DOWNLOAD PDF LINKED LIST PROGRAMS IN DATA STRUCTURE

Size: px
Start display at page:

Download "DOWNLOAD PDF LINKED LIST PROGRAMS IN DATA STRUCTURE"

Transcription

1 Chapter 1 : What is an application of linear linked list data structures? - Quora A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations. The elements in a linked list are linked using pointers as shown in the below image: In simple words, a linked list consists of nodes where each node contains a data field and a reference. If the space reserved for the dynamic array is exceeded, it is reallocated and possibly copied, which is an expensive operation. Linked lists have several advantages over dynamic arrays. Insertion or deletion of an element at a specific point of a list, assuming that we have indexed a pointer to the node before the one to be removed, or before the insertion point already, is a constant-time operation otherwise without this reference it is O n, whereas insertion in a dynamic array at random locations will require moving half of the elements on average, and all the elements in the worst case. While one can "delete" an element from an array in constant time by somehow marking its slot as "vacant", this causes fragmentation that impedes the performance of iteration. Moreover, arbitrarily many elements may be inserted into a linked list, limited only by the total memory available; while a dynamic array will eventually fill up its underlying array data structure and will have to reallocateâ an expensive operation, one that may not even be possible if memory is fragmented, although the cost of reallocation can be averaged over insertions, and the cost of an insertion due to reallocation would still be amortized O 1. An array from which many elements are removed may also have to be resized in order to avoid wasting too much space. On the other hand, dynamic arrays as well as fixed-size array data structures allow constant-time random access, while linked lists allow only sequential access to elements. Singly linked lists, in fact, can be easily traversed in only one direction. Sequential access on arrays and dynamic arrays is also faster than on linked lists on many machines, because they have optimal locality of reference and thus make good use of data caching. Another disadvantage of linked lists is the extra storage needed for references, which often makes them impractical for lists of small data items such as characters or boolean values, because the storage overhead for the links may exceed by a factor of two or more the size of the data. In contrast, a dynamic array requires only the space for the data itself and a very small amount of control data. Some hybrid solutions try to combine the advantages of the two representations. Unrolled linked lists store several elements in each list node, increasing cache performance while decreasing memory overhead for references. CDR coding does both these as well, by replacing references with the actual data referenced, which extends off the end of the referencing record. A good example that highlights the pros and cons of using dynamic arrays vs. The Josephus problem is an election method that works by having a group of people stand in a circle. Starting at a predetermined person, you count around the circle n times. Once you reach the nth person, take them out of the circle and have the members close the circle. Then count around the circle the same n times and repeat the process, until only one person is left. That person wins the election. This shows the strengths and weaknesses of a linked list vs. However, the linked list will be poor at finding the next person to remove and will need to search through the list until it finds that person. A dynamic array, on the other hand, will be poor at deleting nodes or elements as it cannot remove one node without individually shifting all the elements up the list by one. However, it is exceptionally easy to find the nth person in the circle by directly referencing them by their position in the array. The list ranking problem concerns the efficient conversion of a linked list representation into an array. Although trivial for a conventional computer, solving this problem by a parallel algorithm is complicated and has been the subject of much research. A balanced tree has similar memory access patterns and space overhead to a linked list while permitting much more efficient indexing, taking O log n time instead of O n for a random access. However, insertion and deletion operations are more expensive due to the overhead of tree manipulations to maintain balance. Schemes exist for trees to automatically maintain themselves in a balanced state: AVL trees or red-black trees. Singly linked linear lists vs. A singly linked linear list is a recursive data structure, because it contains a pointer to a smaller object of the same type. For that reason, many operations on singly linked linear lists such as merging two lists, or enumerating the elements in reverse order often have very simple recursive algorithms, much simpler than any solution using iterative commands. While those recursive solutions can be adapted for doubly linked and Page 1

