Improving the interoperability between MPI and OmpSs-2

Size: px
Start display at page:

Download "Improving the interoperability between MPI and OmpSs-2"

Transcription

1 Improving the interoperability between MPI and OmpSs-2 Vicenç Beltran Querol 19/04/2018 INTERTWinE Exascale Application Workshop, Edinburgh

2 Why hybrid MPI+OmpSs-2 programming? Gauss-Seidel method Pure MPI MPI + OmpSs (fork-join) MPI + OmpSs (tasks + sentinel) OmpSs-2 pause/resume API Task-Aware MPI (TAMPI) library Gauss-Seidel method MPI + OmpSs (tasks + TAMPI) Evaluation Conclusions Outline

3 Why hybrid MPI+OmpSs-2 programming? Try to leverage best of both programing models... Message Passing Interface (MPI) Designed to exploit distributed memory systems Efficient and scalable message passing interface OmpSs-2 tasking model Designed to exploit shared memory system Write sequential code, but execute it in parallel Fine grained synchronizations Automatic load-balancing but also to exploit some potential synergies J Fine-grained synchronization across nodes Overlap of computation and communication phases Leverage intra-node application parallelism to hide network latency and maximize network throughput However, interoperability issues between MPI and OmpSs-2 prevents application developers to achieve most of these goals L

4 Gauss-Seidel method: Sequential In-place iterative algorithm Ex: 3 x 3 tile domain i i i-1 Rank 0 i-1 Rank 1 i-1 nk 2 nk 3 1 Each tile depend on top and left tile from current iteration and right and bottom tile from previous iteration nk 0 nk 1 0 Rank 2 Task that computes a block on the i-th iteration Rank 0 Rank 1 Rank 2 Rank 3 Rank 3

5 Gauss-Seidel method: Pure MPI Ex: 12 x 3 blocks domain, decomposition across 4 MPI ranks Rank 0 Rank 1 lock Rank 2 Rank 3 After each iteration, neighbor MPI ranks has to exchange halos k 0 Rank 1 Rank 2 Rank 3 Data dependency MPI communication Rank 0 Rank 1 Rank 2 Rank 3 Data dependency MPI communication

6 Gauss-Seidel method: Pure MPI void solve(block_t *matrix, int rowblocks, int colblocks, int timesteps) int rank, rank_size; MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &rank_size); for (int t = 0; t < timesteps; ++t) solvegaussseidel(matrix, rowblocks, colblocks, rank, rank_size); MPI_Barrier(MPI_COMM_WORLD);

7 Gauss-Seidel method: Pure MPI void solvegaussseidel(block_t *matrix, int nbx, int nby, int rank, int rank_size) if (rank!= 0) sendfirstcomputerow(matrix, nbx, nby, rank, rank_size); receiveupperborder(matrix, nbx, nby, rank, rank_size); if (rank!= rank_size - 1) receivelowerborder(matrix, nbx, nby, rank, rank_size); for (int bx = 1; bx < nbx-1; ++bx) for (int by = 1; by < nby-1; ++by) solveblock(matrix, nbx, nby, bx, by); if (rank!= rank_size - 1) sendlastcomputerow(matrix, nbx, nby, rank, rank_size); void sendlastcomputerow(block_t *matrix, int nbx, int nby, int rank, int rank_size) for (int by = 1; by < nby-1; ++by) MPI_Send(&matrix[(nbx-2)*nby + by][bsx-1], BSY, MPI_DOUBLE, rank + 1, by, MPI_COMM_WORLD); void receiveupperborder(block_t *matrix, int nbx, int nby, int rank, int rank_size) Fig. 4. Left: simplified dependency diagra Right: simplified dependency diagram of interoperability library and with the interop cies) for (int by = 1; by < nby-1; ++by) MPI_Recv(&matrix[by][BSX-1], BSY, MPI_DOUBLE, rank - 1, by, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

8 Gauss-Seidel method: Pure MPI void solveblock(block_t *matrix, int nbx, int nby, int bx, int by) block_t &targetblock = matrix[bx*nby + by]; const block_t &centerblock = matrix[bx*nby + by]; const block_t &topblock = matrix[(bx-1)*nby + by]; const block_t &leftblock = matrix[bx*nby + (by-1)]; const block_t &rightblock = matrix[bx*nby + (by+1)]; const block_t &bottomblock = matrix[(bx+1)*nby + by]; for (int x = 0; x < BSX; ++x) const row_t &toprow = (x > 0)? centerblock[x-1] : topblock[bsx-1]; const row_t &bottomrow = (x < BSX-1)? centerblock[x+1] : bottomblock[0]; for (int y = 0; y < BSY; ++y) double left = (y > 0)? centerblock[x][y-1] : leftblock[x][bsy-1]; double right = (y < BSY-1)? centerblock[x][y+1] : rightblock[x][0]; targetblock[x][y] = 0.25 * (toprow[y] + bottomrow[y] + left + right);

