CSE 351: Week 4. Tom Bergan, TA

Size: px
Start display at page:

Download "CSE 351: Week 4. Tom Bergan, TA"

Transcription

1 CSE 35 Week 4 Tom Bergan, TA

2 Does this code look okay? int binarysearch(int a[], int length, int key) { int low = 0; int high = length - ; while (low <= high) { int mid = (low + high) / ; int midval = a[mid]; if (midval < key) low = mid + ; else if (midval > key) high = mid - ; else return mid; // key found return -; // key not found

3 Does this code look okay? int binarysearch(int a[], int length, int key) { int low = 0; int high = length - ; while (low <= high) { int mid = (low + high) / ; int midval = a[mid]; if (midval < key) low = What mid + if ; length > 30? else if (midval > key) high = mid - ; else return mid; // key found return -; // key not found 3

4 Does this code look ok? int mid = (low + high) / ; What if length > 30?... then we could have low = 30 = 0x high = 30 + = 0x low + high = 3 + = 0x int midval = a[mid]; Oops, in two s complement, this is a negative number! (low + high) / = 0xC = Crashes because mid < 0 4

5 How can we fix the bug? int mid = (low + high) / ; int mid = low + ((high - low) / ); (There are other ways, but I think this is the simplest to understand) 5

6 This was an actual bug in Java java.util.arrays.binarysearch This bug went unnoticed for years. See http//googleresearch.blogspot.com/006/06/extra-extra-read-all-about-it-nearly.html Understanding binary number representations is important! 6

7 Check your textbook Don t use the international edition! The homework problems are different. 7

8 Today Questions on Hw or Lab? Procedure calls 8

9 Procedure Call Example Caller int z = sum(, ); Callee int sum(int x, int y) { return x + y; 9

10 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example 0

11 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example

12 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example

13 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example 3

14 Procedure Call Example (IA3/Linux) Callee int sum(int x, int y) { return x + y; Callee in assembly (simple version) movl 8(), %edi movl 4(), %eax addl %edi, %eax ret 8() 4() y x Registers %edi 4

15 Procedure Call Example (IA3/Linux) Callee int sum(int x, int y) { return x + y; Callee in assembly (simple version) movl 8(), %edi movl 4(), %eax addl %edi, %eax ret 8() 4() y x Registers %eax %edi 5

16 Procedure Call Example (IA3/Linux) Callee int sum(int x, int y) { return x + y; Callee in assembly (simple version) movl 8(), %edi movl 4(), %eax addl %edi, %eax ret 8() 4() y x %eax has the return value! Registers %eax 3 %edi 6

17 Procedure Call Example (IA3/Linux) Callee int sum(int x, int y) { return x + y; Callee in assembly (simple version) movl 8(), %edi movl 4(), %eax addl %edi, %eax ret %eax has the return value! Registers %eax 3 y x %edi 7 %eip

18 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example 8 Registers %eax %edi %eip 3

19 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example 9 Registers %eax %edi %eip 3

20 Procedure Call Example (IA3/Linux) Caller int z = sum(, ); Problem - What if Caller used %edi before making the call? Caller in assembly 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example 0 Registers %eax %edi %eip 3

21 Procedure Call Example (IA3/Linux) Caller int d = 5; int z = sum(, ); Problem - What if Caller used %edi before making the call? Caller in assembly 0x7fff movl $5, %edi 0x800 pushl $ 0x8005 pushl $ 0x8009 call sum addl $8, *note these instruction addresses are completely made up for this example sum() overwrote %edi! Need to save... Registers %eax %edi %eip 3

22 Saving Registers Some are caller save - IA3 %eax, %edx, %ecx - These are very commonly used (caller should expect they will be clobbered) Some are callee save - IA3 %ebx, %edi, %esi - These are less commonly used from prior example

23 Callee Procedure Call Example (IA3/Linux) Callee in assembly (better version) setup body int sum(int x, int y) { return x + y; pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax %ebp y x cleanup movl (), %edi movl %ebp, popl %ebp ret 3