2 circularly linked lists, the procedures generally need extra arguments and more complicated base cases. Linear singly linked lists also allow tail-sharing, the use of a common final portion of sub-list as the terminal portion of two different lists. In particular, if a new node is added at the beginning of a list, the former list remains available as the tail of the new oneâ a simple example of a persistent data structure. Again, this is not true with the other variants: In particular, end-sentinel nodes can be shared among singly linked non-circular lists. The same end-sentinel node may be used for every such list. In Lisp, for example, every proper list ends with a link to a special node, denoted by nil or, whose CAR and CDR links point to itself. The advantages of the fancy variants are often limited to the complexity of the algorithms, not in their efficiency. A circular list, in particular, can usually be emulated by a linear list together with two variables that point to the first and last nodes, at no extra cost. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list in case of the first node or the link field in the previous node. Some algorithms require access in both directions. On the other hand, doubly linked lists do not allow tail-sharing and cannot be used as persistent data structures Circularly linked vs. In these applications, a pointer to any node serves as a handle to the whole list. With a circular list, a pointer to the last node gives easy access also to the first node, by following one link. Thus, in applications that require access to both ends of the list e. A circular list can be split into two circular lists, in constant time, by giving the addresses of the last node of each piece. The operation consists in swapping the contents of the link fields of those two nodes. Applying the same operation to any two nodes in two distinct lists joins the two list into one. This property greatly simplifies some algorithms and data structures, such as the quad-edge and face-edge. The simplest representation for an empty circular list when such a thing makes sense is a null pointer, indicating that the list has no nodes. Without this choice, many algorithms have to test for this special case, and handle it separately. By contrast, the use of null to denote an empty linear list is more natural and often creates fewer special cases. Using sentinel nodes[ edit ] Sentinel node may simplify certain list operations, by ensuring that the next or previous nodes exist for every element, and that even empty lists have at least one node. One may also use a sentinel node at the end of the list, with an appropriate data field, to eliminate some end-of-list tests. Another example is the merging two sorted lists: However, sentinel nodes use up extra space especially in applications that use many short lists, and they may complicate other operations such as the creation of a new empty list. However, if the circular list is used merely to simulate a linear list, one may avoid some of this complexity by adding a single sentinel node to every list, between the last and the first data nodes. With this convention, an empty list consists of the sentinel node alone, pointing to itself via the next-node link. The list handle should then be a pointer to the last data node, before the sentinel, if the list is not empty; or to the sentinel itself, if the list is empty. The same trick can be used to simplify the handling of a doubly linked linear list, by turning it into a circular doubly linked list with a single sentinel node. However, in this case, the handle should be a single pointer to the dummy node itself. This makes algorithms for inserting or deleting linked list nodes somewhat subtle. This section gives pseudocode for adding or removing nodes from singly, doubly, and circularly linked lists in-place. Throughout we will use null to refer to an end-of-list marker or sentinel, which may be implemented in a number of ways. Linearly linked lists[ edit ] Singly linked lists[ edit ] Our node data structure will have two fields. We also keep a variable firstnode which always points to the first node in the list, or is null for an empty list. The diagram shows how it works. Inserting a node before an existing one cannot be done directly; instead, one must keep track of the previous node and insert a node after it. This requires updating firstnode. The diagram demonstrates the former. To find and remove a particular node, one must again keep track of the previous element. Inserting to a list before a specific node requires traversing the list, which would have a worst case running time of O n. Appending one linked list to another can be inefficient unless a reference to the tail is kept as part of the List structure, because we must traverse the entire first list in order to find the tail, and then append the second list to this. Thus, if two linearly linked lists are each of length n, list appending has asymptotic time complexity of O. Page 2

3 Chapter 2 : Linked List Program in C Singly linked list is the most basic linked data structure. In this the elements can be placed anywhere in the heap memory unlike array which uses contiguous locations. Simplest programming tutorials for beginners What do you want to learn today? Linked List In this tutorial, you will learn about linked list and its applications. You will also learn how to create and perform different operations on a linked list. In a game of Treasure Hunt, you start by looking for the first clue. When you find it, instead of having the treasure, it has the location of the next clue and so on. You keep following the clues until you get to the treasure. A linked list is similar. It is a series of connected "nodes" that contains the "address" of the next node. Each node can store a data point which may be a number, a string or any other type of data. Also, the last node in the linkedlist can be identified because its next portion points to NULL. How another node is referenced? Some pointer magic is involved. A data item An address of another node We wrap both the data item and the next node reference in a struct as: Each struct node has a data item and a pointer to another struct node. Let us create a simple Linked List with three items to understand how this works. In just a few steps, we have created a simple linkedlist with three nodes. The power of linkedlist comes from the ability to break the chain and rejoin it. Create a new struct node and allocate memory to it. Add its data value as 4 Point its next pointer to the struct node containing 2 as data value Change next pointer of "1" to the node we just created. Doing something similar in an array would have required shifting the positions of all the subsequent elements. Apart from that, linked lists are a great way to learn how pointers work. By practicing how to manipulate linked lists, you can prepare yourself to learn more advanced data structures like graphs and trees. Page 3

