OpenMP - Introduction

Size: px
Start display at page:

Download "OpenMP - Introduction"

Transcription

1 OpenMP - Introduction Süha TUNA Bilişim Enstitüsü UHeM Yaz Çalıştayı

2 Outline What is OpenMP? Introduction (Code Structure, Directives, Threads etc.) Limitations Data Scope Clauses Shared, Private Work-sharing constructs Synchronization

3 What is OpenMP? An Application Program Interface (API) that may be used to explicitly direct multithreaded, shared memory parallelism Three main API components Compiler directives Runtime library routines Environment variables Portable & Standardized API exist both C/C++ and Fortan 90/77 Multi platform Support (Unix, Linux etc.)

4 OpenMP Specifications Version 3.1, Complete Specifications, July 2011 Version 3.0, May 2008 Version 2.5, May 2005 (C/C++ & Fortran) Version 2.0 C/C++, March 2002 Fortran, November 2000 Version 1.0 C/C++, October 1998 Fortran, October 1997 Detailed Info:

5 Intel & GNU OpenMP Intel Compilers OpenMP 2.5 conforming Nested parallelisim Workqueuing extension to OpenMP Interoperability with POSIX and Windows threads OMP_DYNAMIC support GNU OpenMP (OpenMP+gcc) OpenMP 3.0 Support (gcc 4.4 and later)

6 OpenMP Programming Model Explicit parallelism Thread based parallelism; program runs with user specified number of multiple thread Uses fork & join model Synchronization Point ( barrier, critical region, single processor region )

7 Limitations of OpenMP Shared Memory Model Each thread must be reach a shared memory (SMP) Intel compilers use the POSIX threads library to implement OpenMP.

8 Terminology and Behavior OpenMP Team = Master + Worker Parallel Region is a block of code executed by all threads simultaneously (has implicit barrier) The master thread always has thread id 0 Parallel regions can be nested If clause can be used to guard the parallel region A Work-Sharing construct divides the execution of the enclosed code region among the members of the team. (Loop, Section etc.)

9 OpenMP Code Structure C/C++ #include <omp.h> main () () {{ int var1, var2, var3; /* /* Serial code */ */ /* /* Beginning of of parallel section. Fork a a team of of threads.specify variable scoping */ */ #pragma omp parallel private(var1, var2) \\ shared(var3) {{ Parallel section executed by by all threads.... All threads join master thread and disband }} /* /* Resume serial code */ */.... }} Fortran PROGRAM MYCODE USE omp_lib C C Or Or USE omp_lib.h INTEGER var1, var2, var3 C C Serial code C C Beginning of of parallel section. Fork aa C C team of of threads.specify variable C C scoping $OMP PARALLEL PRIVATE(var1, var2) && SHARED(var3) Parallel section executed by by all threads.. $OMP BARRIER.. All threads join master thread and disband $OMP END PARALLEL C C Resume serial code.... END

10 OpenMP Directives Format in C/C++: #pragma omp directivename [clause,...] \ Format in Fortran 77: C$OMP directivename [clause,...] & Format in Fortran 90:!$OMP directivename [clause,...] & #pragma omp: Required for all OpenMP C/C++ directives. directivename: A valid OpenMP directive. Must appear after the pragma and before any clauses. [clause,...] : Optional. Clauses can be in any order, and repeated as necessary unless otherwise restricted.

11 OpenMP Directives Example: #pragma omp parallel default(shared) private(beta,pi) General Rules: Directives follow conventions of the C/C++ standards for compiler directives. Case sensitive Only one directivename may be specified per directive Each directive applies to at most one succeeding statement, which must be a structured block. Long directive lines can be "continued" on succeeding lines by escaping the newline character with a backslash ("\") at the end of a directive line.

12 OpenMP Directives PARALLEL Region Construct: A parallel region is a block of code that will be executed by multiple threads. This is the fundamental OpenMP parallel construct. #pragma omp parallel [clause...] newline if (scalar_expression) private (list) shared (list) default (shared none) firstprivate (list) reduction (operator: list) copyin (list) structured_block

13 OpenMP Directives C/C++ OpenMP structured block definition. #pragma omp parallel [clause...] { structured_block } Fortran OpenMP structured block definition.!$omp PARALLEL [clause...] structured_block!$omp END PARALLEL

14 OpenMP Directives Parallel region construct supported clauses

15 When a thread reaches a PARALLEL directive It creates a term of threads and becomes the master of the team The master is a member of that team, it has thread number 0 within that team (THREAD ID) Starting from the beginning of this parallel region, the code is duplicated and all threads will execute that code (different path of exec.) There is an implied barrier at the end of a parallel section Only the master thread continues execution past this point

16 OpenMP Constructs

17 Data Scope Attribute Clauses C/C++ shared (list) Fortran SHARED (list) SHARED Clause: It declares variables in its list to be shared to each thread. Behavior The pointer of the object of the same type is declared once for each thread in the team All threads reference to the original object The default clause is SHARED for all variables in OpenMP

18 Data Scope Attribute Clauses C/C++ private (list) Fortran PRIVATE (list) PRIVATE Clause: It declares variables in its list to be private to each thread. Behavior A new object of the same type is declared once for each thread in the team All references to the original object are replaced with references to the new object Variables declared PRIVATE are uninitialized for each thread (FIRSTPRIVATE can be used for initialization of variables)

19 Data Scope Attribute Clauses C/C++ default (private/shared) Fortran DEFAULT (private/shared) DEFAULT Clause: It declares the default scope attribute for the variables in parallel region. If not declared the default value is SHARED If declared, the default value will be defined in the specific data scope only. You should not be courage to change the default value to PRIVATE. Changing DEFAULT to PRIVATE overhead the parallelization.

