Super Connectivity of Iterated Line Digraphs

Size: px
Start display at page:

Download "Super Connectivity of Iterated Line Digraphs"

Transcription

1 Super Connectivity of Iterated Line Digraphs Ding-Zhu Du Hung Q. Ngo Lu Ruan Jianhua Sun Abstract Many interconnection networks can be constructed with line digraph iterations. In this paper, we will establish a general result on super connectivity based on the line digraph iteration. A digraph has super connectivity if it has connectivity and every node-cut of cardinality consists of either the ending nodes of all non-loop out-edges, that come from a node, or the starting nodes of all non-loop in-edges, that end at a node. Key Words: line digraph iterations, super connectivity, interconnection networks. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA. dzd, hngo, ruan, Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing , China. Support in part by 973 Information Technology and High-Performance Software Program of China. 1

2 1 Introduction Consider a digraph. Clearly, all ending nodes of out-edges at any node form a node-cut. All starting nodes of in-edges at any node also form a node-cut. Those node-cuts are called natural node-cuts. A digraph has super connectivity if it has connectivity and every node-cut of cardinality is natural. The super connectivity is an important issue studied in interconnection networks [2, 6, 18, 22]. The line digraph iteration preserves the degree, that is, the line digraph of a -regular digraph is still -regular. Due to this important property, many interconnection networks are constructed with line digraph iterations [3, 7, 10, 16, 19, 20]. Can the line digraph iteration preseve the super connectivity? In this paper, we address this question by presenting some general results and their applications. 2 Main Result Consider a digraph. The line digraph of is defined by!# %!'&(*)+ that is, takes the edge set of as its node set and there exists an edge from a node, to another node - in if, ends at the starting node of - in. Suppose has super connectivity. Could this imply that. has super connectivity? The answer is NO. A counterexample is as shown in Fig. 1. This situation leads us to study the super edge-connectivity of, which has close connection with the super connectivity of.. An edge-cut is natural if it consists of either all non-loop out-edges at a node or all non-loop in-edges at a node. A digraph has super edge-connectivity if it has edge-connectivity and every edge-cut of cardinality is natural. Note that a natural node-cut of. may not be a natural edge-cut of. Thus, the following result needs a little proof. 2

3 G L(G) Figure 1: A counterexample. Lemma 1. has super edge-connectivity if and only if. has super connectivity. Proof. First, assume has super edge-connectivity. Then has connectivity. Thus, every node has out-degree and in-degree at least. Consider a node-cut of, with cardinality. is an edge-cut of and hence is natural. Without loss of generality, assume that consists of all non-loop out-edges at a node. If has a loop, then the loop % has out-degree and is exactly the set of ending nodes of those out-edges. Hence, is a natural node-cut of. If has no loop, then every in-edge at as a node in has out-degree and is exactly the set of ending nodes of those out-edges. Hence, is a natural node-cut of. Conversely, assume. has super connectivity. Then has edge-connectivity. Consider an edge-cut of, with cardinality. is a node-cut of. and hence is natural in. Without loss of generality, assume that is the set of ending nodes of all out-edges at a node in.. Note that does not contain loop in since is a minimum edge-cut of. Therefore, consists of all out-edges at in, that is, is natural. It is quite interesting that the super edge-connectivity is preserved by line digraph iterations, while the super connectivity is not. Theorem 1. If has super edge-connectivity, then. has super edge-connectivity. Proof. Consider a minimum line-cut of. Suppose breaks the node set of into 3

4 two parts and such that no edge other than those in is from to. Let We next show several claims. Claim 1.. & ) & ) % %! & ) Proof. By Lemma 1, has super connectivity and hence edge-connectivity at least. This means. On the other hand, since has super edge-connectivity, there exists a node of such that either all non-loop out-edges at or all non-loop in-edges at form a minimum edge-cut of, with cardinality. Without loss of generality, assume the former occurs. If has a loop, then this loop has out-degree in. If has no loop, then every in-edge of has out-degree in. This means that in any case, has edge-connectivity at most. Hence,. Claim 2. or Proof. For contradiction, suppose. and, %, & ).. Define where. is the node set of. Note that - -%(& ). Thus, and. Moreover, every edge -, from a node - in to a node, in must belong to (since -, & implies - & ) and hence belongs to. Therefore, is an edge-cut of. Similarly, we can show that is an edge-cut of. Note that and. Since has super edge-connectivity, both and are natural edge-cuts of cardinality. In particular, and do not contain any loop. Hence, we have. It follows that any two edges in cannot share the same ending vertex. Therefore, must consist of out-edges at a node, and must consist of in-edges at a node - (Fig. 2). It also follows that. 4