4 Chapter 3 : Linked List Data Structure Interview Cake A linked list is a way to store a collection of elements. Like an array these can be character or integers. Each element in a linked list is stored in the form of a node. By Muhammad Asif - February 08, Linked list is a linear data structure. It is a list or chain of nodes where each node stores data as well as points to the next node and previous node also for double linked list in the list. It means that each node contains the data and also the location of the next node. Thus each node of the list is linked logically with the next node through a linkpointer. The head of a linked list is its first node. The tail of a linked list refers to the last node in the list. Last node has a Null reference. A node may contain data of any type. However, all nodes of the list contain the same type data. A simple linked list is shown in the following image. Each node of the linked list has two parts: It stores the actual data. It can consist of one or more fields. These fields are known as data, information, value, cargo, or payload fields. It stores the memory address of the next node. It is usually, known as next link or next pointer. If there is no next node, then a null value is stored in it, to mark the end of the list. In the above image, nodes of the linked list contain two fields: The last node is linked to a terminator that indicates the end of the list. There are two types of linked lists: Sometimes, it is also simply called single linked list It does not contain the address of the previous node. It can be accessed or visited from beginning to its end such as only in one direction. The singly linked list is also known as one-way list or one-way chain. In singly linked list, each node consists of at least two fields. The first field contains the data. This field is called data field more than one data fields can be used in a node to store information. The second field contains the pointer or link to the next node in the list. This field is called next link or next painter field. The next link field of the last node contains a NULL value. The singly linked list that has no node is called empty list. It has a value NULL. Following diagram shows singly linked list with two data fields and one next pointer field. A linked list is accessed with the reference to the address of its first node. Suppose memory address of the first node is The second node is created and its memory address is stored in the next-pointer member of first node. Suppose its memory address is In the above diagram, and represent the memory addresses of third node and fourth node respectively. The last node of the list contains a NULL value in its next-pointer field. Representation of Singly Linked List The storage technique of linked list is different than linear array. The elements or items of a linked list are stored in memory in scattered form but these are linked together through pointers. Each element or item of the linked list is called an object. One object may contain one or more fields. Each node of linked list contains at least two fields. One field is used to store data and the other to store address of memory location of the next object. In this way, the nodes of list are linked together in the form of a chain. The "link" is defined as a pointer to the object "student" which will be used as next-pointer. It is used to store the memory address. It contains the memory address of the next node in the chain. This operator allocates memory for the specified object and returns its memory address to the pointer variable. Its general syntax is as follows: It may be the name of a defined class or structure. Following statements declares a pointer variable "start" to an object "student" and creates a node of "student". It is used to store the memory address of the first or starting object in the singly linked list. The storage memory will be as following image: While creating a new node, the address of the previous node is stored in a pointer variable. The memory address of newly created item is stored in the pointer field of the previous node. The representation of singly linked list having nodes in memory is shown in the following image: The above list is a linear linked list. It does not occupy consecutive memory locations like an array. Each element or item of the list is at a different location. These are at memory addresses,, and Each node has a pointer variable that holds the address of next node. The pointer of the last node does not point to any node. It contains NULL value. The whole list is accessed with reference of the pointer object that holds the starting address of the linked list. Deleting Node The memory allocated through "new" operator will be reserved for a node until the program is terminated. This may create many problems if the size of program is very large. We can de-allocate the memory allocated with "new" operator and it can be re-allocated for other parts of current program or operating system. The "delete" operator is used to de-allocate memory occupied by a node. The general syntax Page 4

5 of "delete" operator is given below: Linked List Example Programs Example program 1: The following program creates a linked list having 5 real values and finds largest and smallest values from list. Enter 5 real values. Page 5

6 Chapter 4 : Linked list in C Programming Simplified A linked list is a sequence of data structures, which are connected together via links. Linked List is a sequence of links which contains items. Each link contains a connection to another link. Linked list is the second most-used data structure after array. Data Structure and Algorithms - Linked List Advertisements Next Page A linked list is a sequence of data structures, which are connected together via links. Linked List is a sequence of links which contains items. Each link contains a connection to another link. Linked list is the second most-used data structure after array. Following are the important terms to understand the concept of Linked List. Linked List Representation Linked list can be visualized as a chain of nodes, where every node points to the next node. As per the above illustration, following are the important points to be considered. Linked List contains a link element called first. Each link carries a data field s and a link field called next. Each link is linked with its next link using its next link. Last link carries a link as null to mark the end of the list. Types of Linked List Following are the various types of linked list. Basic Operations Following are the basic operations supported by a list. Insertion Operation Adding a new node in linked list is a more than one step activity. We shall learn this with diagrams here. First, create a node using the same structure and find the location where it has to be inserted. While inserting it at the end, the second last node of the list should point to the new node and the new node will point to NULL. Deletion Operation Deletion is also a more than one step process. We shall learn with pictorial representation. First, locate the target node to be removed, by using searching algorithms. Now, using the following code, we will remove what the target node is pointing at. We can keep that in memory otherwise we can simply deallocate memory and wipe off the target node completely. Reverse Operation This operation is a thorough one. We need to make the last node to be pointed by the head node and reverse the whole linked list. First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall make all left side nodes point to their previous nodes one by one. Except the node first node pointed by the head node, all nodes should point to their predecessor, making them their new successor. The first node will point to NULL. The linked list is now reversed. To see linked list implementation in C programming language, please click here. Chapter 5 : C++ : Linked lists in C++ (Singly linked list) Linked list is one of the most important data structures. We often face situations, where the data is dynamic in nature and number of data can't be predicted or the number of data keeps changing during program execution. Chapter 6 : C Program to Create Singly Linked List.using Node Structure - Data Structure - theinnatdunvill The C programs in this section provides various implementations of other data structures using linked list. It has programs to implement a Stack, to implement a Queue, to implement a Doubly Linked List, a Circular Doubly Linked List and a Binary Tree using linked list. Chapter 7 : Linked list - Wikipedia Linked list is one of the fundamental data structures in C. Knowledge of linked lists is must for C programmers. This article explains the fundamentals of C linked list with an example C program. Linked list is a dynamic data structure whose length can be increased or decreased at run time. How. Chapter 8 : C++ Linked List Data Structure (with examples) - CodeHim Enter the data: 10 Do you want to creat another: y Enter the data: 20 Do you want to creat another: y Enter the data: 30 Do you want to creat another: n The Linked List: >>>NULL. Page 6

