CS241 Computer Organization Spring Buffer Overflow

Size: px
Start display at page:

Download "CS241 Computer Organization Spring Buffer Overflow"

Transcription

1 CS241 Computer Organization Spring 2015 Buffer Overflow

2 Outline! Linking & Loading, continued! Buffer Overflow Read: CSAPP2: section 3.12: out-of-bounds memory references & buffer overflow K&R: Chapter 5, section 5.11 C Traps & Pitfalls (course website, on-line references) Quiz today on IA32 (HW4) Quiz Tuesday, April 7th on run-time stack (HW5) Lab#3 BufferLab goes live tomorrow HW#7 due today HW#6 due: Tuesday, April 7th

3 Linker Symbols Global symbols Symbols defined by module m that can be referenced by other modules. E.g.: non-static C functions and non-static global variables. External symbols Global symbols that are referenced by module m but defined by some other module. Local symbols Symbols that are defined and referenced exclusively by module m. E.g.: C functions and variables defined with the static attribute. Local linker symbols are not local program variables

4 Resolving Symbols Global External Local int buf[2] = {1, 2}; extern int buf[]; int main() { swap(); return 0; } External main.c Linker knows nothing of temp static int *bufp0 = &buf[0]; static int *bufp1; void swap() { int temp; } bufp1 = &buf[1]; temp = *bufp0; *bufp0 = *bufp1; *bufp1 = temp; Global swap.c

5 Relocating Code and Data Relocatable Object Files Executable Object File System code System data.text.data 0 Headers System code main.o main().text main() swap().text int buf[2]={1,2}.data More system code swap.o swap() int *bufp0=&buf[0] int *bufp1.text.data.bss System data int buf[2]={1,2} int *bufp0=&buf[0] Uninitialized data.symtab.debug.data.bss

6 Relocation Info (main) main.c int buf[2] = {1,2}; int main() { swap(); return 0; } main.o <main>: 0: 55 push %ebp 1: 89 e5 mov %esp,%ebp 3: 83 ec 08 sub $0x8,%esp 6: e8 fc ff ff ff call 7 <main+0x7> 7: R_386_PC32 swap b: 31 c0 xor %eax,%eax d: 89 ec mov %ebp,%esp f: 5d pop %ebp 10: c3 ret Disassembly of section.data: <buf>: 0: Source: objdump

7 Relocation Info (swap,.text) swap.c extern int buf[]; static int *bufp0 = &buf[0]; static int *bufp1; void swap() { int temp; } bufp1 = &buf[1]; temp = *bufp0; *bufp0 = *bufp1; *bufp1 = temp; swap.o Disassembly of section.text: <swap>: 0: 55 push %ebp 1: 8b mov 0x0,%edx 3: R_386_32 bufp0 7: a mov 0x4,%eax 8: R_386_32 buf c: 89 e5 mov %esp,%ebp e: c movl $0x4,0x0 15: : R_386_32 bufp1 14: R_386_32 buf 18: 89 ec mov %ebp,%esp 1a: 8b 0a mov (%edx),%ecx 1c: mov %eax,(%edx) 1e: a mov 0x0,%eax 1f: R_386_32 bufp1 23: mov %ecx,(%eax) 25: 5d pop %ebp 26: c3 ret

8 Relocation Info (swap,.data) swap.c extern int buf[]; static int *bufp0 = &buf[0]; static int *bufp1; void swap() { int temp; Disassembly of section.data: <bufp0>: 0: : R_386_32 buf } bufp1 = &buf[1]; temp = *bufp0; *bufp0 = *bufp1; *bufp1 = temp;

9 Executable After Relocation (.text) b4 <main>: 80483b4: 55 push %ebp 80483b5: 89 e5 mov %esp,%ebp 80483b7: 83 ec 08 sub $0x8,%esp 80483ba: e call 80483c8 <swap> 80483bf: 31 c0 xor %eax,%eax 80483c1: 89 ec mov %ebp,%esp 80483c3: 5d pop %ebp 80483c4: c3 ret c8 <swap>: 80483c8: 55 push %ebp 80483c9: 8b 15 5c mov 0x804945c,%edx 80483cf: a mov 0x ,%eax 80483d4: 89 e5 mov %esp,%ebp 80483d6: c movl $0x ,0x dd: e0: 89 ec mov %ebp,%esp 80483e2: 8b 0a mov (%edx),%ecx 80483e4: mov %eax,(%edx) 80483e6: a mov 0x ,%eax 80483eb: mov %ecx,(%eax) 80483ed: 5d pop %ebp 80483ee: c3 ret