5 v x y Figure 2:. Choose (&. Note that and do not contain any loop. Then every out-edge at, not in, must belong to. Thus, any path from to - not passing edge -% must pass some edge in, ). (Otherwise, the path will go from an edge in to an edge in. This produces an edge from to in, not in, a contradiction.) This means that, )+ - ) is also an edge-cut of, with cardinality, which is not natural, contradicting the super edgeconnectivity of. Claim 3. is natural. Proof. First, we show %. For contradiction, suppose. Note that each node in has at least non-loop out-edges and at least non-loop in-edges. Moreover, and. Thus, each node in must have an in-edge not in and an out-edge not in. Such an in-edge must belong to that and, contradicting Claim 2. and such an out-edge must belong to Now, assume ). Without loss of generality, assume also. This means. Note that if has a non-loop out-edge not in, then it must belong to. Therefore, all non-loop out-edges at belong to. Since has at least non-loop out-edges and, we have and that is exactly the set of all non-loop out-edges at. It follows that. Hence, if has no loop, then is natural. If has a loop, then this loop must belong to. In fact, the loop being in 5

6 would introduces an edge from to, but not in, and the loop being in would introduces an edge from to, but not in, a contradiction. Thus, the loop not being in implies it being in. Since, can have only one loop. Hence, is exactly the set of all non-loop out-edges at the node % in., that is, is natural. By Claims 1 and 3, every minimum edge-cut of is a natural edge-cut of cardinality. Therefore, has super edge-connectivity. Corollary 1. If has super edge-connectivity, then for has super connectivity. The counterexample in Fig. 1 tells us that in general, a digraph having super connectivity may not have super edge-connectivity. However, Theorem 1 tells us that this is true for a special family of digraphs line digraphs. 3 Applications When an interconnection network contains possible node-faults there are two fault-tolerance measures in the literature. The first one is the connectivity. The second one is the probability of the remaining network being connected when nodes fail with certain probabilistic distribution. Let be the family of all node-cuts of a digraph. For each set of nodes, let denote the probability of all nodes in being faulty. By the inclusion-exclusion principle, connected disconnected # %! ) % When all nodes ) are independent, ( % nodes in (in then ' ) is a product of failure probabilities of ). Therefore, if every node has the same fault probability of a small number, connected depends mainly on the number of the minimum node-cuts. The number 6

7 of the minimum natural node-cuts is certainly a lower bound of the number of minimum node-cuts. Therefore, the super-connected digraph reaches maximum fault-tolerance in certain sense. Given a degree bound, many constructions have been found in the literature to achieve the maximum connectivity and near-minimum diameter [21, 8], including the Kautz digraphs [16], cyclically-modified de Bruijn digraphs [8, 17], generalized cycles [10], etc. Do they also have super connectivity? In this section, we study some of them. Example 1. The Kautz digraph is the complete digraph on vertices without loop and in general [16]. We claim that has super line-connectivity. Consider a line-cut of size in, which breaks the vertex set of into two parts and such that every link from to belongs to. Note that there are links from to and each vertex has out-links. Therefore, line-cut.. That is,. Thus, or. Since implies, is a natural Corollary 2. The Kautz digraph has super connectivity for. Example 2. Ferrero and Padró [10] studied a family of digraphs where * for and is a -partite digraph that some ( and that an edge % exists if and only if & and & ). We claim that for and, * has super lineconnectivity. To show it, consider a line-cut of cardinality at most, which breaks the vertex set into two parts and such that every edge from to belongs to. Denote and. Then we must have First, we show that there exists an such that! or #. For contradiction, suppose such an does not exist. Then for every,!%& and #'. Note that ( #. Therefore, a contradiction. # ) 7 for