7 Chapter 9 : Singly Linked List Tutorials & Notes Data Structures HackerEarth Linked list is a type of data structure provided in C language to make use of pointer efficiently. Introduction to Linked List It is a data Structure which consists if group of nodes that forms a sequence. Page 7

LINKED LISTS. Abhishek Vashishtha,Deepak Goswami Student, Department of Information, Dronacharya College Of Engineering, Gurgoan, Haryana, India

LINKED LISTS. Abhishek Vashishtha,Deepak Goswami Student, Department of Information, Dronacharya College Of Engineering, Gurgoan, Haryana, India LINKED LISTS Abhishek Vashishtha,Deepak Goswami Student, Department of Information, Dronacharya College Of Engineering, Gurgoan, Haryana, India Abstract- In this paper we are going to throw light on linked

More information

Solution: The examples of stack application are reverse a string, post fix evaluation, infix to postfix conversion.

Solution: The examples of stack application are reverse a string, post fix evaluation, infix to postfix conversion. 1. What is the full form of LIFO? The full form of LIFO is Last In First Out. 2. Give some examples for stack application. The examples of stack application are reverse a string, post fix evaluation, infix

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

III Data Structures. Dynamic sets

III Data Structures. Dynamic sets III Data Structures Elementary Data Structures Hash Tables Binary Search Trees Red-Black Trees Dynamic sets Sets are fundamental to computer science Algorithms may require several different types of operations

More information

DDS Dynamic Search Trees

DDS Dynamic Search Trees DDS Dynamic Search Trees 1 Data structures l A data structure models some abstract object. It implements a number of operations on this object, which usually can be classified into l creation and deletion

More information

Question Bank Subject: Advanced Data Structures Class: SE Computer

Question Bank Subject: Advanced Data Structures Class: SE Computer Question Bank Subject: Advanced Data Structures Class: SE Computer Question1: Write a non recursive pseudo code for post order traversal of binary tree Answer: Pseudo Code: 1. Push root into Stack_One.

More information

LINKED IMPLEMENTATION OF LIST

LINKED IMPLEMENTATION OF LIST LINKED IMPLEMENTATION OF LIST Mohd. Saeed 1, Mayank Gulati 2 1,2 Department of Information Technology, Shri Ramdeo Baba K.N. Engineering College, Nagpur (India) ABSTRACT This paper address about the link

More information

BBM 201 DATA STRUCTURES

BBM 201 DATA STRUCTURES BBM 201 DATA STRUCTURES Lecture 8: Dynamically Allocated Linked Lists 2017-2018 Fall int x; x = 8; int A[4]; An array is stored as one contiguous block of memory. How can we add a fifth element to the

More information

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1.2 ALGORITHMS ALGORITHM An Algorithm is a procedure or formula for solving a problem. It is a step-by-step set of operations to be performed. It is almost

More information

+ Abstract Data Types

+ Abstract Data Types Linked Lists Abstract Data Types An Abstract Data Type (ADT) is: a set of values a set of operations Sounds familiar, right? I gave a similar definition for a data structure. Abstract Data Types Abstract

More information

File Management By : Kaushik Vaghani

File Management By : Kaushik Vaghani File Management By : Kaushik Vaghani File Concept Access Methods File Types File Operations Directory Structure File-System Structure File Management Directory Implementation (Linear List, Hash Table)

More information

COMP171. Hashing.

COMP171. Hashing. COMP171 Hashing Hashing 2 Hashing Again, a (dynamic) set of elements in which we do search, insert, and delete Linear ones: lists, stacks, queues, Nonlinear ones: trees, graphs (relations between elements

More information

Summer Final Exam Review Session August 5, 2009

Summer Final Exam Review Session August 5, 2009 15-111 Summer 2 2009 Final Exam Review Session August 5, 2009 Exam Notes The exam is from 10:30 to 1:30 PM in Wean Hall 5419A. The exam will be primarily conceptual. The major emphasis is on understanding

More information

Linked lists * Nguyen Viet Ha, Truong Ninh Thuan, Vu Quang Dung Linked lists

Linked lists * Nguyen Viet Ha, Truong Ninh Thuan, Vu Quang Dung Linked lists OpenStax-CNX module: m29464 1 Linked lists * Nguyen Viet Ha, Truong Ninh Thuan, Vu Quang Dung This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 2.