24 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax %ebp old %ebp y x cleanup movl (), %edi movl %ebp, popl %ebp ret 4

25 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body cleanup pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax movl (), %edi movl %ebp, popl %ebp ret 5 %ebp old %ebp y x

26 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body cleanup pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax movl (), %edi movl %ebp, popl %ebp ret %ebp old %ebp old %edi saved %edi y x 6

27 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body cleanup pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax movl (), %edi movl %ebp, popl %ebp ret 7 (%ebp) 8(%ebp) %ebp old %ebp old %edi Key %ebp is fixed for the entire function y x

28 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body cleanup pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax movl (), %edi movl %ebp, popl %ebp ret (%ebp) 8(%ebp) %ebp restoring %edi old %ebp old %edi y x 8

29 Callee Procedure Call Example (IA3/Linux) int sum(int x, int y) { return x + y; Callee in assembly (better version) setup body cleanup pushl %ebp movl, %ebp pushl %edi movl (%ebp), %edi movl 8(%ebp), %eax addl %edi, %eax movl (), %edi movl %ebp, popl %ebp ret %ebp restoring %ebp old %ebp old %edi y x 9

30 Callee Why use a frame pointer? (%ebp) int sum(int x, int y) { return x + y; To make debugging easier - may move - %ebp is fixed Your compiler emits a symbol map y (%ebp) x 8(%ebp) gdb uses this map when you write print x (%ebp) 8(%ebp) %ebp old %ebp old %edi y x 30

31 Aside how does gdb s backtrace work? Follow return addresses! - use old %ebp to find prior frame Pseudocode while (pc is not in main ) { pc = 4(%ebp) %ebp = (%ebp) (%ebp) 8(%ebp) 4(%ebp) %ebp old %ebp old %edi y x 3

32 How is x86-64 different? Pass the first six arguments in registers - In this order %rdi,%rsi,%rdx,%rcx,%r8,%r9 New register save convention - Callee save %rbx,%rbp,%r,%r3,%r4,%r5 - Others are caller save By default, gcc omits the frame pointer - It has to emit more complex debug info (e.g., the location of argument x relative to can change) 3

33 Procedure Call Example (x86-64/linux) Caller int z = sum(, ); Caller in assembly movl $, %edi movl $, %esi call sum edi not rdi because int is 3-bits Callee int sum(int x, int y) { return x + y; Callee in assembly addl %esi, %edi movl %edi, %eax ret x86-64 with gcc does not use a frame pointer 33 Tip you can force gcc to emit code with a frame pointer using gcc -fno-omit-frame-pointer

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016 CS 31: Intro to Systems Functions and the Stack Martin Gagne Swarthmore College February 23, 2016 Reminders Late policy: you do not have to send me an email to inform me of a late submission before the

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Machine-level Programming (3)

Machine-level Programming (3) Machine-level Programming (3) Procedures A: call A call A return Two issues How to return to the correct position? How to pass arguments and return values between callee to caller? 2 Procedure Control

More information

X86 Stack Calling Function POV

X86 Stack Calling Function POV X86 Stack Calling Function POV Computer Systems Section 3.7 Stack Frame Reg Value ebp xffff FFF0 esp xffff FFE0 eax x0000 000E Memory Address Value xffff FFF8 xffff FFF4 x0000 0004 xffff FFF4 x0000 0003

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element Bottom Increasing

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

More information

CPEG421/621 Tutorial

CPEG421/621 Tutorial CPEG421/621 Tutorial Compiler data representation system call interface calling convention Assembler object file format object code model Linker program initialization exception handling relocation model

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

Stack Discipline Jan. 19, 2018

Stack Discipline Jan. 19, 2018 15-410 An Experience Like No Other Discipline Jan. 19, 2018 Dave Eckhardt Brian Railing Slides originally stolen from 15-213 1 15-410, S 18 Synchronization Registration The wait list will probably be done