20 Lab: Helloworld INTEL bash: $ ifort -openmp hi-omp.f -o hi-omp.x hi-omp.f(3) : (col. 6) remark: OpenMP DEFINED REGION WAS PARALLELIZED. GCC bash: $ gcc -fopenmp hi-omp.c -o hi-omp.x LSF submition bash: $ bsub -a openmp q short -o %J.out -e %J.err -n 4 -x./hi-omp.x

21 Lab: Helloworld Optional Exercise: 1 - set OMP_NUM_THREADS to an higher value (such as 10) 2 - uncomment critical section 3 - repeat example. Set environment variables (setenv, export) bash: $ export OMP_NUM_THREADS=4 Run your OpenMP compile bash: $./hi-omp.x Hello OpenMP! Hello OpenMP! Hello OpenMP! Hello OpenMP!

22 Work-Sharing Constructs A work-sharing construct divides the execution of the enclosed code region among the members of team that encounter it. Must be enclosed in a parallel region otherwise it is simply ignored. Work-sharing constructs do not launch/create new threads. There is no implied barrier upon entry to a work-sharing construct. However there is an implicit barrier at the end of a work-sharing construct.

23 Work-Sharing Constructs Types Only available in Fortran Parallelize the array Operations. For example, A(:,:)=B(:,:)+C(:,:)

24 Work-Sharing Constructs shares iterations of a loop across the team. Represents a type of "data parallelism". breaks work into separate, discrete sections. Each section is executed by a thread. Can be used to implement a type of "functional parallelism". serializes a section of code

25 Work-Sharing Constructs DO directive (Fortran)!$OMP DO [clause...] SCHEDULE (type [,chunk]) ORDERED PRIVATE (list) FIRSTPRIVATE (list) LASTPRIVATE (list) SHARED (list) REDUCTION (operator intrinsic : list) do_loop!$omp END DO [ NOWAIT ]

26 Work-Sharing Constructs for directive (C/C++) #pragma omp for [clause...] newline schedule (type [,chunk]) ordered private (list) firstprivate (list) lastprivate (list) shared (list) reduction (operator: list) nowait { for_loop }

27 Work-Sharing Constructs schedule clause: schedule(kind [,chunk_size]) static: less overhead, default on many OpenMP compilers dynamic & guided: useful for poorly balanced and unpredictable workload. In guided the size of chunk decreases over time. runtime: kind is selected according to the value of environment variable OMP_SCHEDULE. Larger chunks are desirable because they reduce the overhead Load balancing is often more of an issue toward the end of computation

28 Work-Sharing Constructs When a thread finishes one chunk, it is dynamically assigned another. The default chunk size is 1. schedule clause: describes how iterations of the loop are divided among the threads in the team Loop iterations are divided into pieces of size chunk statically The chunk size is exponentially reduced with each dispatched piece of the iteration space. The default chunk size is 1.

29 Work-Sharing Constructs schedule clause: runtime: If this schedule is selected, the decision regarding scheduling kind is made at run time. The schedule and (optional) chunk size are set through the OMP_SCHEDULE environment variable. NO WAIT (Fortran) / nowait (C/C++) clause: If specified, then threads do not synchronize at the end of the parallel loop. Threads proceed directly to the next statements after the loop.

30 Work-Sharing Lab 1 bash: $ icc -openmp omp_workshare1.c -o omp_workshare1.x bash: $./omp_workshare1.x Example steps: Examine the code for schedule ( static schedule ), compile and run Change and work with dynamic schedule. What did change? The iterations of the loop will be distributed dynamically in chunk sized pieces. Add nowait at the end of omp for clause. What did change? Threads will not synchronize upon completing their individual pieces of work (nowait).

31 Work-Sharing Lab 2 SECTIONS construct: Easiest way to get different threads to carry out different kinds of work Each section must be a structured block of code that is independent of the other sections If there are fewer code blocks than threads, the remaining threads will be idle If there are fewer threads than code blocks, some or all of the threads execute multiple code blocks Depending on the type of work, this construct might lead to a loadbalancing problem

32 Work-Sharing Lab 2 SECTIONS construct for 2 functions (or threads) #pragma omp parallel { #pragma omp sections { #pragma omp section { FUNCTION_1(MAX) } #pragma omp section { FUNCTION_2(MIN) } } // Sections Ends Here } // Parallel Ends Here

33 Work-Sharing Lab 2 bash: $ icc -openmp omp_workshare2.c -o omp_workshare2.x bash: $./omp_workshare2.x This example demonstrates use of the OpenMP SECTIONS worksharing construct Note how the PARALLEL region is divided into separate sections, each of which will be executed by one thread. Run the program several times and observe any differences in output. Because there are only two sections, you should notice that some threads do not do any work. You may/may not notice that the threads doing work can vary. For example, the first time thread 0 and thread 1 may do the work, and the next time it may be thread 0 and thread 3.