8 Now, suppose, without loss of generality, that for some. Since )!&, there exists an such that and (denote ). Without loss of generality, assume and ). Then. This implies and ). This in turn implies!. Hence,. Since contains no loop, consists of out-edges at the node in. This means that is natural. Corollary 3. For,, and, has super connectivity. Example 3. Ferrero and Padró [10] also studied a family of digraphs. Here, is a directed cycle of length, is the generalized Kautz digraph with node set +) and edge set *& ). The operation is defined as follows. Let and, then has vertex set and link set. %& & ). It is not hard to prove that for and that is a -partite digraph with. Moreover, each node in has out-edges which reach consecutive nodes in, the out-edges of those consecutive nodes in reach consecutive nodes in,, that is, take each node in as a root, we can find a complete -nary tree such that the second level consists of consecutive nodes in, the third level consists of consecutive nodes in,..., the -level consists of consecutive nodes in # which are exactly those nodes in other than the root. Now, we claim that has super line-connectivity. To show it, consider a line-cut with cardinality at most, which breaks the node set into two nonempty parts and such that every edge from to belongs to. First, we note that there must exist an such that and and (note: contradicting.. In fact, if such an does not exist, then there must exist ). It follows that contains all edges from to Without loss of generality, we may assume and. Construct a digraph as follows: %(& if and only if there exists a path of length from to in. From the property of described above, it is easy to see that is isomorphic to. Note that if there exists a path of length from to 8,

9 in, then such a path is unique. This means that each edge of uniquely corresponds to a path of length between two nodes in. Let be the set of edges corresponding to those paths containing an edge in. Then is an line-cut of. Since each edge in can be contained in exactly such paths (Fig. 3), we have. Note that has super line- 1 2 d d k connectivity. Therefore, that must break all 1 d p-k-1 Figure 3: paths pass through the same edge. or. First, assume paths which form a complete -nary tree rooted at a node in be done only if consists of out-edges at the root. Hence, is natural. Similarly, also implies that is natural.. This means. This can Corollary 4. For and, has super connectivity. 4 Discussion The line digraph iteration preserves the degree, that is, the line digraph of a -regular digraph is still -regular. This is a very important property different from line graph iteration. This property enable the line digraph iteration to become a very useful tool to construct interconnection networks. In this paper, we showed that the line-digraph iteration preserves the super connectivity under certain condition. We also established that two families of generalized cycles are super connected. Recently, generalized cycles have been studied extensively [4, 5, 10, 12]. They contain many important inter- 9

10 connection networks as special cases. References [1] J.C. Bermond, N. Homobono, and C. Peyrat, Large fault-tolerant interconnection networks, Graphs and Combinatorics, (1989). [2] F.T. Boesch and J.F. Wang, Super line-connectivity properties of circulant graphs, SIAM J. Algebraic Discrete Methods 7 (1986), no. 1, [3] N.G. de Bruijn, A combinatorial problem, Koninklijke Nederlandse Academie van Wetenschappen Proc., A49 (1946) [4] J.M. Brunat, M. Espona, M.A. Fiol, and O. Serra, Cayley digraphs from complete generalized cycles, European J. Combin. 20 (1999) [5] J.M. Brunat, M. Maureso, and M. Mora, Endo-circulant digraphs: connectivity and generalized cycles Discrete Math. 197/198 (1999) [6] F. Cao, D.-Z. Du, D.F. Hsu, L. Hwang, and W. Wu, Super line-connectivity of consecutivedigraphs, Discrete Mathematics, 183 (1998) [7] F. Cao, D.-Z. Du, S. Han, D. Kim, and T. Yu, Line digraph iterations and diameter vulnerability, Taiwanese Journal of Mathematics, 3 (1999) [8] D.-Z. Du and F.K. Hwang, Generalized de Bruijn digraphs, Networks, 18(1988) [9] D.-Z. Du, Y.D. Lyuu, and D.F. Hsu, Line digraph iterations and connectivity analysis of de Bruijn and Kautz graphs, IEEE Transactions on Computers, 42 (1993) [10] D. Ferrero and C. Padró, Disjoint paths of bounded length in large generalized cycles, Discrete Mathematics 197/198 (1999), [11] M.A. Fiol, J.L.A. Yebra, and I. Alegre, Line digraph iterations and the IEEE Trans. on Computers, C-33 (1984) digraph problem, 10

