS2 Algorithms and Data Structures Note 10 Depth-First Search and Topological Sorting In this lecture, we will analyse the running time of DFS and discuss a few applications. 10.1 A recursive implementation

More information

Chapter 5: Data compression. Chapter 5 outline

Chapter 5: Data compression. Chapter 5 outline Chapter 5: Data compression Chapter 5 outline 2 balls weighing problem Examples of codes Kraft inequality Optimal codes + bounds Kraft inequality for uniquely decodable codes Huffman codes Shannon-Fano-Elias

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Spring 2019 Alexis Maciel Department of Computer Science Clarkson University Copyright c 2019 Alexis Maciel ii Contents 1 Analysis of Algorithms 1 1.1 Introduction.................................

More information

8 Integer encoding. scritto da: Tiziano De Matteis

8 Integer encoding. scritto da: Tiziano De Matteis 8 Integer encoding scritto da: Tiziano De Matteis 8.1 Unary code... 8-2 8.2 Elias codes: γ andδ... 8-2 8.3 Rice code... 8-3 8.4 Interpolative coding... 8-4 8.5 Variable-byte codes and (s,c)-dense codes...

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information