34 Work-Sharing Constructs SINGLE Constructs: It specifies that the enclosed code is to be executed by only one thread in the team. The thread chosen could vary from one run to another. Threads that are not executing in the SINGLE directive wait at the END SINGLE directive unless NOWAIT is specified. C/C++ #pragma omp single [clause...] structured_block Fortran!$OMP SINGLE [clause...] structured-block!$omp END SINGLE [NOWAIT]

35 Work-Sharing Constructs SINGLE Constructs: Only one thread initializes the shared variable a

36 Work-Sharing Constructs SINGLE Constructs: It specifies that the enclosed code is to be executed by only one thread in the team. The thread chosen could vary from one run to another. Threads that are not executing in the SINGLE directive wait at the END SINGLE directive unless NOWAIT is specified. C/C++ #pragma omp single [clause...] structured_block Fortran!$OMP SINGLE [clause...] structured-block!$omp END SINGLE [NOWAIT]

37 Work-Sharing Constructs SINGLE Constructs: Only one thread initializes the shared variable a

38 Synchronization (BARRIER) C/C++ #pragma omp barrier newline structured_block Fortran!$OMP BARRIER newline structured_block Example: Check barrier.f and barrier.c example code. BARRIER Directive: Synchronizes all threads in the team. When a BARRIER directive is reached, a thread will wait at that point until all other threads have reached that barrier. All threads then resume executing in parallel the code that follows the barrier.

39 Synchronization (BARRIER) BARRIER Directive Important restrictions Each barrier must be encountered by all threads in a team, or by none at all The sequence of work-sharing regions and barrier regions encountered must be the same for every thread in the team. Without these rules some threads wait forever (or until somebody kills the process) for other threads to reach a barrier

40 Synchronization (MASTER) C/C++ #pragma omp master newline Statement_or_expression Fortran!$OMP MASTER newline Statement_or_expression!$OMP END MASTER MASTER Directive: Specifies a region that is to be executed only by the master thread of the team. All other threads on the team skip this section of code It is similar to the SINGLE construct

41 Synchronization (ORDERED) C/C++ #pragma omp ordered newline structured_block Fortran!$OMP ORDERED newline structured_block!$omp END ORDERED Example: Check ordered.c example code. ORDERED Directive: allows one to execute a structured block within a parallel loop in sequential order The code outside this block runs in parallel if threads finish out of order, there may be an additional performance penalty because some threads might have to wait.

42 Synchronization (CRITICAL) C/C++ #pragma omp critical (name) structured_block Fortran!$OMP CRITICAL (name) structured_block!$omp END CRITICAL (name) Example: Correct critical.f90 and critical.c example code. CRITICAL Directive: It provides a means to ensure that multiple threads do not attempt to update the same shared data simultaneously. An optional name can be given to a critical construct. Name must be global and unique When a thread encounters a critical construct, it waits until no other thread is executing a critical region with the same name. race condition

43 Synchronization (ATOMIC) C/C++ #pragma omp atomic newline Expression_statement Fortran!$OMP ATOMIC newline Expression_statement Example: Check atomic.c example code. ATOMIC Directive: Specifies that a specific memory location must be updated atomically, rather than letting multiple threads attempt to write to it. In essence, this directive provides a mini-critical section. It is an efficient alternative to the critical region

44 TEŞEKKÜRLER!

EE/CSCI 451 Introduction to Parallel and Distributed Computation. Discussion #4 2/3/2017 University of Southern California

EE/CSCI 451 Introduction to Parallel and Distributed Computation. Discussion #4 2/3/2017 University of Southern California EE/CSCI 451 Introduction to Parallel and Distributed Computation Discussion #4 2/3/2017 University of Southern California 1 USC HPCC Access Compile Submit job OpenMP Today s topic What is OpenMP OpenMP

More information

15-418, Spring 2008 OpenMP: A Short Introduction

15-418, Spring 2008 OpenMP: A Short Introduction 15-418, Spring 2008 OpenMP: A Short Introduction This is a short introduction to OpenMP, an API (Application Program Interface) that supports multithreaded, shared address space (aka shared memory) parallelism.

More information

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program Amdahl's Law About Data What is Data Race? Overview to OpenMP Components of OpenMP OpenMP Programming Model OpenMP Directives

More information

Shared Memory Programming with OpenMP

Shared Memory Programming with OpenMP Shared Memory Programming with OpenMP (An UHeM Training) Süha Tuna Informatics Institute, Istanbul Technical University February 12th, 2016 2 Outline - I Shared Memory Systems Threaded Programming Model

More information

EPL372 Lab Exercise 5: Introduction to OpenMP

EPL372 Lab Exercise 5: Introduction to OpenMP EPL372 Lab Exercise 5: Introduction to OpenMP References: https://computing.llnl.gov/tutorials/openmp/ http://openmp.org/wp/openmp-specifications/ http://openmp.org/mp-documents/openmp-4.0-c.pdf http://openmp.org/mp-documents/openmp4.0.0.examples.pdf