9 Gauss-Seidel method: Fork-Join OmpSs-2 used to execute in parallel the computational phase of the program MPI used only on sequential phase of the program for communications No overlapping of communication an computation phases void solvegaussseidel(block_t *matrix, int nbx, int nby, int rank, int rank_size) if (rank!= 0) sendfirstcomputerow(matrix, nbx, nby, rank, rank_size); receiveupperborder(matrix, nbx, nby, rank, rank_size); if (rank!= rank_size - 1) receivelowerborder(matrix, nbx, nby, rank, rank_size); for (int bx = 1; bx < nbx-1; ++bx) for (int by = 1; by < nby-1; ++by) #pragma oss task \ in(([nbx][nby]matrix)[bx-1][by]) \ in(([nbx][nby]matrix)[bx][by-1]) \ in(([nbx][nby]matrix)[bx][by+1]) \ in(([nbx][nby]matrix)[bx+1][by]) \ inout(([nbx][nby]matrix)[bx][by]) solveblock(matrix, nbx, nby, bx, by); #pragma oss taskwait if (rank!= rank_size - 1) sendlastcomputerow(matrix, nbx, nby, rank, rank_size); 1 Rank x Node!!!

10 Gauss-Seidel method: Tasks + sentinel Tasks used for both computations and communications Tags used to match send and receive operations but... Communication tasks have to be serialized to avoid deadlocks Partial overlapping of communication an computation phases void solvegaussseidel(block_t *matrix, int nbx, int nby, int rank, int rank_size) if (rank!= 0) sendfirstcomputerow(matrix, nbx, nby, rank, rank_size); receiveupperborder(matrix, nbx, nby, rank, rank_size); if (rank!= rank_size - 1) receivelowerborder(matrix, nbx, nby, rank, rank_size); for (int bx = 1; bx < nbx-1; ++bx) for (int by = 1; by < nby-1; ++by) #pragma oss task \ in(([nbx][nby]matrix)[bx-1][by]) \ in(([nbx][nby]matrix)[bx][by-1]) \ in(([nbx][nby]matrix)[bx][by+1]) \ in(([nbx][nby]matrix)[bx+1][by]) \ inout(([nbx][nby]matrix)[bx][by]) solveblock(matrix, nbx, nby, bx, by); if (rank!= rank_size - 1) sendlastcomputerow(matrix, nbx, nby, rank, rank_size); 1 Rank x Node!!!

11 Gauss-Seidel method: Tasks + sentinel Tasks used for both computations and communications Tags used to match send and receive operations but... Communication tasks have to be serialized to avoid deadlocks Partial overlapping of communication an computation phases void sendlastcomputerow(block_t *matrix, int nbx, int nby, int rank, int rank_size) for (int by = 1; by < nby-1; ++by) #pragma oss task in(([nbx][nby]matrix)[nbx-2][by]) inout(*serial) MPI_Send(&matrix[(nbx-2)*nby + by][bsx-1], BSY, MPI_DOUBLE, rank + 1, by, MPI_COMM_WORLD); void receiveupperborder(block_t *matrix, int nbx, int nby, int rank, int rank_size) for (int by = 1; by < nby-1; ++by) #pragma oss task out(([nbx][nby]matrix)[0][by]) inout(*serial) MPI_Recv(&matrix[by][BSX-1], BSY, MPI_DOUBLE, rank - 1, by, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

12 Gauss-Seidel method: Tasks + sentinel Why it is needed to serialize all communication tasks? Because tasks can be scheduled out-of-order, so MPI operations can also be executed out-of-order... All CPUs can stall executing MPI receive operations that depend on the eventual completion of MPI send operations of this rank, but these will never be executed! Create BLOCKED Unblock READY Create T 7 T 2 T 3 Unblock MPI_Send() Taskwait Schedule Blocked Tasks T 9 T 1 T 8 T 6 RUNNING MPI_receive() Taskwait Ready Tasks Complet FINISHED T 4 CPU T 5 T 6 T 8 CPU CPU CPU Schedule Running Tasks

13 OmpSs-2: Pause/resume API Low-level API to programmatically pause and resume the execution of a task. void * nanos_get_current_blocking_context(); // Get task id void nanos_block_current_task(void *context); // Block task void nanos_unblock_task(void *context); // Unblock task Create BLOCKED Unblock READY T 7 T 2 T 3 Unblock or Resume T 9 T 1 T 8 T 6 Taskwait RUNNING Schedule Pause PAUSED Resume Paused & Blocked Tasks Ready Tasks FINISHED Complet Taskwait or Pause T 4 CPU T 5 T 6 T 8 CPU CPU CPU Schedule Running Tasks

14 Task-Aware MPI (TAMPI) library Leverage the low-level pause/resume API to improve the interoperability between MPI and OmpSs-2 tasks Expose this new feature as a new threading support level in MPI: MPI_TASK_MULTIPLE When TAMPI is initialized using the MPI_TASK_MULTIPLE threading model, all the blocking operations are intercepted and converted to their nonblocking counter parts. Ex: MPI_Recv() executed inside a task. int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status) int err, completed = 0; if (Interop::isEnabled()) MPI_Request request; err = MPI_Irecv(buf, count, datatype, source, tag, comm, &request); MPI_Test(&request, &completed, status); if (!completed) Ticket ticket(&request, status); ticket._waiter = get_current_blocking_context(); _pendingtickets.add(ticket); block_current_task(ticket._waiter); return err; return PMPI_Recv(buf, count, datatype, source, tag, comm, status);