More information

CSE 230 Intermediate Programming in C and C++

CSE 230 Intermediate Programming in C and C++ CSE 230 Intermediate Programming in C and C++ Structures and List Processing Fall 2017 Stony Brook University Instructor: Shebuti Rayana http://www3.cs.stonybrook.edu/~cse230/ Self-referential Structure

More information

Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION

Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 15 EXAMPLES OF COMPLEXITY CALCULATION http://milanvachhani.blogspot.in EXAMPLES FROM THE SORTING WORLD Sorting provides a good set of examples for analyzing

More information

EC8393FUNDAMENTALS OF DATA STRUCTURES IN C Unit 3

EC8393FUNDAMENTALS OF DATA STRUCTURES IN C Unit 3 UNIT 3 LINEAR DATA STRUCTURES 1. Define Data Structures Data Structures is defined as the way of organizing all data items that consider not only the elements stored but also stores the relationship between

More information

Functional programming with Common Lisp

Functional programming with Common Lisp Functional programming with Common Lisp Dr. C. Constantinides Department of Computer Science and Software Engineering Concordia University Montreal, Canada August 11, 2016 1 / 81 Expressions and functions

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Main Memory: The Big Picture kernel memory proc struct kernel stack/u area Stack kernel stack/u area Stack kernel stack/u area Stack Data Text (shared)

More information

Ashish Gupta, Data JUET, Guna

Ashish Gupta, Data JUET, Guna Categories of data structures Data structures are categories in two classes 1. Linear data structure: - organized into sequential fashion - elements are attached one after another - easy to implement because

More information

Introduction to Linked List: Review. Source:

Introduction to Linked List: Review. Source: Introduction to Linked List: Review Source: http://www.geeksforgeeks.org/data-structures/linked-list/ Linked List Fundamental data structures in C Like arrays, linked list is a linear data structure Unlike

More information

CS350 - Exam 1 (100 Points)

CS350 - Exam 1 (100 Points) Spring 2013 Name CS350 - Exam 1 (100 Points) 1.(25 points) Stacks and Queues (a) (5) For the values 4, 8, 2, 5, 7, 3, 9 in that order, give a sequence of push() and pop() operations that produce the following

More information

File Directories Associated with any file management system and collection of files is a file directories The directory contains information about

File Directories Associated with any file management system and collection of files is a file directories The directory contains information about 1 File Management 2 File Directories Associated with any file management system and collection of files is a file directories The directory contains information about the files, including attributes, location

More information

Fundamentals of Data Structure

Fundamentals of Data Structure Fundamentals of Data Structure Set-1 1. Which if the following is/are the levels of implementation of data structure A) Abstract level B) Application level C) Implementation level D) All of the above 2.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DATA STRUCTURES ACS002 B. Tech

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory

More information

Lists (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues

Lists (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues (Section 5) Lists, linked lists Implementation of lists in C Other list structures List implementation of stacks, queues, priority queues By: Pramod Parajuli, Department of Computer Science, St. Xavier

More information

File Systems. ECE 650 Systems Programming & Engineering Duke University, Spring 2018

File Systems. ECE 650 Systems Programming & Engineering Duke University, Spring 2018 File Systems ECE 650 Systems Programming & Engineering Duke University, Spring 2018 File Systems Abstract the interaction with important I/O devices Secondary storage (e.g. hard disks, flash drives) i.e.

More information

Heap Management. Heap Allocation

Heap Management. Heap Allocation Heap Management Heap Allocation A very flexible storage allocation mechanism is heap allocation. Any number of data objects can be allocated and freed in a memory pool, called a heap. Heap allocation is

More information

Data Structure Series

Data Structure Series Data Structure Series This series is actually something I started back when I was part of the Sweet.Oblivion staff, but then some things happened and I was no longer able to complete it. So now, after

More information

Hash Table and Hashing

Hash Table and Hashing Hash Table and Hashing The tree structures discussed so far assume that we can only work with the input keys by comparing them. No other operation is considered. In practice, it is often true that an input

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

File System Interface and Implementation

File System Interface and Implementation Unit 8 Structure 8.1 Introduction Objectives 8.2 Concept of a File Attributes of a File Operations on Files Types of Files Structure of File 8.3 File Access Methods Sequential Access Direct Access Indexed

More information

Dynamic Memory Allocation

Dynamic Memory Allocation 1 Dynamic Memory Allocation Anne Bracy CS 3410 Computer Science Cornell University Note: these slides derive from those by Markus Püschel at CMU 2 Recommended Approach while (TRUE) { code a little; test

More information

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May www.jwjobs.net R10 SET - 1 II B. Tech I Semester, Supplementary Examinations, May - 2012 (Com. to CSE, IT, ECC ) Time: 3 hours Max Marks: 75 *******-****** 1. a) Which of the given options provides the

More information

Basic Data Structures (Version 7) Name:

Basic Data Structures (Version 7) Name: Prerequisite Concepts for Analysis of Algorithms Basic Data Structures (Version 7) Name: Email: Concept: mathematics notation 1. log 2 n is: Code: 21481 (A) o(log 10 n) (B) ω(log 10 n) (C) Θ(log 10 n)

More information

FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, 2012 DATA STRUCTURE

FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, 2012 DATA STRUCTURE TED (10)-3071 Reg. No.. (REVISION-2010) Signature. FORTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, 2012 DATA STRUCTURE (Common to CT and IF) [Time: 3 hours (Maximum marks: 100)

More information

MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct.

MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct. MID TERM MEGA FILE SOLVED BY VU HELPER Which one of the following statement is NOT correct. In linked list the elements are necessarily to be contiguous In linked list the elements may locate at far positions

More information

The time and space are the two measure for efficiency of an algorithm.