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

OpenMP 2. CSCI 4850/5850 High-Performance Computing Spring 2018

OpenMP 2. CSCI 4850/5850 High-Performance Computing Spring 2018 OpenMP 2 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Ricardo Fonseca https://sites.google.com/view/rafonseca2017/ Outline Shared Memory Programming OpenMP Fork-Join Model Compiler Directives / Run time library routines Compiling and

More information

An Introduction to OpenMP

An Introduction to OpenMP An Introduction to OpenMP U N C L A S S I F I E D Slide 1 What Is OpenMP? OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism

More information

Lecture 4: OpenMP Open Multi-Processing

Lecture 4: OpenMP Open Multi-Processing CS 4230: Parallel Programming Lecture 4: OpenMP Open Multi-Processing January 23, 2017 01/23/2017 CS4230 1 Outline OpenMP another approach for thread parallel programming Fork-Join execution model OpenMP

More information

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato OpenMP Application Program Interface Introduction Shared-memory parallelism in C, C++ and Fortran compiler directives library routines environment variables Directives single program multiple data (SPMD)

More information

Introduction to Standard OpenMP 3.1

Introduction to Standard OpenMP 3.1 Introduction to Standard OpenMP 3.1 Massimiliano Culpo - m.culpo@cineca.it Gian Franco Marras - g.marras@cineca.it CINECA - SuperComputing Applications and Innovation Department 1 / 59 Outline 1 Introduction

More information

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013 OpenMP António Abreu Instituto Politécnico de Setúbal 1 de Março de 2013 António Abreu (Instituto Politécnico de Setúbal) OpenMP 1 de Março de 2013 1 / 37 openmp what? It s an Application Program Interface

More information

ECE 574 Cluster Computing Lecture 10

ECE 574 Cluster Computing Lecture 10 ECE 574 Cluster Computing Lecture 10 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 October 2015 Announcements Homework #4 will be posted eventually 1 HW#4 Notes How granular

More information

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means High Performance Computing: Concepts, Methods & Means OpenMP Programming Prof. Thomas Sterling Department of Computer Science Louisiana State University February 8 th, 2007 Topics Introduction Overview

More information

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele Advanced C Programming Winter Term 2008/09 Guest Lecture by Markus Thiele Lecture 14: Parallel Programming with OpenMP Motivation: Why parallelize? The free lunch is over. Herb

More information

Alfio Lazzaro: Introduction to OpenMP

Alfio Lazzaro: Introduction to OpenMP First INFN International School on Architectures, tools and methodologies for developing efficient large scale scientific computing applications Ce.U.B. Bertinoro Italy, 12 17 October 2009 Alfio Lazzaro:

More information

A Short Introduction to OpenMP. Mark Bull, EPCC, University of Edinburgh

A Short Introduction to OpenMP. Mark Bull, EPCC, University of Edinburgh A Short Introduction to OpenMP Mark Bull, EPCC, University of Edinburgh Overview Shared memory systems Basic Concepts in Threaded Programming Basics of OpenMP Parallel regions Parallel loops 2 Shared memory

More information

Topics. Introduction. Shared Memory Parallelization. Example. Lecture 11. OpenMP Execution Model Fork-Join model 5/15/2012. Introduction OpenMP

Topics. Introduction. Shared Memory Parallelization. Example. Lecture 11. OpenMP Execution Model Fork-Join model 5/15/2012. Introduction OpenMP Topics Lecture 11 Introduction OpenMP Some Examples Library functions Environment variables 1 2 Introduction Shared Memory Parallelization OpenMP is: a standard for parallel programming in C, C++, and

More information

Parallel Programming

Parallel Programming Parallel Programming OpenMP Nils Moschüring PhD Student (LMU) Nils Moschüring PhD Student (LMU), OpenMP 1 1 Overview What is parallel software development Why do we need parallel computation? Problems

More information

Programming with Shared Memory PART II. HPC Fall 2012 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Fall 2012 Prof. Robert van Engelen Programming with Shared Memory PART II HPC Fall 2012 Prof. Robert van Engelen Overview Sequential consistency Parallel programming constructs Dependence analysis OpenMP Autoparallelization Further reading

More information

Introduction to OpenMP. Lecture 4: Work sharing directives

Introduction to OpenMP. Lecture 4: Work sharing directives Introduction to OpenMP Lecture 4: Work sharing directives Work sharing directives Directives which appear inside a parallel region and indicate how work should be shared out between threads Parallel do/for

More information

Programming with Shared Memory PART II. HPC Fall 2007 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Fall 2007 Prof. Robert van Engelen Programming with Shared Memory PART II HPC Fall 2007 Prof. Robert van Engelen Overview Parallel programming constructs Dependence analysis OpenMP Autoparallelization Further reading HPC Fall 2007 2 Parallel

More information

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008 Parallel Computing Using OpenMP/MPI Presented by - Jyotsna 29/01/2008 Serial Computing Serially solving a problem Parallel Computing Parallelly solving a problem Parallel Computer Memory Architecture Shared