15 Task-Aware MPI (TAMPI) library TAMPI library registers a polling service with the OmpSs-2 runtime to check the completion of in-flight MPI operations. Once a MPI operation is completed the task waiting for this operation is put again into the ready queue The polling service is executed by the runtime worker-threads periodically Resume T T 7 3 T T T 9 T 1 T Paused Tasks Ready Tasks void Interop::poll() for (Ticket &ticket : _pendingtickets) int completed = 0; MPI_Test(ticket._request, &completed, ticket._status); if (completed) _pendingtickets.remove(ticket); unblock_task(ticket._waiter); Pause MPI Blocking Operation T 4 CPU MPI Req T 5 T 6 T 8 CPU MPI Req TAMPI MPI Req CPU Polling Service CPU Schedule Running Tasks

16 Gauss-Seidel method: Tasks + TAMPI Tasks used for both computations and communications Tags used to match send and receive operations but... Full overlapping of communication an computation phases void sendlastcomputerow(block_t *matrix, int nbx, int nby, int rank, int rank_size) for (int by = 1; by < nby-1; ++by) #pragma oss task in(([nbx][nby]matrix)[nbx-2][by]) MPI_Send(&matrix[(nbx-2)*nby + by][bsx-1], BSY, MPI_DOUBLE, rank + 1, by, MPI_COMM_WORLD); Rank 0 Rank 1 Rank 2 Rank 3 Data dependency MPI communication MPI serialization Time void receiveupperborder(block_t *matrix, int nbx, int nby, int rank, int rank_size) for (int by = 1; by < nby-1; ++by) #pragma oss task out(([nbx][nby]matrix)[0][by]) MPI_Recv(&matrix[by][BSX-1], BSY, MPI_DOUBLE, rank - 1, by, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

17 Tiled Gauss-Seidel: Results BS=1024 & 1000 iterations Pure MPI: 48 ranks/node Hybrids: 1 rank/node & 48 cores/rank Baseline: Pure MPI Up to 8x speedup w.r.t. Pure MPI

18 Tiled Gauss-Seidel: Traces Pure MPI 4 nodes 100 iterations 32K x 32K matrix Same Time Duration MPI + Fork-Join MPI + Tasks (sentinel) MPI + Tasks + Interop

19 Conclusions TAMPI library benefits Provides inter-node fine grained-synchronization across tasks Automatic overlap of computation and communication phases Load-balancing Exposes more parallelism (remove barriers and artificial dependencies) Do not increase application complexity Fork-jon Task+sentinel Task+TAMPI

Extending the Task-Aware MPI (TAMPI) Library to Support Asynchronous MPI primitives

Extending the Task-Aware MPI (TAMPI) Library to Support Asynchronous MPI primitives Extending the Task-Aware MPI (TAMPI) Library to Support Asynchronous MPI primitives Kevin Sala, X. Teruel, J. M. Perez, V. Beltran, J. Labarta 24/09/2018 OpenMPCon 2018, Barcelona Overview TAMPI Library

More information

arxiv: v1 [cs.dc] 10 Jan 2019

arxiv: v1 [cs.dc] 10 Jan 2019 Integrating Blocking and Non-Blocking MPI Primitives with Task-Based Programming Models Kevin Sala a,, Xavier Teruel a,, Josep M. Perez a,, Antonio J. Peña a,, Vicenç Beltran a,, Jesus Labarta a, a Barcelona

More information

D4.4 Report on runtime systems implementation of resource management API

D4.4 Report on runtime systems implementation of resource management API D4.4 Report on runtime systems implementation of resource management API Project Acronym Project Title Due date Submission date Project start date Project duration Deliverable lead organization M24 30/SEP/2017

More information

CS 426. Building and Running a Parallel Application

CS 426. Building and Running a Parallel Application CS 426 Building and Running a Parallel Application 1 Task/Channel Model Design Efficient Parallel Programs (or Algorithms) Mainly for distributed memory systems (e.g. Clusters) Break Parallel Computations

More information

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III)

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III) Topics Lecture 6 MPI Programming (III) Point-to-point communication Basic point-to-point communication Non-blocking point-to-point communication Four modes of blocking communication Manager-Worker Programming

More information

Intermediate MPI (Message-Passing Interface) 1/11

Intermediate MPI (Message-Passing Interface) 1/11 Intermediate MPI (Message-Passing Interface) 1/11 What happens when a process sends a message? Suppose process 0 wants to send a message to process 1. Three possibilities: Process 0 can stop and wait until

More information

Intermediate MPI (Message-Passing Interface) 1/11

Intermediate MPI (Message-Passing Interface) 1/11 Intermediate MPI (Message-Passing Interface) 1/11 What happens when a process sends a message? Suppose process 0 wants to send a message to process 1. Three possibilities: Process 0 can stop and wait until

More information

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail.