11 [12] J. Gómez, C. Padró, and S. Perennes, Large generalized cycles Discrete Appl. Math. 89 (1998) [13] N. Homobono and C. Peyrat, Connectivity of Imase and Itoh digraphs, IEEE Trans. on Computers, (1988). [14] M. Imase and M. Itoh, A design for directed graph with minimum diameter, IEEE Trans. on Computers, C-32 (1983) [15] M. Imase, I. Soneoka, and K. Okada, A fault tolerant processor interconnection network, Systems and Computers in Japan, 17:8 (1986) [16] W.H. Kautz, Bounds on directed ( ) graphs, Theory of cellular logic networks and machines, AFCRL Final Report, (1968) [17] V.P. Kumar and S.M. Reddy, A class of graphs for fault-tolerant processor interconnections, IEEE 1984 Int. Conf. Distributed Computing Systems, (1984) [18] Q.L. Li and Q. Li, Super edge connectivity properties of connected edge symmetric graphs, Networks 33 (1999) [19] C. Padró and P. Morrillo, Diameter-vulnerability of iterated line digraphs, Discrete Mathematics, 149 (1996) [20] C. Padró, P. Morrillo, and E. Llobet, Diameter-vulnerability of large bipartite digraphs, Discrete Applied Mathematics, 64 (1996) [21] S.M. Reddy, J.G. Kuhl, S.H. Hosseini, and H. Lee, On digraphs with minimum diameter and maximum connectivity, Proc. of 20th Ann. Allerton Conf. (1982) [22] T. Soneoka, Super edge-connectivity of dense digraphs and graphs, Discrete Appl. Math. 37/38 (1992),

On Super and Restricted Connectivity of Some Interconnection Networks

On Super and Restricted Connectivity of Some Interconnection Networks On Super and Restricted Connectivity of Some Interconnection Networks Jun-Ming Xu Jian-Wei Wang Wei-Wei Wang Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026,

More information

Super Connectivity of Line Graphs and Digraphs

Super Connectivity of Line Graphs and Digraphs Acta Mathematicae Applicatae Sinica, English Series Vol. 22, No. 1 (2006) 43 48 Super Connectivity of Line Graphs and Digraphs Min Lü 1, Jun-Ming Xu 2 1 Department of Computer Science and Technology, University

More information

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs

New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs New Constructions of Non-Adaptive and Error-Tolerance Pooling Designs Hung Q Ngo Ding-Zhu Du Abstract We propose two new classes of non-adaptive pooling designs The first one is guaranteed to be -error-detecting

More information

Super connectivity of line graphs

Super connectivity of line graphs Information Processing Letters 94 (2005) 191 195 www.elsevier.com/locate/ipl Super connectivity of line graphs Jun-Ming Xu a,,minlü a, Meijie Ma a, Angelika Hellwig b a Department of Mathematics, University

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

On Cyclic Kautz Digraphs

On Cyclic Kautz Digraphs On Cyclic Kautz Digraphs K. Böhmová a, C. Dalfó b, C. Huemer b a Dept. of Computer Science, ETH Zürich, Switzerland katerina.boehmova@inf.ethz.ch b Dept. de Matemàtica, Universitat Politècnica de Catalunya,

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Restricted edge connectivity and restricted connectivity of graphs

Restricted edge connectivity and restricted connectivity of graphs Restricted edge connectivity and restricted connectivity of graphs Litao Guo School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Xiaofeng Guo

More information

The super connectivity of augmented cubes

The super connectivity of augmented cubes Information Processing Letters 106 (2008) 59 63 www.elsevier.com/locate/ipl The super connectivity of augmented cubes Meijie Ma a,, Guizhen Liu b, Jun-Ming Xu c a Department of Mathematics, Zhejiang Normal

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Distance-Hereditary Embeddings of Circulant Graphs

Distance-Hereditary Embeddings of Circulant Graphs Distance-Hereditary Embeddings of Circulant Graphs Carmen Martínez, Ramón Beivide Universidad de Cantabria Dept. Electrónica y Computadores Los Castros s/n. 39005. Santander. Spain {carmenmf, mon}@atc.unican.es