More information

CPS104 Recitation: Assembly Programming

CPS104 Recitation: Assembly Programming CPS104 Recitation: Assembly Programming Alexandru Duțu 1 Facts OS kernel and embedded software engineers use assembly for some parts of their code some OSes had their entire GUIs written in assembly in

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element Machine Representa/on of Programs: Procedures Instructors: Sanjeev Se(a 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoGom Increasing Addresses Register

More information

An Experience Like No Other. Stack Discipline Aug. 30, 2006

An Experience Like No Other. Stack Discipline Aug. 30, 2006 15-410 An Experience Like No Other Discipline Aug. 30, 2006 Bruce Maggs Dave Eckhardt Slides originally stolen from 15-213 15-410, F 06 Synchronization Registration If you're here but not registered, please

More information

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017 CS 31: Intro to Systems ISAs and Assembly Martin Gagné Swarthmore College February 7, 2017 ANNOUNCEMENT All labs will meet in SCI 252 (the robot lab) tomorrow. Overview How to directly interact with hardware

More information

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang Project 3 Questions CMSC 313 Lecture 12 How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP

More information

COMP 210 Example Question Exam 2 (Solutions at the bottom)

COMP 210 Example Question Exam 2 (Solutions at the bottom) _ Problem 1. COMP 210 Example Question Exam 2 (Solutions at the bottom) This question will test your ability to reconstruct C code from the assembled output. On the opposing page, there is asm code for

More information

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1 Homework In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, 361-367 Practice Exam 1 1 In-line Assembly Code The gcc compiler allows you to put assembly instructions in-line

More information

Register Allocation, iii. Bringing in functions & using spilling & coalescing

Register Allocation, iii. Bringing in functions & using spilling & coalescing Register Allocation, iii Bringing in functions & using spilling & coalescing 1 Function Calls ;; f(x) = let y = g(x) ;; in h(y+x) + y*5 (:f (x

More information

X86 Assembly -Procedure II:1

X86 Assembly -Procedure II:1 X86 Assembly -Procedure II:1 IA32 Object Code Setup Label.L61 becomes address 0x8048630 Label.L62 becomes address 0x80488dc Assembly Code switch_eg:... ja.l61 # if > goto default jmp *.L62(,%edx,4) # goto

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

Lab 10: Introduction to x86 Assembly

Lab 10: Introduction to x86 Assembly CS342 Computer Security Handout # 8 Prof. Lyn Turbak Wednesday, Nov. 07, 2012 Wellesley College Revised Nov. 09, 2012 Lab 10: Introduction to x86 Assembly Revisions: Nov. 9 The sos O3.s file on p. 10 was

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures! ISAs! Brief history of processors and architectures! C, assembly, machine code! Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface

More information

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only Instructions: The following questions use the AT&T (GNU) syntax for x86-32 assembly code, as in the course notes. Submit your answers to these questions to the Curator as OQ05 by the posted due date and

More information

W4118: PC Hardware and x86. Junfeng Yang

W4118: PC Hardware and x86. Junfeng Yang W4118: PC Hardware and x86 Junfeng Yang A PC How to make it do something useful? 2 Outline PC organization x86 instruction set gcc calling conventions PC emulation 3 PC board 4 PC organization One or more

More information

x86 assembly CS449 Fall 2017

x86 assembly CS449 Fall 2017 x86 assembly CS449 Fall 2017 x86 is a CISC CISC (Complex Instruction Set Computer) e.g. x86 Hundreds of (complex) instructions Only a handful of registers RISC (Reduced Instruction Set Computer) e.g. MIPS

More information

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address IA32 Procedures 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoDom Increasing Addresses Register contains lowest stack address address of top element Stack

More information

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Implementing Threads Operating Systems In Depth II 1 Copyright 2018 Thomas W Doeppner All rights reserved The Unix Address Space stack dynamic bss data text Operating Systems In Depth II 2 Copyright 2018