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. PCAP Assignment I 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. The multicore CPUs are designed to maximize the execution speed

More information

Tutorial OmpSs: Overlapping communication and computation

Tutorial OmpSs: Overlapping communication and computation www.bsc.es Tutorial OmpSs: Overlapping communication and computation PATC course Parallel Programming Workshop Rosa M Badia, Xavier Martorell PATC 2013, 18 October 2013 Tutorial OmpSs Agenda 10:00 11:00

More information

Introduction to parallel computing concepts and technics

Introduction to parallel computing concepts and technics Introduction to parallel computing concepts and technics Paschalis Korosoglou (support@grid.auth.gr) User and Application Support Unit Scientific Computing Center @ AUTH Overview of Parallel computing

More information

Department of Informatics V. HPC-Lab. Session 4: MPI, CG M. Bader, A. Breuer. Alex Breuer

Department of Informatics V. HPC-Lab. Session 4: MPI, CG M. Bader, A. Breuer. Alex Breuer HPC-Lab Session 4: MPI, CG M. Bader, A. Breuer Meetings Date Schedule 10/13/14 Kickoff 10/20/14 Q&A 10/27/14 Presentation 1 11/03/14 H. Bast, Intel 11/10/14 Presentation 2 12/01/14 Presentation 3 12/08/14

More information

MPI. (message passing, MIMD)

MPI. (message passing, MIMD) MPI (message passing, MIMD) What is MPI? a message-passing library specification extension of C/C++ (and Fortran) message passing for distributed memory parallel programming Features of MPI Point-to-point

More information

Point-to-Point Communication. Reference:

Point-to-Point Communication. Reference: Point-to-Point Communication Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/mpi/ Introduction Point-to-point communication is the fundamental communication facility provided by the MPI library. Point-to-point

More information

Parallel Programming with MPI and OpenMP

Parallel Programming with MPI and OpenMP Parallel Programming with MPI and OpenMP Michael J. Quinn Chapter 6 Floyd s Algorithm Chapter Objectives Creating 2-D arrays Thinking about grain size Introducing point-to-point communications Reading

More information

Parallel programming MPI

Parallel programming MPI Parallel programming MPI Distributed memory Each unit has its own memory space If a unit needs data in some other memory space, explicit communication (often through network) is required Point-to-point

More information

PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL AND DISTRIBUTED COMPUTING PARALLEL AND DISTRIBUTED COMPUTING 2013/2014 1 st Semester 1 st Exam January 7, 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc. - Give your answers

More information

Message Passing Interface

Message Passing Interface MPSoC Architectures MPI Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr Message Passing Interface API for distributed-memory programming parallel code that runs across

More information

Document Classification

Document Classification Document Classification Introduction Search engine on web Search directories, subdirectories for documents Search for documents with extensions.html,.txt, and.tex Using a dictionary of key words, create

More information

COSC 6374 Parallel Computation. Message Passing Interface (MPI ) I Introduction. Distributed memory machines

COSC 6374 Parallel Computation. Message Passing Interface (MPI ) I Introduction. Distributed memory machines Network card Network card 1 COSC 6374 Parallel Computation Message Passing Interface (MPI ) I Introduction Edgar Gabriel Fall 015 Distributed memory machines Each compute node represents an independent

More information

More about MPI programming. More about MPI programming p. 1

More about MPI programming. More about MPI programming p. 1 More about MPI programming More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems, the CPUs share

More information

Non-Blocking Communications

Non-Blocking Communications Non-Blocking Communications Deadlock 1 5 2 3 4 Communicator 0 2 Completion The mode of a communication determines when its constituent operations complete. - i.e. synchronous / asynchronous The form of

More information

All-Pairs Shortest Paths - Floyd s Algorithm

All-Pairs Shortest Paths - Floyd s Algorithm All-Pairs Shortest Paths - Floyd s Algorithm Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 31, 2011 CPD (DEI / IST) Parallel

More information

Best Practice Guide for Writing MPI + OmpSs Interoperable Programs. Version 1.0, 3 rd April 2017

Best Practice Guide for Writing MPI + OmpSs Interoperable Programs. Version 1.0, 3 rd April 2017 Best Practice Guide for Writing MPI + OmpSs Interoperable Programs Version 1.0, 3 rd April 2017 Copyright INTERTWinE Consortium 2017 Table of Contents 1 INTRODUCTION... 1 1.1 PURPOSE... 1 1.2 GLOSSARY

More information

CS4961 Parallel Programming. Lecture 19: Message Passing, cont. 11/5/10. Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM

CS4961 Parallel Programming. Lecture 19: Message Passing, cont. 11/5/10. Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM Parallel Programming Lecture 19: Message Passing, cont. Mary Hall November 4, 2010 Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM Today we will cover Successive Over Relaxation.