More information

Introduction to. Slides prepared by : Farzana Rahman 1

Introduction to. Slides prepared by : Farzana Rahman 1 Introduction to OpenMP Slides prepared by : Farzana Rahman 1 Definition of OpenMP Application Program Interface (API) for Shared Memory Parallel Programming Directive based approach with library support

More information

[Potentially] Your first parallel application

[Potentially] Your first parallel application [Potentially] Your first parallel application Compute the smallest element in an array as fast as possible small = array[0]; for( i = 0; i < N; i++) if( array[i] < small ) ) small = array[i] 64-bit Intel

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 A little about me! PhD Computer Engineering Texas A&M University Computer Science

More information

CSL 860: Modern Parallel

CSL 860: Modern Parallel CSL 860: Modern Parallel Computation Hello OpenMP #pragma omp parallel { // I am now thread iof n switch(omp_get_thread_num()) { case 0 : blah1.. case 1: blah2.. // Back to normal Parallel Construct Extremely

More information

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono OpenMP Algoritmi e Calcolo Parallelo References Useful references Using OpenMP: Portable Shared Memory Parallel Programming, Barbara Chapman, Gabriele Jost and Ruud van der Pas OpenMP.org http://openmp.org/

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

Distributed Systems + Middleware Concurrent Programming with OpenMP

Distributed Systems + Middleware Concurrent Programming with OpenMP Distributed Systems + Middleware Concurrent Programming with OpenMP Gianpaolo Cugola Dipartimento di Elettronica e Informazione Politecnico, Italy cugola@elet.polimi.it http://home.dei.polimi.it/cugola

More information

OpenMP - II. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16. HPAC, RWTH Aachen

OpenMP - II. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16. HPAC, RWTH Aachen OpenMP - II Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS15/16 OpenMP References Using OpenMP: Portable Shared Memory Parallel Programming. The MIT

More information

Session 4: Parallel Programming with OpenMP

Session 4: Parallel Programming with OpenMP Session 4: Parallel Programming with OpenMP Xavier Martorell Barcelona Supercomputing Center Agenda Agenda 10:00-11:00 OpenMP fundamentals, parallel regions 11:00-11:30 Worksharing constructs 11:30-12:00

More information

Parallelising Scientific Codes Using OpenMP. Wadud Miah Research Computing Group

Parallelising Scientific Codes Using OpenMP. Wadud Miah Research Computing Group Parallelising Scientific Codes Using OpenMP Wadud Miah Research Computing Group Software Performance Lifecycle Scientific Programming Early scientific codes were mainly sequential and were executed on

More information

OpenMP C and C++ Application Program Interface Version 1.0 October Document Number

OpenMP C and C++ Application Program Interface Version 1.0 October Document Number OpenMP C and C++ Application Program Interface Version 1.0 October 1998 Document Number 004 2229 001 Contents Page v Introduction [1] 1 Scope............................. 1 Definition of Terms.........................

More information

Multithreading in C with OpenMP

Multithreading in C with OpenMP Multithreading in C with OpenMP ICS432 - Spring 2017 Concurrent and High-Performance Programming Henri Casanova (henric@hawaii.edu) Pthreads are good and bad! Multi-threaded programming in C with Pthreads

More information

https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG OpenMP Basic Defs: Solution Stack HW System layer Prog. User layer Layer Directives, Compiler End User Application OpenMP library

More information

Shared Memory programming paradigm: openmp

Shared Memory programming paradigm: openmp IPM School of Physics Workshop on High Performance Computing - HPC08 Shared Memory programming paradigm: openmp Luca Heltai Stefano Cozzini SISSA - Democritos/INFM

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Xiaoxu Guan High Performance Computing, LSU April 6, 2016 LSU HPC Training Series, Spring 2016 p. 1/44 Overview Overview of Parallel Computing LSU HPC Training Series, Spring 2016

More information

Introduction to OpenMP. Lecture 2: OpenMP fundamentals

Introduction to OpenMP. Lecture 2: OpenMP fundamentals Introduction to OpenMP Lecture 2: OpenMP fundamentals Overview 2 Basic Concepts in OpenMP History of OpenMP Compiling and running OpenMP programs What is OpenMP? 3 OpenMP is an API designed for programming

More information

OpenMP. OpenMP. Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum API for Fortran and C/C++

OpenMP. OpenMP. Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum API for Fortran and C/C++ OpenMP OpenMP Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum 1997-2002 API for Fortran and C/C++ directives runtime routines environment variables www.openmp.org 1

More information

CS691/SC791: Parallel & Distributed Computing

CS691/SC791: Parallel & Distributed Computing CS691/SC791: Parallel & Distributed Computing Introduction to OpenMP 1 Contents Introduction OpenMP Programming Model and Examples OpenMP programming examples Task parallelism. Explicit thread synchronization.

More information

OpenMP examples. Sergeev Efim. Singularis Lab, Ltd. Senior software engineer

OpenMP examples. Sergeev Efim. Singularis Lab, Ltd. Senior software engineer OpenMP examples Sergeev Efim Senior software engineer Singularis Lab, Ltd. OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism.