More information

Simple C Program. Assembly Ouput. Using GCC to produce Assembly. Assembly produced by GCC is easy to recognize:

Simple C Program. Assembly Ouput. Using GCC to produce Assembly. Assembly produced by GCC is easy to recognize: Simple C Program Helloworld.c Programming and Debugging Assembly under Linux slides by Alexandre Denault int main(int argc, char *argv[]) { } printf("hello World"); Programming and Debugging Assembly under

More information

X86 Review Process Layout, ISA, etc. CS642: Computer Security. Drew Davidson

X86 Review Process Layout, ISA, etc. CS642: Computer Security. Drew Davidson X86 Review Process Layout, ISA, etc. CS642: Computer Security Drew Davidson davidson@cs.wisc.edu From Last Time ACL-based permissions (UNIX style) Read, Write, execute can be restricted on users and groups

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Assembly Programming Storage - Assembly Programming: Recap - project2 - Structure/ Array Representation - Structure Alignment Rutgers University Liu

More information

System Programming and Computer Architecture (Fall 2009)

System Programming and Computer Architecture (Fall 2009) System Programming and Computer Architecture (Fall 2009) Recitation 2 October 8 th, 2009 Zaheer Chothia Email: zchothia@student.ethz.ch Web: http://n.ethz.ch/~zchothia/ Topics for Today Classroom Exercise

More information

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions CS220 Logic Design Outline Calling Conventions Multi-module Programs 1 Calling and Returning We have already seen how the call instruction is used to execute a subprogram. call pushes the address of the

More information

CS642: Computer Security

CS642: Computer Security X86 Review Process Layout, ISA, etc. CS642: Computer Security Drew Davidson davidson@cs.wisc.edu From Last Week ACL- based permissions (UNIX style) Read, Write, execute can be restricted on users and groups

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 16, SPRING 2013 TOPICS TODAY Project 6 Perils & Pitfalls of Memory Allocation C Function Call Conventions in Assembly Language PERILS

More information

Lecture 4 CIS 341: COMPILERS

Lecture 4 CIS 341: COMPILERS Lecture 4 CIS 341: COMPILERS CIS 341 Announcements HW2: X86lite Available on the course web pages. Due: Weds. Feb. 7 th at midnight Pair-programming project Zdancewic CIS 341: Compilers 2 X86 Schematic

More information

Compiler Construction D7011E

Compiler Construction D7011E Compiler Construction D7011E Lecture 8: Introduction to code generation Viktor Leijon Slides largely by Johan Nordlander with material generously provided by Mark P. Jones. 1 What is a Compiler? Compilers

More information

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017 ICS143A: Principles of Operating Systems Midterm recap, sample questions Anton Burtsev February, 2017 Describe the x86 address translation pipeline (draw figure), explain stages. Address translation What

More information

x86 Assembly Crash Course Don Porter

x86 Assembly Crash Course Don Porter x86 Assembly Crash Course Don Porter Registers ò Only variables available in assembly ò General Purpose Registers: ò EAX, EBX, ECX, EDX (32 bit) ò Can be addressed by 8 and 16 bit subsets AL AH AX EAX

More information

ANITA S SUPER AWESOME RECITATION SLIDES

ANITA S SUPER AWESOME RECITATION SLIDES ANITA S SUPER AWESOME RECITATION SLIDES 15/18-213: Introduction to Computer Systems Stacks and Buflab, 11 Jun 2013 Anita Zhang, Section M WHAT S NEW (OR NOT) Bomblab is due tonight, 11:59 PM EDT Your late

More information

You may work with a partner on this quiz; both of you must submit your answers.