The time and space are the two measure for efficiency of an algorithm. There are basically six operations: 5. Sorting: Arranging the elements of list in an order (either ascending or descending). 6. Merging: combining the two list into one list. Algorithm: The time and space

More information

Data Structure. Recitation III

Data Structure. Recitation III Data Structure Recitation III Topic Binary Search Abstract Data types Java Interface Linked List Binary search Searching a sorted collection is a common task. A dictionary is a sorted list of word definitions.

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Operating Systems Module 35: File Allocation Methods Module No: CS/OS/35 Quadrant 1 e-text 35.1 Introduction File system is the most visible part of the

More information

CP2 Revision. theme: dynamic datatypes & data structures

CP2 Revision. theme: dynamic datatypes & data structures CP2 Revision theme: dynamic datatypes & data structures structs can hold any combination of datatypes handled as single entity struct { }; ;

More information

Events, Memory Management

Events, Memory Management Events, Memory Management Events, Memory Management 1. Call back, message pumps 2. Call backs vs messages 3. Memory management Callback Program registers and event handler program that is called whenever

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation CS61, Lecture 10 Prof. Stephen Chong October 4, 2011 Announcements 1/2 Assignment 4: Malloc Will be released today May work in groups of one or two Please go to website and enter

More information

Linked lists. Yet another Abstract Data Type Provides another method for providing space-efficient storage of data

Linked lists. Yet another Abstract Data Type Provides another method for providing space-efficient storage of data Linked lists One of the classic "linear structures" What are linked lists? Yet another Abstract Data Type Provides another method for providing space-efficient storage of data What do they look like? Linked

More information

CS 106B Lecture 26: Esoteric Data Structures: Skip Lists and Bloom Filters

CS 106B Lecture 26: Esoteric Data Structures: Skip Lists and Bloom Filters CS 106B Lecture 26: Esoteric Data Structures: Skip Lists and Bloom Filters Monday, August 14, 2017 Programming Abstractions Summer 2017 Stanford University Computer Science Department Lecturer: Chris Gregg

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 File Systems Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) File Systems Disks can do two things: read_block and write_block

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

Definition: A data structure is a way of organizing data in a computer so that it can be used efficiently.

Definition: A data structure is a way of organizing data in a computer so that it can be used efficiently. The Science of Computing I Lesson 4: Introduction to Data Structures Living with Cyber Pillar: Data Structures The need for data structures The algorithms we design to solve problems rarely do so without

More information

Hashing. Hashing Procedures

Hashing. Hashing Procedures Hashing Hashing Procedures Let us denote the set of all possible key values (i.e., the universe of keys) used in a dictionary application by U. Suppose an application requires a dictionary in which elements

More information

About this exam review

About this exam review Final Exam Review About this exam review I ve prepared an outline of the material covered in class May not be totally complete! Exam may ask about things that were covered in class but not in this review

More information

CS32 - Week 2. Umut Oztok. July 1, Umut Oztok CS32 - Week 2

CS32 - Week 2. Umut Oztok. July 1, Umut Oztok CS32 - Week 2 CS32 - Week 2 Umut Oztok July 1, 2016 Arrays A basic data structure (commonly used). Organize data in a sequential way. Arrays A basic data structure (commonly used). Organize data in a sequential way.

More information

Memory Allocation. Static Allocation. Dynamic Allocation. Dynamic Storage Allocation. CS 414: Operating Systems Spring 2008

Memory Allocation. Static Allocation. Dynamic Allocation. Dynamic Storage Allocation. CS 414: Operating Systems Spring 2008 Dynamic Storage Allocation CS 44: Operating Systems Spring 2 Memory Allocation Static Allocation (fixed in size) Sometimes we create data structures that are fixed and don t need to grow or shrink. Dynamic

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 19: Comparison Sorting Algorithms Instructor: Lilian de Greef Quarter: Summer 2017 Today Intro to sorting Comparison sorting Insertion Sort Selection Sort

More information

Elementary Data Structures: Part 1: Arrays, Lists. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Elementary Data Structures: Part 1: Arrays, Lists. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Elementary Data Structures: Part 1: Arrays, Lists CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington 1 Basic Types Types like integers, real numbers, characters.

More information

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11

CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Introduction to Programming Languages and Compilers Charles N. Fischer Lecture 11 CS 536 Spring 2015 1 Handling Overloaded Declarations Two approaches are popular: 1. Create a single symbol table

More information

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes CSE 250 Final Exam Fall 2013 Time: 3 hours. Dec 11, 2013 Total points: 100 14 pages Please use the space provided for each question, and the back of the page if you need to. Please do not use any extra

More information

Table of Contents. Chapter 1: Introduction to Data Structures... 1

Table of Contents. Chapter 1: Introduction to Data Structures... 1 Table of Contents Chapter 1: Introduction to Data Structures... 1 1.1 Data Types in C++... 2 Integer Types... 2 Character Types... 3 Floating-point Types... 3 Variables Names... 4 1.2 Arrays... 4 Extraction

More information

Deallocation Mechanisms. User-controlled Deallocation. Automatic Garbage Collection