More information

Component connectivity of crossed cubes

Component connectivity of crossed cubes Component connectivity of crossed cubes School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Abstract: Let G = (V, E) be a connected graph. A r-component

More information

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1

ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 Volume 1 Issue 1 July 015 Discrete Applied Mathematics 180 (015) ON HARMONIOUS COLORINGS OF REGULAR DIGRAPHS 1 AUTHORS INFO S.M.Hegde * and Lolita Priya Castelino Department of Mathematical and Computational

More information

Topological Structure and Analysis of Interconnection Networks

Topological Structure and Analysis of Interconnection Networks Topological Structure and Analysis of Interconnection Networks Network Theory and Applications Volume 7 Managing Editors: Ding-Zhu Du, University of Minnesota, U.S.A. and Cauligi Raghavendra, University

More information

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Tao Wang a,, Qinglin Yu a,b a Center for Combinatorics, LPMC Nankai University, Tianjin, China b Department of Mathematics and Statistics

More information

Some Results on the Incidence Coloring Number of Chordal Rings *

Some Results on the Incidence Coloring Number of Chordal Rings * Some Results on the Incidence Coloring Number of Chordal Rings * Kung-Fu Ding, Kung-Jui Pai,+ and Ro-Yu Wu Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei

More information

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE**

ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** Chin. Ann. of Math. 23B:(2002),87-9. ON THE EMPTY CONVEX PARTITION OF A FINITE SET IN THE PLANE** XU Changqing* DING Ren* Abstract The authors discuss the partition of a finite set of points in the plane

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1.

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1. Lecturer: Scribe: Meena Mahajan Rajesh Chitnis Matchings in Graphs Meeting: 1 6th Jan 010 Most of the material in this lecture is taken from the book Fast Parallel Algorithms for Graph Matching Problems

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

Cospectral digraphs from locally line digraphs

Cospectral digraphs from locally line digraphs Cospectral digraphs from locally line digraphs C. Dalfó a, M. A. Fiol b arxiv:1604.04448v1 [math.co] 15 Apr 2016 a,b Departament de Matemàtiques, Universitat Politècnica de Catalunya b Barcelona Graduate

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

Disjoint directed cycles

Disjoint directed cycles Disjoint directed cycles Noga Alon Abstract It is shown that there exists a positive ɛ so that for any integer k, every directed graph with minimum outdegree at least k contains at least ɛk vertex disjoint

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

The Connectivity and Diameter of Second Order Circuit Graphs of Matroids

The Connectivity and Diameter of Second Order Circuit Graphs of Matroids Graphs and Combinatorics (2012) 28:737 742 DOI 10.1007/s00373-011-1074-6 ORIGINAL PAPER The Connectivity and Diameter of Second Order Circuit Graphs of Matroids Jinquan Xu Ping Li Hong-Jian Lai Received:

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

FOUR EDGE-INDEPENDENT SPANNING TREES 1

FOUR EDGE-INDEPENDENT SPANNING TREES 1 FOUR EDGE-INDEPENDENT SPANNING TREES 1 Alexander Hoyer and Robin Thomas School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA ABSTRACT We prove an ear-decomposition theorem

More information

Smarandache Directionally n-signed Graphs A Survey

Smarandache Directionally n-signed Graphs A Survey International J.Math. Combin. Vol.2(2013), 34-43 Smarandache Directionally n-signed Graphs A Survey P.Siva Kota Reddy (Department of Mathematics, Acharya Institute of Technology, Soladevanahalli, Bangalore-560

More information

Monochromatic loose-cycle partitions in hypergraphs

Monochromatic loose-cycle partitions in hypergraphs Monochromatic loose-cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 27 Budapest, H-364, Hungary gyarfas.andras@renyi.mta.hu

More information

Constructions of hamiltonian graphs with bounded degree and diameter O(log n)

Constructions of hamiltonian graphs with bounded degree and diameter O(log n) Constructions of hamiltonian graphs with bounded degree and diameter O(log n) Aleksandar Ilić Faculty of Sciences and Mathematics, University of Niš, Serbia e-mail: aleksandari@gmail.com Dragan Stevanović

More information

Sharp lower bound for the total number of matchings of graphs with given number of cut edges