You may work with a partner on this quiz; both of you must submit your answers. Instructions: Choose the best answer for each of the following questions. It is possible that several answers are partially correct, but one answer is best. It is also possible that several answers are

More information

Machine- Level Programming III: Switch Statements and IA32 Procedures

Machine- Level Programming III: Switch Statements and IA32 Procedures Machine- Level Programming III: Switch Statements and IA32 Procedures CS 485: Systems Programming Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hjp://csapp.cs.cmu.edu/public/instructors.html)

More information

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call Call without Parameter Value Transfer What are involved? ESP Stack Pointer Register Grows by 4 for EIP (return address) storage Stack -- Memory which holds register contents Will keep the EIP of the next

More information

Sungkyunkwan University

Sungkyunkwan University Switch statements IA 32 Procedures Stack Structure Calling Conventions Illustrations of Recursion & Pointers long switch_eg (long x, long y, long z) { long w = 1; switch(x) { case 1: w = y*z; break; case

More information

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN ECE 391 Exam 1 Review Session - Spring 2018 Brought to you by HKN DISCLAIMER There is A LOT (like a LOT) of information that can be tested for on the exam, and by the nature of the course you never really

More information

Machine Program: Procedure. Zhaoguo Wang

Machine Program: Procedure. Zhaoguo Wang Machine Program: Procedure Zhaoguo Wang Requirements of procedure calls? P() { y = Q(x); y++; 1. Passing control int Q(int i) { int t, z; return z; Requirements of procedure calls? P() { y = Q(x); y++;

More information

University of Washington

University of Washington Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq %rbp movq %rsp, %rbp... popq %rbp

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION

MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION MACHINE-LEVEL PROGRAMMING I: BASICS COMPUTER ARCHITECTURE AND ORGANIZATION Today: Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics:

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Binghamton University. CS-220 Spring X86 Debug. Computer Systems Section 3.11

Binghamton University. CS-220 Spring X86 Debug. Computer Systems Section 3.11 X86 Debug Computer Systems Section 3.11 GDB is a Source Level debugger We have learned how to debug at the C level Now, C has been translated to X86 assembler! How does GDB play the shell game? Makes it

More information

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14 SYSTEM CALL IMPLEMENTATION CS124 Operating Systems Fall 2017-2018, Lecture 14 2 User Processes and System Calls Previously stated that user applications interact with the kernel via system calls Typically

More information

CSC 8400: Computer Systems. Using the Stack for Function Calls

CSC 8400: Computer Systems. Using the Stack for Function Calls CSC 84: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation Compiler Construction SMD163 Lecture 8: Introduction to code generation Viktor Leijon & Peter Jonsson with slides by Johan Nordlander Contains material generously provided by Mark P. Jones What is a Compiler?

More information

Program Exploitation Intro

Program Exploitation Intro Program Exploitation Intro x86 Assembly 04//2018 Security 1 Univeristà Ca Foscari, Venezia What is Program Exploitation "Making a program do something unexpected and not planned" The right bugs can be

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface contain?

More information

CS241 Computer Organization Spring Loops & Arrays

CS241 Computer Organization Spring Loops & Arrays CS241 Computer Organization Spring 2015 Loops & Arrays 2-26 2015 Outline! Loops C loops: while, for, do-while Translation to jump to middle! Arrays Read: CS:APP2 Chapter 3, sections 3.6 3.7 IA32 Overview

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Process Layout and Function Calls

Process Layout and Function Calls Process Layout and Function Calls CS 6 Spring 07 / 8 Process Layout in Memory Stack grows towards decreasing addresses. is initialized at run-time. Heap grow towards increasing addresses. is initialized

More information

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5-6 Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University Upcoming agenda PA1 due yesterday PA2 available and discussed during lab section this week

More information

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017 143A: Principles of Operating Systems Lecture 5: Calling conventions Anton Burtsev January, 2017 Stack and procedure calls Stack Main purpose: Store the return address for the current procedure Caller

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects

More information

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping Lecture 5 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College September 25, 2018 Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between programmer

More information

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Calling Conventions See P&H 2.8 and 2.12 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Goals for Today Review: Calling Conventions call a routine (i.e. transfer control to