Deallocation Mechanisms. User-controlled Deallocation. Automatic Garbage Collection Deallocation Mechanisms User-controlled Deallocation Allocating heap space is fairly easy. But how do we deallocate heap memory no longer in use? Sometimes we may never need to deallocate! If heaps objects

More information

CSC 172 Data Structures and Algorithms. Lecture #9 Spring 2018

CSC 172 Data Structures and Algorithms. Lecture #9 Spring 2018 CSC 172 Data Structures and Algorithms Lecture #9 Spring 2018 SINGLY LINKED LIST 3.1.3 Linked lists We will consider these for Singly linked lists Doubly linked lists Basic Singly Linked List class Node

More information

5 Phases of Software Life Cycle

5 Phases of Software Life Cycle Quiz One Answer Key 5 Phases of Software Life Cycle Lecture: 5/12 Question: #1 Waterfall Model Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, 2005 Pearson Education, Inc. All

More information

3. Fundamental Data Structures

3. Fundamental Data Structures 3. Fundamental Data Structures CH08-320201: Algorithms and Data Structures 233 Data Structures Definition (recall): A data structure is a way to store and organize data in order to facilitate access and

More information

Hashing for searching

Hashing for searching Hashing for searching Consider searching a database of records on a given key. There are three standard techniques: Searching sequentially start at the first record and look at each record in turn until

More information

UNIT-1. Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays.

UNIT-1. Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays. UNIT-1 Chapter 1(Introduction and overview) 1. Asymptotic Notations 2. One Dimensional array 3. Multi Dimensional array 4. Pointer arrays. Chapter 2 (Linked lists) 1. Definition 2. Single linked list 3.

More information

Section 05: Solutions

Section 05: Solutions Section 05: Solutions 1. Memory and B-Tree (a) Based on your understanding of how computers access and store memory, why might it be faster to access all the elements of an array-based queue than to access

More information

Cs301 LetureWise Question from 1 to 22 Lecture. Lecture No 1:

Cs301 LetureWise Question from 1 to 22 Lecture. Lecture No 1: Cs301 LetureWise Question from 1 to 22 Lecture What are the constraints? Lecture No 1: Constraint defines a limitation or restriction on resources of a system. In the computer, we have hard disk, memory

More information

Lists. CITS2200 Data Structures and Algorithms. Topic 9

Lists. CITS2200 Data Structures and Algorithms. Topic 9 CITS2200 Data Structures and Algorithms Topic 9 Lists Why lists? List windows Specification Block representation Singly linked representation Performance comparisons Reading: Lambert and Osborne, Sections

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

Chapter 17. Disk Storage, Basic File Structures, and Hashing. Records. Blocking

Chapter 17. Disk Storage, Basic File Structures, and Hashing. Records. Blocking Chapter 17 Disk Storage, Basic File Structures, and Hashing Records Fixed and variable length records Records contain fields which have values of a particular type (e.g., amount, date, time, age) Fields

More information

CMSC 341 Hashing (Continued) Based on slides from previous iterations of this course

CMSC 341 Hashing (Continued) Based on slides from previous iterations of this course CMSC 341 Hashing (Continued) Based on slides from previous iterations of this course Today s Topics Review Uses and motivations of hash tables Major concerns with hash tables Properties Hash function Hash

More information

COMPUTER SCIENCE 4500 OPERATING SYSTEMS

COMPUTER SCIENCE 4500 OPERATING SYSTEMS Last update: 3/28/2017 COMPUTER SCIENCE 4500 OPERATING SYSTEMS 2017 Stanley Wileman Module 9: Memory Management Part 1 In This Module 2! Memory management functions! Types of memory and typical uses! Simple

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

CS 171: Introduction to Computer Science II. Linked List. Li Xiong

CS 171: Introduction to Computer Science II. Linked List. Li Xiong CS 171: Introduction to Computer Science II Linked List Li Xiong Roadmap Basic data structure Arrays Abstract data types Stacks Queues Implemented using resizing arrays Linked List Concept and implementations

More information

Optimizing Dynamic Memory Management

Optimizing Dynamic Memory Management Optimizing Dynamic Memory Management 1 Goals of this Lecture Help you learn about: Details of K&R heap mgr Heap mgr optimizations related to Assignment #5 Faster free() via doubly-linked list, redundant

More information

CS 445: Data Structures Final Examination: Study Guide

CS 445: Data Structures Final Examination: Study Guide CS 445: Data Structures Final Examination: Study Guide Java prerequisites Classes, objects, and references Access modifiers Arguments and parameters Garbage collection Self-test questions: Appendix C Designing

More information

1. Attempt any three of the following: 15

1. Attempt any three of the following: 15 (Time: 2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written

More information

Advanced Algorithms. Class Notes for Thursday, September 18, 2014 Bernard Moret

Advanced Algorithms. Class Notes for Thursday, September 18, 2014 Bernard Moret Advanced Algorithms Class Notes for Thursday, September 18, 2014 Bernard Moret 1 Amortized Analysis (cont d) 1.1 Side note: regarding meldable heaps When we saw how to meld two leftist trees, we did not

More information

MIDTERM EXAMINATION Spring 2010 CS301- Data Structures

MIDTERM EXAMINATION Spring 2010 CS301- Data Structures MIDTERM EXAMINATION Spring 2010 CS301- Data Structures Question No: 1 Which one of the following statement is NOT correct. In linked list the elements are necessarily to be contiguous In linked list the

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

CS-301 Data Structure. Tariq Hanif

CS-301 Data Structure. Tariq Hanif 1. The tree data structure is a Linear data structure Non-linear data structure Graphical data structure Data structure like queue FINALTERM EXAMINATION Spring 2012 CS301- Data Structure 25-07-2012 2.