More information

Topics. Lecture 7. Review. Other MPI collective functions. Collective Communication (cont d) MPI Programming (III)

Topics. Lecture 7. Review. Other MPI collective functions. Collective Communication (cont d) MPI Programming (III) Topics Lecture 7 MPI Programming (III) Collective communication (cont d) Point-to-point communication Basic point-to-point communication Non-blocking point-to-point communication Four modes of blocking

More information

ECE 587 Hardware/Software Co-Design Lecture 09 Concurrency in Practice Message Passing

ECE 587 Hardware/Software Co-Design Lecture 09 Concurrency in Practice Message Passing ECE 587 Hardware/Software Co-Design Spring 2018 1/14 ECE 587 Hardware/Software Co-Design Lecture 09 Concurrency in Practice Message Passing Professor Jia Wang Department of Electrical and Computer Engineering

More information

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2 Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS Teacher: Jan Kwiatkowski, Office 201/15, D-2 COMMUNICATION For questions, email to jan.kwiatkowski@pwr.edu.pl with 'Subject=your name.

More information

HPC Parallel Programing Multi-node Computation with MPI - I

HPC Parallel Programing Multi-node Computation with MPI - I HPC Parallel Programing Multi-node Computation with MPI - I Parallelization and Optimization Group TATA Consultancy Services, Sahyadri Park Pune, India TCS all rights reserved April 29, 2013 Copyright

More information

CS 179: GPU Programming. Lecture 14: Inter-process Communication

CS 179: GPU Programming. Lecture 14: Inter-process Communication CS 179: GPU Programming Lecture 14: Inter-process Communication The Problem What if we want to use GPUs across a distributed system? GPU cluster, CSIRO Distributed System A collection of computers Each

More information

Non-Blocking Communications

Non-Blocking Communications Non-Blocking Communications Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1 Lecture 7: More about MPI programming Lecture 7: More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems

More information

More advanced MPI and mixed programming topics

More advanced MPI and mixed programming topics More advanced MPI and mixed programming topics Extracting messages from MPI MPI_Recv delivers each message from a peer in the order in which these messages were send No coordination between peers is possible

More information

Exercises: April 11. Hermann Härtig, TU Dresden, Distributed OS, Load Balancing

Exercises: April 11. Hermann Härtig, TU Dresden, Distributed OS, Load Balancing Exercises: April 11 1 PARTITIONING IN MPI COMMUNICATION AND NOISE AS HPC BOTTLENECK LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2017 Hermann Härtig THIS LECTURE Partitioning: bulk synchronous

More information

Multi GPU Programming with MPI and OpenACC

Multi GPU Programming with MPI and OpenACC Multi GPU Programming with MPI and J. Kraus (NVIDIA) MPI+ Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM GPU CPU GPU CPU GPU CPU PCIe Switch PCIe Switch PCIe Switch IB IB IB 2 MPI+

More information

LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS Hermann Härtig

LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS Hermann Härtig LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2016 Hermann Härtig LECTURE OBJECTIVES starting points independent Unix processes and block synchronous execution which component (point in

More information

15-440: Recitation 8

15-440: Recitation 8 15-440: Recitation 8 School of Computer Science Carnegie Mellon University, Qatar Fall 2013 Date: Oct 31, 2013 I- Intended Learning Outcome (ILO): The ILO of this recitation is: Apply parallel programs

More information

MPI and CUDA. Filippo Spiga, HPCS, University of Cambridge.

MPI and CUDA. Filippo Spiga, HPCS, University of Cambridge. MPI and CUDA Filippo Spiga, HPCS, University of Cambridge Outline Basic principle of MPI Mixing MPI and CUDA 1 st example : parallel GPU detect 2 nd example: heat2d CUDA- aware MPI, how

More information

Lecture 14: Mixed MPI-OpenMP programming. Lecture 14: Mixed MPI-OpenMP programming p. 1

Lecture 14: Mixed MPI-OpenMP programming. Lecture 14: Mixed MPI-OpenMP programming p. 1 Lecture 14: Mixed MPI-OpenMP programming Lecture 14: Mixed MPI-OpenMP programming p. 1 Overview Motivations for mixed MPI-OpenMP programming Advantages and disadvantages The example of the Jacobi method

More information

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SurfSARA High Performance Computing and Big Data Course June 2014 Parallel Programming with Compiler Directives: OpenMP Message Passing Gentle Introduction

More information

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MPI+OPENACC GDDR5 Memory System Memory GDDR5 Memory System Memory GDDR5 Memory System Memory GPU CPU GPU CPU GPU CPU PCI-e PCI-e PCI-e Network

More information

Message Passing Interface

Message Passing Interface Message Passing Interface DPHPC15 TA: Salvatore Di Girolamo DSM (Distributed Shared Memory) Message Passing MPI (Message Passing Interface) A message passing specification implemented

More information

LECTURE ON MULTI-GPU PROGRAMMING. Jiri Kraus, November 14 th 2016

LECTURE ON MULTI-GPU PROGRAMMING. Jiri Kraus, November 14 th 2016 LECTURE ON MULTI-GPU PROGRAMMING Jiri Kraus, November 14 th 2016 MULTI GPU PROGRAMMING With MPI and OpenACC Node 0 Node 1 Node N-1 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM GPU CPU GPU CPU GPU CPU

More information

Recap of Parallelism & MPI

Recap of Parallelism & MPI Recap of Parallelism & MPI Chris Brady Heather Ratcliffe The Angry Penguin, used under creative commons licence from Swantje Hess and Jannis Pohlmann. Warwick RSE 13/12/2017 Parallel programming Break