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Lecture 2: OpenMP fundamentals Overview Basic Concepts in OpenMP History of OpenMP Compiling and running OpenMP programs 2 1 What is OpenMP? OpenMP is an API designed for programming

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Lecture 4: Work sharing directives Work sharing directives Directives which appear inside a parallel region and indicate how work should be shared out between threads Parallel do/for

More information

Shared Memory Parallelism - OpenMP

Shared Memory Parallelism - OpenMP Shared Memory Parallelism - OpenMP Sathish Vadhiyar Credits/Sources: OpenMP C/C++ standard (openmp.org) OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openmp/#introduction) OpenMP sc99 tutorial

More information

OpenMP threading: parallel regions. Paolo Burgio

OpenMP threading: parallel regions. Paolo Burgio OpenMP threading: parallel regions Paolo Burgio paolo.burgio@unimore.it Outline Expressing parallelism Understanding parallel threads Memory Data management Data clauses Synchronization Barriers, locks,

More information

UvA-SARA High Performance Computing Course June Clemens Grelck, University of Amsterdam. Parallel Programming with Compiler Directives: OpenMP

UvA-SARA High Performance Computing Course June Clemens Grelck, University of Amsterdam. Parallel Programming with Compiler Directives: OpenMP Parallel Programming with Compiler Directives OpenMP Clemens Grelck University of Amsterdam UvA-SARA High Performance Computing Course June 2013 OpenMP at a Glance Loop Parallelization Scheduling Parallel

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Le Yan Scientific computing consultant User services group High Performance Computing @ LSU Goals Acquaint users with the concept of shared memory parallelism Acquaint users with

More information

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP*

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP* Advanced OpenMP Compiling and running OpenMP programs C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp 2 1 Running Standard environment variable determines the number of threads: tcsh

More information

Practical in Numerical Astronomy, SS 2012 LECTURE 12

Practical in Numerical Astronomy, SS 2012 LECTURE 12 Practical in Numerical Astronomy, SS 2012 LECTURE 12 Parallelization II. Open Multiprocessing (OpenMP) Lecturer Eduard Vorobyov. Email: eduard.vorobiev@univie.ac.at, raum 006.6 1 OpenMP is a shared memory

More information

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing CS 590: High Performance Computing OpenMP Introduction Fengguang Song Department of Computer Science IUPUI OpenMP A standard for shared-memory parallel programming. MP = multiprocessing Designed for systems

More information

Multi-core Architecture and Programming

Multi-core Architecture and Programming Multi-core Architecture and Programming Yang Quansheng( 杨全胜 ) http://www.njyangqs.com School of Computer Science & Engineering 1 http://www.njyangqs.com Programming with OpenMP Content What is PpenMP Parallel

More information

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008 1 of 6 Lecture 7: March 4 CISC 879 Software Support for Multicore Architectures Spring 2008 Lecture 7: March 4, 2008 Lecturer: Lori Pollock Scribe: Navreet Virk Open MP Programming Topics covered 1. Introduction

More information

Department of Informatics V. HPC-Lab. Session 2: OpenMP M. Bader, A. Breuer. Alex Breuer

Department of Informatics V. HPC-Lab. Session 2: OpenMP M. Bader, A. Breuer. Alex Breuer HPC-Lab Session 2: OpenMP M. Bader, A. Breuer Meetings Date Schedule 10/13/14 Kickoff 10/20/14 Q&A 10/27/14 Presentation 1 11/03/14 H. Bast, Intel 11/10/14 Presentation 2 12/01/14 Presentation 3 12/08/14

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Introduction [1] 1. Directives [2] 7

Introduction [1] 1. Directives [2] 7 OpenMP Fortran Application Program Interface Version 2.0, November 2000 Contents Introduction [1] 1 Scope............................. 1 Glossary............................ 1 Execution Model.........................

More information

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen OpenMP I Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS16/17 OpenMP References Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press,

More information

Shared Memory Parallelism using OpenMP

Shared Memory Parallelism using OpenMP Indian Institute of Science Bangalore, India भ रत य व ज ञ न स स थ न ब गल र, भ रत SE 292: High Performance Computing [3:0][Aug:2014] Shared Memory Parallelism using OpenMP Yogesh Simmhan Adapted from: o

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Le Yan Objectives of Training Acquaint users with the concept of shared memory parallelism Acquaint users with the basics of programming with OpenMP Memory System: Shared Memory

More information

OpenMP. Dr. William McDoniel and Prof. Paolo Bientinesi WS17/18. HPAC, RWTH Aachen

OpenMP. Dr. William McDoniel and Prof. Paolo Bientinesi WS17/18. HPAC, RWTH Aachen OpenMP Dr. William McDoniel and Prof. Paolo Bientinesi HPAC, RWTH Aachen mcdoniel@aices.rwth-aachen.de WS17/18 Loop construct - Clauses #pragma omp for [clause [, clause]...] The following clauses apply:

More information

OpenMP Tutorial. Dirk Schmidl. IT Center, RWTH Aachen University. Member of the HPC Group Christian Terboven

OpenMP Tutorial. Dirk Schmidl. IT Center, RWTH Aachen University. Member of the HPC Group Christian Terboven OpenMP Tutorial Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group schmidl@itc.rwth-aachen.de IT Center, RWTH Aachen University Head of the HPC Group terboven@itc.rwth-aachen.de 1 IWOMP