Sharp lower bound for the total number of matchings of graphs with given number of cut edges South Asian Journal of Mathematics 2014, Vol. 4 ( 2 ) : 107 118 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Sharp lower bound for the total number of matchings of graphs with given number of cut

More information

On vertex-coloring edge-weighting of graphs

On vertex-coloring edge-weighting of graphs Front. Math. China DOI 10.1007/s11464-009-0014-8 On vertex-coloring edge-weighting of graphs Hongliang LU 1, Xu YANG 1, Qinglin YU 1,2 1 Center for Combinatorics, Key Laboratory of Pure Mathematics and

More information

ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS

ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS Ann. of Appl. Math. 34:3(2018), 319-330 ON THE CONDITIONAL EDGE CONNECTIVITY OF ENHANCED HYPERCUBE NETWORKS Yanjuan Zhang, Hongmei Liu, Dan Jin (College of Science China Three Gorges University, Yichang

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

Isometric Cycles, Cutsets, and Crowning of Bridged Graphs

Isometric Cycles, Cutsets, and Crowning of Bridged Graphs Isometric Cycles, Cutsets, and Crowning of Bridged Graphs Tao Jiang, 1 Seog-Jin Kim, 2 and Douglas B. West 3 1 DEPARTMENT OF MATHEMATICS AND STATISTICS MIAMI UNIVERSITY OXFORD, OHIO 45056 E-mail: jiangt@muohio.edu

More information

Simultaneous Diagonal Flips in Plane Triangulations

Simultaneous Diagonal Flips in Plane Triangulations @ _ d j 5 6 5 6 Simultaneous Diagonal Flips in Plane Triangulations Prosenjit Bose Jurek Czyzowicz Zhicheng Gao Pat Morin David R. Wood Abstract Simultaneous diagonal flips in plane triangulations are

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME

PLANAR GRAPH BIPARTIZATION IN LINEAR TIME PLANAR GRAPH BIPARTIZATION IN LINEAR TIME SAMUEL FIORINI, NADIA HARDY, BRUCE REED, AND ADRIAN VETTA Abstract. For each constant k, we present a linear time algorithm that, given a planar graph G, either

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Independence Number and Cut-Vertices

Independence Number and Cut-Vertices Independence Number and Cut-Vertices Ryan Pepper University of Houston Downtown, Houston, Texas 7700 pepperr@uhd.edu Abstract We show that for any connected graph G, α(g) C(G) +1, where α(g) is the independence

More information

Generalized Pebbling Number

Generalized Pebbling Number International Mathematical Forum, 5, 2010, no. 27, 1331-1337 Generalized Pebbling Number A. Lourdusamy Department of Mathematics St. Xavier s College (Autonomous) Palayamkottai - 627 002, India lourdugnanam@hotmail.com

More information

On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs

On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs Information Processing Letters 86 (2003) 79 85 www.elsevier.com/locate/ipl On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs Yosuke Kikuchi, Yukio Shibata Department

More information

Augmenting Trees so that Every Three Vertices Lie on a Cycle

Augmenting Trees so that Every Three Vertices Lie on a Cycle Augmenting Trees so that Every Three Vertices Lie on a Cycle Peter Dankelmann School of Mathematical and Statistical Sciences, University of Natal, Durban, 4041, South Africa Wayne Goddard School of Geological

More information

ON A WEAKER VERSION OF SUM LABELING OF GRAPHS

ON A WEAKER VERSION OF SUM LABELING OF GRAPHS ON A WEAKER VERSION OF SUM LABELING OF GRAPHS IMRAN JAVAID, FARIHA KHALID, ALI AHMAD and M. IMRAN Communicated by the former editorial board In this paper, we introduce super weak sum labeling and weak

More information

Component Connectivity of Generalized Petersen Graphs

Component Connectivity of Generalized Petersen Graphs March 11, 01 International Journal of Computer Mathematics FeHa0 11 01 To appear in the International Journal of Computer Mathematics Vol. 00, No. 00, Month 01X, 1 1 Component Connectivity of Generalized

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Complete Bipartite Graphs with No Rainbow Paths

Complete Bipartite Graphs with No Rainbow Paths International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 10, 455-462 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2016.6951 Complete Bipartite Graphs with No Rainbow