More information

Message Passing Interface. George Bosilca

Message Passing Interface. George Bosilca Message Passing Interface George Bosilca bosilca@icl.utk.edu Message Passing Interface Standard http://www.mpi-forum.org Current version: 3.1 All parallelism is explicit: the programmer is responsible

More information

int sum;... sum = sum + c?

int sum;... sum = sum + c? int sum;... sum = sum + c? Version Cores Time (secs) Speedup manycore Message Passing Interface mpiexec int main( ) { int ; char ; } MPI_Init( ); MPI_Comm_size(, &N); MPI_Comm_rank(, &R); gethostname(

More information

Lecture 7: Distributed memory

Lecture 7: Distributed memory Lecture 7: Distributed memory David Bindel 15 Feb 2010 Logistics HW 1 due Wednesday: See wiki for notes on: Bottom-up strategy and debugging Matrix allocation issues Using SSE and alignment comments Timing

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 16, 2011 CPD (DEI / IST) Parallel and Distributed Computing 18

More information

Parallel hardware. Distributed Memory. Parallel software. COMP528 MPI Programming, I. Flynn s taxonomy:

Parallel hardware. Distributed Memory. Parallel software. COMP528 MPI Programming, I. Flynn s taxonomy: COMP528 MPI Programming, I www.csc.liv.ac.uk/~alexei/comp528 Alexei Lisitsa Dept of computer science University of Liverpool a.lisitsa@.liverpool.ac.uk Flynn s taxonomy: Parallel hardware SISD (Single

More information

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SURFsara High Performance Computing and Big Data Message Passing as a Programming Paradigm Gentle Introduction to MPI Point-to-point Communication Message Passing

More information

Parallel Programming, MPI Lecture 2

Parallel Programming, MPI Lecture 2 Parallel Programming, MPI Lecture 2 Ehsan Nedaaee Oskoee 1 1 Department of Physics IASBS IPM Grid and HPC workshop IV, 2011 Outline 1 Point-to-Point Communication Non Blocking PTP Communication 2 Collective

More information

A Message Passing Standard for MPP and Workstations

A Message Passing Standard for MPP and Workstations A Message Passing Standard for MPP and Workstations Communications of the ACM, July 1996 J.J. Dongarra, S.W. Otto, M. Snir, and D.W. Walker Message Passing Interface (MPI) Message passing library Can be

More information

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 Message passing vs. Shared memory Client Client Client Client send(msg) recv(msg) send(msg) recv(msg) MSG MSG MSG IPC Shared

More information

Intermediate MPI features

Intermediate MPI features Intermediate MPI features Advanced message passing Collective communication Topologies Group communication Forms of message passing (1) Communication modes: Standard: system decides whether message is

More information

Document Classification Problem

Document Classification Problem Document Classification Problem Search directories, subdirectories for documents (look for.html,.txt,.tex, etc.) Using a dictionary of key words, create a profile vector for each document Store profile

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

CINES MPI. Johanne Charpentier & Gabriel Hautreux

CINES MPI. Johanne Charpentier & Gabriel Hautreux Training @ CINES MPI Johanne Charpentier & Gabriel Hautreux charpentier@cines.fr hautreux@cines.fr Clusters Architecture OpenMP MPI Hybrid MPI+OpenMP MPI Message Passing Interface 1. Introduction 2. MPI

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2017 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

Message Passing Interface. most of the slides taken from Hanjun Kim

Message Passing Interface. most of the slides taken from Hanjun Kim Message Passing Interface most of the slides taken from Hanjun Kim Message Passing Pros Scalable, Flexible Cons Someone says it s more difficult than DSM MPI (Message Passing Interface) A standard message

More information

COSC 6374 Parallel Computation

COSC 6374 Parallel Computation COSC 6374 Parallel Computation Message Passing Interface (MPI ) II Advanced point-to-point operations Spring 2008 Overview Point-to-point taxonomy and available functions What is the status of a message?

More information

Programming with MPI. Pedro Velho

Programming with MPI. Pedro Velho Programming with MPI Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage - Who might be interested in those applications?

More information

Introduction to MPI: Part II

Introduction to MPI: Part II Introduction to MPI: Part II Pawel Pomorski, University of Waterloo, SHARCNET ppomorsk@sharcnetca November 25, 2015 Summary of Part I: To write working MPI (Message Passing Interface) parallel programs

More information

First day. Basics of parallel programming. RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS

First day. Basics of parallel programming. RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS First day Basics of parallel programming RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS Today s schedule: Basics of parallel programming 7/22 AM: Lecture Goals Understand the design of typical parallel

More information

HPC - HIGH PERFORMANCE COMPUTING (SUPERCOMPUTING)

HPC - HIGH PERFORMANCE COMPUTING (SUPERCOMPUTING) HPC - HIGH PERFORMANCE COMPUTING (SUPERCOMPUTING)! DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2014 Hermann Härtig Understand Systems Software for High Performance Computing (HPC), today & expected