More information

Introduction to OpenMP

Introduction to OpenMP Christian Terboven, Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group terboven,schmidl@itc.rwth-aachen.de IT Center der RWTH Aachen University History De-facto standard for Shared-Memory

More information

GCC Developers Summit Ottawa, Canada, June 2006

GCC Developers Summit Ottawa, Canada, June 2006 OpenMP Implementation in GCC Diego Novillo dnovillo@redhat.com Red Hat Canada GCC Developers Summit Ottawa, Canada, June 2006 OpenMP Language extensions for shared memory concurrency (C, C++ and Fortran)

More information

OpenMP on Ranger and Stampede (with Labs)

OpenMP on Ranger and Stampede (with Labs) OpenMP on Ranger and Stampede (with Labs) Steve Lantz Senior Research Associate Cornell CAC Parallel Computing at TACC: Ranger to Stampede Transition November 6, 2012 Based on materials developed by Kent

More information

Module 11: The lastprivate Clause Lecture 21: Clause and Routines. The Lecture Contains: The lastprivate Clause. Data Scope Attribute Clauses

Module 11: The lastprivate Clause Lecture 21: Clause and Routines. The Lecture Contains: The lastprivate Clause. Data Scope Attribute Clauses The Lecture Contains: The lastprivate Clause Data Scope Attribute Clauses Reduction Loop Work-sharing Construct: Schedule Clause Environment Variables List of Variables References: file:///d /...ary,%20dr.%20sanjeev%20k%20aggrwal%20&%20dr.%20rajat%20moona/multi-core_architecture/lecture%2021/21_1.htm[6/14/2012

More information

Programming Shared Memory Systems with OpenMP Part I. Book

Programming Shared Memory Systems with OpenMP Part I. Book Programming Shared Memory Systems with OpenMP Part I Instructor Dr. Taufer Book Parallel Programming in OpenMP by Rohit Chandra, Leo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh Menon 2 1 Machine

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Christian Terboven 10.04.2013 / Darmstadt, Germany Stand: 06.03.2013 Version 2.3 Rechen- und Kommunikationszentrum (RZ) History De-facto standard for

More information

Advanced OpenMP. OpenMP Basics

Advanced OpenMP. OpenMP Basics Advanced OpenMP OpenMP Basics Parallel region The parallel region is the basic parallel construct in OpenMP. A parallel region defines a section of a program. Program begins execution on a single thread

More information

Masterpraktikum - High Performance Computing

Masterpraktikum - High Performance Computing Masterpraktikum - High Performance Computing OpenMP Michael Bader Alexander Heinecke Alexander Breuer Technische Universität München, Germany 2 #include ... #pragma omp parallel for for(i = 0; i

More information

A brief introduction to OpenMP

A brief introduction to OpenMP A brief introduction to OpenMP Alejandro Duran Barcelona Supercomputing Center Outline 1 Introduction 2 Writing OpenMP programs 3 Data-sharing attributes 4 Synchronization 5 Worksharings 6 Task parallelism

More information

Shared Memory Programming with OpenMP (3)

Shared Memory Programming with OpenMP (3) Shared Memory Programming with OpenMP (3) 2014 Spring Jinkyu Jeong (jinkyu@skku.edu) 1 SCHEDULING LOOPS 2 Scheduling Loops (2) parallel for directive Basic partitioning policy block partitioning Iteration

More information

Parallel Programming: OpenMP

Parallel Programming: OpenMP Parallel Programming: OpenMP Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. November 10, 2016. An Overview of OpenMP OpenMP: Open Multi-Processing An

More information

by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by using function call

by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by using function call OpenMP Syntax The OpenMP Programming Model Number of threads are determined by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by

More information

OpenMP 4. CSCI 4850/5850 High-Performance Computing Spring 2018

OpenMP 4. CSCI 4850/5850 High-Performance Computing Spring 2018 OpenMP 4 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Data Environment: Default storage attributes

Data Environment: Default storage attributes COSC 6374 Parallel Computation Introduction to OpenMP(II) Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) Edgar Gabriel Fall 2014 Data Environment: Default storage attributes

More information

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2.

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2. OpenMP Overview in 30 Minutes Christian Terboven 06.12.2010 / Aachen, Germany Stand: 03.12.2010 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda OpenMP: Parallel Regions,

More information

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP

COMP4510 Introduction to Parallel Computation. Shared Memory and OpenMP. Outline (cont d) Shared Memory and OpenMP COMP4510 Introduction to Parallel Computation Shared Memory and OpenMP Thanks to Jon Aronsson (UofM HPC consultant) for some of the material in these notes. Outline (cont d) Shared Memory and OpenMP Including

More information

Lab: Scientific Computing Tsunami-Simulation

Lab: Scientific Computing Tsunami-Simulation Lab: Scientific Computing Tsunami-Simulation Session 4: Optimization and OMP Sebastian Rettenberger, Michael Bader 23.11.15 Session 4: Optimization and OMP, 23.11.15 1 Department of Informatics V Linux-Cluster

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 2 OpenMP Shared address space programming High-level

More information

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP)

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) V. Akishina, I. Kisel, G. Kozlov, I. Kulakov, M. Pugach, M. Zyzak Goethe University of Frankfurt am Main 2015 Task Parallelism Parallelization

More information

COSC 6374 Parallel Computation. Introduction to OpenMP. Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel)

COSC 6374 Parallel Computation. Introduction to OpenMP. Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) COSC 6374 Parallel Computation Introduction to OpenMP Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) Edgar Gabriel Fall 2015 OpenMP Provides thread programming model at a

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #7 2/5/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

Introduction to OpenMP.