More information

Machine-level Representation of Programs. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Machine-level Representation of Programs. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Machine-level Representation of Programs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Program? 짬뽕라면 준비시간 :10 분, 조리시간 :10 분 재료라면 1개, 스프 1봉지, 오징어

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region

More information

hnp://

hnp:// The bots face off in a tournament against one another and about an equal number of humans, with each player trying to score points by elimina&ng its opponents. Each player also has a "judging gun" in addi&on

More information

The Hardware/Software Interface CSE351 Spring 2013

The Hardware/Software Interface CSE351 Spring 2013 The Hardware/Software Interface CSE351 Spring 2013 x86 Programming II 2 Today s Topics: control flow Condition codes Conditional and unconditional branches Loops 3 Conditionals and Control Flow A conditional

More information

CMSC 313 Lecture 12 [draft] How C functions pass parameters

CMSC 313 Lecture 12 [draft] How C functions pass parameters CMSC 313 Lecture 12 [draft] How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP removes an

More information

Machine-Level Programming II: Control and Arithmetic

Machine-Level Programming II: Control and Arithmetic Machine-Level Programming II: Control and Arithmetic CSCI 2400: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides 1 Today Complete addressing mode, address

More information

Intel assembly language using gcc

Intel assembly language using gcc QOTD Intel assembly language using gcc Assembly language programming is difficult. Make no mistake about that. It is not for wimps and weaklings. - Tanenbaum s 6th, page 519 These notes are a supplement

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming III: Procedures Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

Assignment 11: functions, calling conventions, and the stack

Assignment 11: functions, calling conventions, and the stack Assignment 11: functions, calling conventions, and the stack ECEN 4553 & 5013, CSCI 4555 & 5525 Prof. Jeremy G. Siek December 5, 2008 The goal of this week s assignment is to remove function definitions

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

CS61 Section Solutions 3

CS61 Section Solutions 3 CS61 Section Solutions 3 (Week of 10/1-10/5) 1. Assembly Operand Specifiers 2. Condition Codes 3. Jumps 4. Control Flow Loops 5. Procedure Calls 1. Assembly Operand Specifiers Q1 Operand Value %eax 0x104

More information

Processes (Intro) Yannis Smaragdakis, U. Athens

Processes (Intro) Yannis Smaragdakis, U. Athens Processes (Intro) Yannis Smaragdakis, U. Athens Process: CPU Virtualization Process = Program, instantiated has memory, code, current state What kind of memory do we have? registers + address space Let's

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College February 9, 2016 Reading Quiz Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between

More information

CNIT 127: Exploit Development. Ch 3: Shellcode. Updated

CNIT 127: Exploit Development. Ch 3: Shellcode. Updated CNIT 127: Exploit Development Ch 3: Shellcode Updated 1-30-17 Topics Protection rings Syscalls Shellcode nasm Assembler ld GNU Linker objdump to see contents of object files strace System Call Tracer Removing

More information

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature CSE2421 FINAL EXAM SPRING 2013 Name KEY Instructions: This is a closed-book, closed-notes, closed-neighbor exam. Only a writing utensil is needed for this exam. No calculators allowed. If you need to go

More information

Machine Programming 1: Introduction

Machine Programming 1: Introduction Machine Programming 1: Introduction CS61, Lecture 3 Prof. Stephen Chong September 8, 2011 Announcements (1/2) Assignment 1 due Tuesday Please fill in survey by 5pm today! Assignment 2 will be released

More information

Ausgewählte Betriebssysteme. Anatomy of a system call

Ausgewählte Betriebssysteme. Anatomy of a system call Ausgewählte Betriebssysteme Anatomy of a system call 1 User view #include int main(void) { printf( Hello World!\n ); return 0; } 2 3 Syscall (1) User: write(fd, buffer, sizeof(buffer)); size

More information

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 4: Calling conventions Anton Burtsev October, 2017 Recap from last time Stack and procedure calls What is stack? Stack It's just a region of memory Pointed

More information