More information

HPCSE - I. «MPI Programming Model - Part II» Panos Hadjidoukas

HPCSE - I. «MPI Programming Model - Part II» Panos Hadjidoukas HPCSE - I «MPI Programming Model - Part II» Panos Hadjidoukas 1 Schedule and Goals 24.11.2017: MPI - part 2 asynchronous communication how MPI works study and discuss more examples 2 Outline Measuring

More information

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser

HPX. High Performance ParalleX CCT Tech Talk Series. Hartmut Kaiser HPX High Performance CCT Tech Talk Hartmut Kaiser (hkaiser@cct.lsu.edu) 2 What s HPX? Exemplar runtime system implementation Targeting conventional architectures (Linux based SMPs and clusters) Currently,

More information

Parallel Short Course. Distributed memory machines

Parallel Short Course. Distributed memory machines Parallel Short Course Message Passing Interface (MPI ) I Introduction and Point-to-point operations Spring 2007 Distributed memory machines local disks Memory Network card 1 Compute node message passing

More information

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho Programming with MPI on GridRS Dr. Márcio Castro e Dr. Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage -

More information

More MPI. Bryan Mills, PhD. Spring 2017

More MPI. Bryan Mills, PhD. Spring 2017 More MPI Bryan Mills, PhD Spring 2017 MPI So Far Communicators Blocking Point- to- Point MPI_Send MPI_Recv CollecEve CommunicaEons MPI_Bcast MPI_Barrier MPI_Reduce MPI_Allreduce Non-blocking Send int MPI_Isend(

More information

Lesson 1. MPI runs on distributed memory systems, shared memory systems, or hybrid systems.

Lesson 1. MPI runs on distributed memory systems, shared memory systems, or hybrid systems. The goals of this lesson are: understanding the MPI programming model managing the MPI environment handling errors point-to-point communication 1. The MPI Environment Lesson 1 MPI (Message Passing Interface)

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 15, 2010 José Monteiro (DEI / IST) Parallel and Distributed Computing

More information

A message contains a number of elements of some particular datatype. MPI datatypes:

A message contains a number of elements of some particular datatype. MPI datatypes: Messages Messages A message contains a number of elements of some particular datatype. MPI datatypes: Basic types. Derived types. Derived types can be built up from basic types. C types are different from

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2016 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2016 Jens Teubner Computer Architecture Summer 2016 2 Part I Programming

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming Linda Woodard CAC 19 May 2010 Introduction to Parallel Computing on Ranger 5/18/2010 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor

More information

High-Performance Computing: MPI (ctd)

High-Performance Computing: MPI (ctd) High-Performance Computing: MPI (ctd) Adrian F. Clark: alien@essex.ac.uk 2015 16 Adrian F. Clark: alien@essex.ac.uk High-Performance Computing: MPI (ctd) 2015 16 1 / 22 A reminder Last time, we started

More information

Reusing this material

Reusing this material Messages Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2018 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

6.189 IAP Lecture 5. Parallel Programming Concepts. Dr. Rodric Rabbah, IBM IAP 2007 MIT

6.189 IAP Lecture 5. Parallel Programming Concepts. Dr. Rodric Rabbah, IBM IAP 2007 MIT 6.189 IAP 2007 Lecture 5 Parallel Programming Concepts 1 6.189 IAP 2007 MIT Recap Two primary patterns of multicore architecture design Shared memory Ex: Intel Core 2 Duo/Quad One copy of data shared among

More information

Cluster Computing MPI. Industrial Standard Message Passing

Cluster Computing MPI. Industrial Standard Message Passing MPI Industrial Standard Message Passing MPI Features Industrial Standard Highly portable Widely available SPMD programming model Synchronous execution MPI Outer scope int MPI_Init( int *argc, char ** argv)

More information

Parallel Programming, MPI Lecture 2

Parallel Programming, MPI Lecture 2 Parallel Programming, MPI Lecture 2 Ehsan Nedaaee Oskoee 1 1 Department of Physics IASBS IPM Grid and HPC workshop IV, 2011 Outline 1 Introduction and Review The Von Neumann Computer Kinds of Parallel

More information

MPI Runtime Error Detection with MUST

MPI Runtime Error Detection with MUST MPI Runtime Error Detection with MUST At the 27th VI-HPS Tuning Workshop Joachim Protze IT Center RWTH Aachen University April 2018 How many issues can you spot in this tiny example? #include #include

More information

DPHPC Recitation Session 2 Advanced MPI Concepts

DPHPC Recitation Session 2 Advanced MPI Concepts TIMO SCHNEIDER DPHPC Recitation Session 2 Advanced MPI Concepts Recap MPI is a widely used API to support message passing for HPC We saw that six functions are enough to write useful

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18. Combining MPI and OpenMP

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18. Combining MPI and OpenMP Chapter 18 Combining MPI and OpenMP Outline Advantages of using both MPI and OpenMP Case Study: Conjugate gradient method Case Study: Jacobi method C+MPI vs. C+MPI+OpenMP Interconnection Network P P P

More information

Outline. Introduction to HPC computing. OpenMP MPI. Introduction. Understanding communications. Collective communications. Communicators.