Introduction to OpenMP. Introduction to OpenMP www.openmp.org Motivation Parallelize the following code using threads: for (i=0; i

More information

Synchronisation in Java - Java Monitor

Synchronisation in Java - Java Monitor Synchronisation in Java - Java Monitor -Every object and class is logically associated with a monitor - the associated monitor protects the variable in the object/class -The monitor of an object/class

More information

Parallel Programming with OpenMP. CS240A, T. Yang

Parallel Programming with OpenMP. CS240A, T. Yang Parallel Programming with OpenMP CS240A, T. Yang 1 A Programmer s View of OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for defining multi-threaded shared-memory programs

More information

Shared Memory Programming Model

Shared Memory Programming Model Shared Memory Programming Model Ahmed El-Mahdy and Waleed Lotfy What is a shared memory system? Activity! Consider the board as a shared memory Consider a sheet of paper in front of you as a local cache

More information

HPC Workshop University of Kentucky May 9, 2007 May 10, 2007

HPC Workshop University of Kentucky May 9, 2007 May 10, 2007 HPC Workshop University of Kentucky May 9, 2007 May 10, 2007 Part 3 Parallel Programming Parallel Programming Concepts Amdahl s Law Parallel Programming Models Tools Compiler (Intel) Math Libraries (Intel)

More information

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell. Specifications maintained by OpenMP Architecture Review Board (ARB)

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell. Specifications maintained by OpenMP Architecture Review Board (ARB) COMP4300/8300: The OpenMP Programming Model Alistair Rendell See: www.openmp.org Introduction to High Performance Computing for Scientists and Engineers, Hager and Wellein, Chapter 6 & 7 High Performance

More information

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell COMP4300/8300: The OpenMP Programming Model Alistair Rendell See: www.openmp.org Introduction to High Performance Computing for Scientists and Engineers, Hager and Wellein, Chapter 6 & 7 High Performance

More information

OpenMP programming. Thomas Hauser Director Research Computing Research CU-Boulder

OpenMP programming. Thomas Hauser Director Research Computing Research CU-Boulder OpenMP programming Thomas Hauser Director Research Computing thomas.hauser@colorado.edu CU meetup 1 Outline OpenMP Shared-memory model Parallel for loops Declaring private variables Critical sections Reductions

More information

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo OpenMP Amasis Brauch German University in Cairo May 4, 2010 Simple Algorithm 1 void i n c r e m e n t e r ( short a r r a y ) 2 { 3 long i ; 4 5 for ( i = 0 ; i < 1000000; i ++) 6 { 7 a r r a y [ i ]++;

More information

Shared Memory Programming Paradigm!

Shared Memory Programming Paradigm! Shared Memory Programming Paradigm! Ivan Girotto igirotto@ictp.it Information & Communication Technology Section (ICTS) International Centre for Theoretical Physics (ICTP) 1 Multi-CPUs & Multi-cores NUMA

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2016 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2016 Jens Teubner Computer Architecture Summer 2016 2 Part I Programming

More information

OpenMP Shared Memory Programming

OpenMP Shared Memory Programming OpenMP Shared Memory Programming John Burkardt, Information Technology Department, Virginia Tech.... Mathematics Department, Ajou University, Suwon, Korea, 13 May 2009.... http://people.sc.fsu.edu/ jburkardt/presentations/

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Le Yan HPC Consultant User Services Goals Acquaint users with the concept of shared memory parallelism Acquaint users with the basics of programming with OpenMP Discuss briefly the

More information

Parallel Computing Parallel Programming Languages Hwansoo Han

Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Programming Practice Current Start with a parallel algorithm Implement, keeping in mind Data races Synchronization Threading syntax

More information

HPCSE - I. «OpenMP Programming Model - Part I» Panos Hadjidoukas

HPCSE - I. «OpenMP Programming Model - Part I» Panos Hadjidoukas HPCSE - I «OpenMP Programming Model - Part I» Panos Hadjidoukas 1 Schedule and Goals 13.10.2017: OpenMP - part 1 study the basic features of OpenMP able to understand and write OpenMP programs 20.10.2017:

More information

Barbara Chapman, Gabriele Jost, Ruud van der Pas

Barbara Chapman, Gabriele Jost, Ruud van der Pas Using OpenMP Portable Shared Memory Parallel Programming Barbara Chapman, Gabriele Jost, Ruud van der Pas The MIT Press Cambridge, Massachusetts London, England c 2008 Massachusetts Institute of Technology

More information

Introduction to Programming with OpenMP

Introduction to Programming with OpenMP Introduction to Programming with OpenMP Kent Milfeld; Lars Koesterke Yaakoub El Khamra (presenting) milfeld lars yye00@tacc.utexas.edu October 2012, TACC Outline What is OpenMP? How does OpenMP work? Architecture

More information