More information

Erdös-Gallai-type results for conflict-free connection of graphs

Erdös-Gallai-type results for conflict-free connection of graphs Erdös-Gallai-type results for conflict-free connection of graphs Meng Ji 1, Xueliang Li 1,2 1 Center for Combinatorics and LPMC arxiv:1812.10701v1 [math.co] 27 Dec 2018 Nankai University, Tianjin 300071,

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Forced orientation of graphs

Forced orientation of graphs Forced orientation of graphs Babak Farzad Mohammad Mahdian Ebad S. Mahmoodian Amin Saberi Bardia Sadri Abstract The concept of forced orientation of graphs was introduced by G. Chartrand et al. in 1994.

More information

Non-zero disjoint cycles in highly connected group labelled graphs

Non-zero disjoint cycles in highly connected group labelled graphs Non-zero disjoint cycles in highly connected group labelled graphs Ken-ichi Kawarabayashi Paul Wollan Abstract Let G = (V, E) be an oriented graph whose edges are labelled by the elements of a group Γ.

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information

A Distributed Formation of Orthogonal Convex Polygons in Mesh-Connected Multicomputers

A Distributed Formation of Orthogonal Convex Polygons in Mesh-Connected Multicomputers A Distributed Formation of Orthogonal Convex Polygons in Mesh-Connected Multicomputers Jie Wu Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 3343 Abstract The

More information

Connectivity, Graph Minors, and Subgraph Multiplicity

Connectivity, Graph Minors, and Subgraph Multiplicity Connectivity, Graph Minors, and Subgraph Multiplicity David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 92-06 January 10, 1992 Abstract

More information

The competition numbers of complete tripartite graphs

The competition numbers of complete tripartite graphs The competition numbers of complete tripartite graphs SUH-RYUNG KIM Department of Mathematics Education, Seoul National University, 151-742, Korea srkim@snuackr YOSHIO SANO Research Institute for Mathematical

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Preimages of Small Geometric Cycles

Preimages of Small Geometric Cycles Preimages of Small Geometric Cycles Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY scockbur@hamilton.edu Abstract A graph G is a homomorphic preimage of another graph H, or equivalently

More information

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs. 18.438 Advanced Combinatorial Optimization September 17, 2009 Lecturer: Michel X. Goemans Lecture 3 Scribe: Aleksander Madry ( Based on notes by Robert Kleinberg and Dan Stratila.) In this lecture, we

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS

Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Discrete Mathematics August 20, 2014 Lecture 8: PATHS, CYCLES AND CONNECTEDNESS Instructor: Sushmita Ruj Scribe: Ishan Sahu & Arnab Biswas 1 Paths, Cycles and Connectedness 1.1 Paths and Cycles 1. Paths

More information

Properly even harmonious labelings of disconnected graphs

Properly even harmonious labelings of disconnected graphs Available online at www.sciencedirect.com ScienceDirect AKCE International Journal of Graphs and Combinatorics 12 (2015) 193 203 www.elsevier.com/locate/akcej Properly even harmonious labelings of disconnected

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

Algorithms for minimum m-connected k-tuple dominating set problem

Algorithms for minimum m-connected k-tuple dominating set problem Theoretical Computer Science 381 (2007) 241 247 www.elsevier.com/locate/tcs Algorithms for minimum m-connected k-tuple dominating set problem Weiping Shang a,c,, Pengjun Wan b, Frances Yao c, Xiaodong

More information

Collapsible Graphs and Hamiltonicity of Line Graphs

Collapsible Graphs and Hamiltonicity of Line Graphs Graphs and Combinatorics (014) 30:501 510 DOI 10.1007/s00373-01-180-x ORIGINAL PAPER Collapsible Graphs and Hamiltonicity of Line Graphs Weihua Yang Hong-Jian Lai Hao Li Xiaofeng Guo Received: 19 February

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs Nicolas Lichiardopol Attila Pór Jean-Sébastien Sereni Abstract In 1981, Bermond and Thomassen conjectured that every digraph