Outline. Introduction to HPC computing. OpenMP MPI. Introduction. Understanding communications. Collective communications. Communicators. Lecture 8 MPI Outline Introduction to HPC computing OpenMP MPI Introduction Understanding communications Collective communications Communicators Topologies Grouping Data for Communication Input / output

More information

Lecture 9: MPI continued

Lecture 9: MPI continued Lecture 9: MPI continued David Bindel 27 Sep 2011 Logistics Matrix multiply is done! Still have to run. Small HW 2 will be up before lecture on Thursday, due next Tuesday. Project 2 will be posted next

More information

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered Lecture 7: Programming Using the Message-Passing Paradigm 1 Message Passing Programming Model Blocking communication Non-Buffered Buffered Non-Blocking communication Introducing MPI 2 1 Programming models

More information

Framework of an MPI Program

Framework of an MPI Program MPI Charles Bacon Framework of an MPI Program Initialize the MPI environment MPI_Init( ) Run computation / message passing Finalize the MPI environment MPI_Finalize() Hello World fragment #include

More information

CSE 613: Parallel Programming. Lecture 21 ( The Message Passing Interface )

CSE 613: Parallel Programming. Lecture 21 ( The Message Passing Interface ) CSE 613: Parallel Programming Lecture 21 ( The Message Passing Interface ) Jesmin Jahan Tithi Department of Computer Science SUNY Stony Brook Fall 2013 ( Slides from Rezaul A. Chowdhury ) Principles of

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

MIT OpenCourseWare Multicore Programming Primer, January (IAP) Please use the following citation format:

MIT OpenCourseWare Multicore Programming Primer, January (IAP) Please use the following citation format: MIT OpenCourseWare http://ocw.mit.edu 6.189 Multicore Programming Primer, January (IAP) 2007 Please use the following citation format: Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP) 2007.

More information

O.I. Streltsova, D.V. Podgainy, M.V. Bashashin, M.I.Zuev

O.I. Streltsova, D.V. Podgainy, M.V. Bashashin, M.I.Zuev High Performance Computing Technologies Lecture, Practical training 9 Parallel Computing with MPI: parallel algorithm for linear algebra https://indico-hlit.jinr.ru/event/120/ O.I. Streltsova, D.V. Podgainy,

More information

Parallel Programming. Functional Decomposition (Document Classification)

Parallel Programming. Functional Decomposition (Document Classification) Parallel Programming Functional Decomposition (Document Classification) Document Classification Problem Search directories, subdirectories for text documents (look for.html,.txt,.tex, etc.) Using a dictionary

More information

Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen

Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen Kommunikations- und Optimierungsaspekte paralleler Programmiermodelle auf hybriden HPC-Plattformen Rolf Rabenseifner rabenseifner@hlrs.de Universität Stuttgart, Höchstleistungsrechenzentrum Stuttgart (HLRS)

More information

MPI and OpenMP. Mark Bull EPCC, University of Edinburgh

MPI and OpenMP. Mark Bull EPCC, University of Edinburgh 1 MPI and OpenMP Mark Bull EPCC, University of Edinburgh markb@epcc.ed.ac.uk 2 Overview Motivation Potential advantages of MPI + OpenMP Problems with MPI + OpenMP Styles of MPI + OpenMP programming MPI

More information

Parallel Computing Paradigms

Parallel Computing Paradigms Parallel Computing Paradigms Message Passing João Luís Ferreira Sobral Departamento do Informática Universidade do Minho 31 October 2017 Communication paradigms for distributed memory Message passing is

More information

Introduction to MPI. Ricardo Fonseca. https://sites.google.com/view/rafonseca2017/

Introduction to MPI. Ricardo Fonseca. https://sites.google.com/view/rafonseca2017/ Introduction to MPI Ricardo Fonseca https://sites.google.com/view/rafonseca2017/ Outline Distributed Memory Programming (MPI) Message Passing Model Initializing and terminating programs Point to point

More information

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Introduction to MPI Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Topics Introduction MPI Model and Basic Calls MPI Communication Summary 2 Topics Introduction

More information

MPI MESSAGE PASSING INTERFACE

MPI MESSAGE PASSING INTERFACE MPI MESSAGE PASSING INTERFACE David COLIGNON, ULiège CÉCI - Consortium des Équipements de Calcul Intensif http://www.ceci-hpc.be Outline Introduction From serial source code to parallel execution MPI functions

More information

CSE 262 Lecture 13. Communication overlap Continued Heterogeneous processing

CSE 262 Lecture 13. Communication overlap Continued Heterogeneous processing CSE 262 Lecture 13 Communication overlap Continued Heterogeneous processing Final presentations Announcements Friday March 13 th, 10:00 AM to 1:00PM Note time change. Room 3217, CSE Building (EBU3B) Scott

More information

CS 351 Week The C Programming Language, Dennis M Ritchie, Kernighan, Brain.W

CS 351 Week The C Programming Language, Dennis M Ritchie, Kernighan, Brain.W CS 351 Week 6 Reading: 1. The C Programming Language, Dennis M Ritchie, Kernighan, Brain.W Objectives: 1. An Introduction to Message Passing Model 2. To learn about Message Passing Libraries Concepts:

More information

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Parallelism Decompose the execution into several tasks according to the work to be done: Function/Task

More information