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS DATA STRUCTURES AND ALGORITHMS For COMPUTER SCIENCE DATA STRUCTURES &. ALGORITHMS SYLLABUS Programming and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary

More information

Hash Tables. CS 311 Data Structures and Algorithms Lecture Slides. Wednesday, April 22, Glenn G. Chappell

Hash Tables. CS 311 Data Structures and Algorithms Lecture Slides. Wednesday, April 22, Glenn G. Chappell Hash Tables CS 311 Data Structures and Algorithms Lecture Slides Wednesday, April 22, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005

More information

V Advanced Data Structures

V Advanced Data Structures V Advanced Data Structures B-Trees Fibonacci Heaps 18 B-Trees B-trees are similar to RBTs, but they are better at minimizing disk I/O operations Many database systems use B-trees, or variants of them,

More information

CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting. Ruth Anderson Winter 2019 CSE 332: Data Structures & Parallelism Lecture 12: Comparison Sorting Ruth Anderson Winter 2019 Today Sorting Comparison sorting 2/08/2019 2 Introduction to sorting Stacks, queues, priority queues, and

More information

Data Structure and Algorithm Midterm Reference Solution TA

Data Structure and Algorithm Midterm Reference Solution TA Data Structure and Algorithm Midterm Reference Solution TA email: dsa1@csie.ntu.edu.tw Problem 1. To prove log 2 n! = Θ(n log n), it suffices to show N N, c 1, c 2 > 0 such that c 1 n ln n ln n! c 2 n

More information

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers?

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers? Review for Final (Chapter 6 13, 15) 6. Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B. To

More information

UNIT III MEMORY MANAGEMENT

UNIT III MEMORY MANAGEMENT UNIT III MEMORY MANAGEMENT TOPICS TO BE COVERED 3.1 Memory management 3.2 Contiguous allocation i Partitioned memory allocation ii Fixed & variable partitioning iii Swapping iv Relocation v Protection

More information

1 Lower bound on runtime of comparison sorts

1 Lower bound on runtime of comparison sorts 1 Lower bound on runtime of comparison sorts So far we ve looked at several sorting algorithms insertion sort, merge sort, heapsort, and quicksort. Merge sort and heapsort run in worst-case O(n log n)

More information

Repetition Through Recursion

Repetition Through Recursion Fundamentals of Computer Science I (CS151.02 2007S) Repetition Through Recursion Summary: In many algorithms, you want to do things again and again and again. For example, you might want to do something

More information

Information Science 2

Information Science 2 Information Science 2 - Basic Data Structures- Week 02 College of Information Science and Engineering Ritsumeikan University Today s class outline l Basic data structures: Definitions and implementation

More information

Insert. SEMCOM Page 1 of 11

Insert. SEMCOM Page 1 of 11 CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar Faculty Name: Ami D. Trivedi Class: FYBCA Subject: US02CBCA01 (Advanced C Programming and Introduction to Data Structures) *UNIT 4 (Some More Data structures

More information

Lisp. Versions of LISP

Lisp. Versions of LISP Lisp Versions of LISP Lisp is an old language with many variants Lisp is alive and well today Most modern versions are based on Common Lisp LispWorks is based on Common Lisp Scheme is one of the major

More information

Chapter 12: Indexing and Hashing. Basic Concepts

Chapter 12: Indexing and Hashing. Basic Concepts Chapter 12: Indexing and Hashing! Basic Concepts! Ordered Indices! B+-Tree Index Files! B-Tree Index Files! Static Hashing! Dynamic Hashing! Comparison of Ordered Indexing and Hashing! Index Definition

More information

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum Table ADT and Sorting Algorithm topics continuing (or reviewing?) CS 24 curriculum A table ADT (a.k.a. Dictionary, Map) Table public interface: // Put information in the table, and a unique key to identify

More information

Lists, Stacks, and Queues. (Lists, Stacks, and Queues ) Data Structures and Programming Spring / 50

Lists, Stacks, and Queues. (Lists, Stacks, and Queues ) Data Structures and Programming Spring / 50 Lists, Stacks, and Queues (Lists, Stacks, and Queues ) Data Structures and Programming Spring 2016 1 / 50 Abstract Data Types (ADT) Data type a set of objects + a set of operations Example: integer set

More information

COSC160: Data Structures Heaps. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Heaps. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Heaps Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Priority Queue II. Heaps I. Binary Heaps II. Skew Heaps Balancing a Tree Binary trees lack a depth constraint.

More information