More information

On the Convexity Number of Graphs

On the Convexity Number of Graphs On the Convexity Number of Graphs Mitre C. Dourado 1, Fábio Protti, Dieter Rautenbach 3, and Jayme L. Szwarcfiter 4 1 ICE, Universidade Federal Rural do Rio de Janeiro and NCE - UFRJ, Brazil, email: mitre@nce.ufrj.br

More information

Hypergraphs With a Unique Perfect Matching

Hypergraphs With a Unique Perfect Matching Hypergraphs With a Unique Perfect Matching Aaron Spindel Under the direction of Dr. John S. Caughman February 26, 2012 Introduction This presentation discusses the paper On the maximum number of edges

More information

Algorithmic aspects of k-domination in graphs

Algorithmic aspects of k-domination in graphs PREPRINT 國立臺灣大學數學系預印本 Department of Mathematics, National Taiwan University www.math.ntu.edu.tw/~mathlib/preprint/2012-08.pdf Algorithmic aspects of k-domination in graphs James K. Lan and Gerard Jennhwa

More information

A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs

A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs A note on the number of edges guaranteeing a C 4 in Eulerian bipartite digraphs Jian Shen Department of Mathematics Southwest Texas State University San Marcos, TX 78666 email: js48@swt.edu Raphael Yuster

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

On median graphs and median grid graphs

On median graphs and median grid graphs On median graphs and median grid graphs Sandi Klavžar 1 Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia e-mail: sandi.klavzar@uni-lj.si Riste Škrekovski

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA Inter national Journal of Pure and Applied Mathematics Volume 113 No. 10 2017, 334 342 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Abstract: CLASSES

More information

Acyclic Subgraphs of Planar Digraphs

Acyclic Subgraphs of Planar Digraphs Acyclic Subgraphs of Planar Digraphs Noah Golowich Research Science Institute Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts, U.S.A. ngolowich@college.harvard.edu

More information

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices Bottleneck Steiner Tree with Bounded Number of Steiner Vertices A. Karim Abu-Affash Paz Carmi Matthew J. Katz June 18, 2011 Abstract Given a complete graph G = (V, E), where each vertex is labeled either

More information

Approximating Fault-Tolerant Steiner Subgraphs in Heterogeneous Wireless Networks

Approximating Fault-Tolerant Steiner Subgraphs in Heterogeneous Wireless Networks Approximating Fault-Tolerant Steiner Subgraphs in Heterogeneous Wireless Networks Ambreen Shahnaz and Thomas Erlebach Department of Computer Science University of Leicester University Road, Leicester LE1

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

ON VERTEX b-critical TREES. Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray

ON VERTEX b-critical TREES. Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray Opuscula Math. 33, no. 1 (2013), 19 28 http://dx.doi.org/10.7494/opmath.2013.33.1.19 Opuscula Mathematica ON VERTEX b-critical TREES Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray Communicated

More information

Complementary Acyclic Weak Domination Preserving Sets

Complementary Acyclic Weak Domination Preserving Sets International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 30-9364, ISSN (Print): 30-9356 ijresorg Volume 4 Issue 7 ǁ July 016 ǁ PP 44-48 Complementary Acyclic Weak Domination

More information

On the Graceful Cartesian Product of Alpha-Trees

On the Graceful Cartesian Product of Alpha-Trees Theory and Applications of Graphs Volume 4 Issue 1 Article 3 017 On the Graceful Cartesian Product of Alpha-Trees Christian Barrientos Clayton State University, chr_barrientos@yahoo.com Sarah Minion Clayton

More information

Rainbow game domination subdivision number of a graph

Rainbow game domination subdivision number of a graph Rainbow game domination subdivision number of a graph J. Amjadi Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran j-amjadi@azaruniv.edu Abstract The rainbow game domination

More information

Monochromatic path and cycle partitions in hypergraphs

Monochromatic path and cycle partitions in hypergraphs Monochromatic path and cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas.andras@renyi.mta.hu

More information

Agreedy approximation for minimum connected dominating sets

Agreedy approximation for minimum connected dominating sets Theoretical Computer Science 329 2004) 325 330 www.elsevier.com/locate/tcs Note Agreedy approximation for minimum connected dominating sets Lu Ruan a, Hongwei Du b, Xiaohua Jia b,,1, Weili Wu c,1,2, Yingshu

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information