10 Executable After Relocation (.data) Disassembly of section.data: <buf>: : c <bufp0>: c:

11 Strong and Weak Symbols Program symbols are either strong or weak Strong: procedures and initialized globals Weak: uninitialized globals p1.c p2.c strong int foo=5; int foo; weak strong p1() { } p2() { } strong

12 Linker s Symbol Rules Rule 1: Multiple strong symbols are not allowed Each item can be defined only once Otherwise: Linker error Rule 2: Given a strong symbol and multiple weak symbol, choose the strong symbol References to the weak symbol resolve to the strong symbol Rule 3: If there are multiple weak symbols, pick an arbitrary one Can override this with gcc fno-common

13 Linker Puzzles int x; p1() {} p1() {} Link time error: two strong symbols (p1) int x; p1() {} int x; p2() {} References to x will refer to the same uninitialized int. Is this what you really want? int x; int y; p1() {} double x; p2() {} Writes to x in p2 might overwrite y! Evil! int x=7; int y=5; p1() {} double x; p2() {} Writes to x in p2 will overwrite y! Nasty! int x=7; p1() {} int x; p2() {} References to x will refer to the same initialized variable. Nightmare scenario: two identical weak structs, compiled by different compilers with different alignment rules.

14 Global Variables Avoid if you can Otherwise Use static if you can Initialize if you define a global variable Use extern if you use external global variable

15 Packaging Commonly Used Functions How to package functions commonly used by programmers? Math, I/O, memory management, string manipulation, etc. Awkward, given the linker framework so far: Option 1: Put all functions into a single source file Programmers link big object file into their programs Space and time inefficient Option 2: Put each function in a separate source file Programmers explicitly link appropriate binaries into their programs More efficient, but burdensome on the programmer

16 Solution: Static Libraries Static libraries (.a archive files) Concatenate related relocatable object files into a single file with an index (called an archive). Enhance linker so that it tries to resolve unresolved external references by looking for the symbols in one or more archives. If an archive member file resolves reference, link into executable.

17 Creating Static Libraries atoi.c printf.c random.c Translator Translator... Translator atoi.o printf.o random.o Archiver (ar) unix> ar rs libc.a \ atoi.o printf.o random.o libc.a C standard library Archiver allows incremental updates Recompile function that changes and replace.o file in archive.

18 Commonly Used Libraries libc.a (the C standard library) 8 MB archive of 900 object files. I/O, memory allocation, signal handling, string handling, data and time, random numbers, integer math libm.a (the C math library) 1 MB archive of 226 object files. floating point math (sin, cos, tan, log, exp, sqrt, ) % ar -t /usr/lib/libc.a sort fork.o fprintf.o fpu_control.o fputc.o freopen.o fscanf.o fseek.o fstab.o % ar -t /usr/lib/libm.a sort e_acos.o e_acosf.o e_acosh.o e_acoshf.o e_acoshl.o e_acosl.o e_asin.o e_asinf.o e_asinl.o

19 Linking with Static Libraries addvec.o multvec.o main2.c vector.h Archiver (ar) Translators (cpp, cc1, as) libvector.a libc.a Static libraries Relocatable object files main2.o addvec.o printf.o and any other modules called by printf.o Linker (ld) p2 Fully linked executable object file

20 Using Static Libraries Linker s algorithm for resolving external references: Scan.o files and.a files in the command line order. During the scan, keep a list of the current unresolved references. As each new.o or.a file, obj, is encountered, try to resolve each unresolved reference in the list against the symbols defined in obj. If any entries in the unresolved list at end of scan, then error. Problem: Command line order matters! Moral: put libraries at the end of the command line. unix> gcc -L. libtest.o -lmine unix> gcc -L. -lmine libtest.o libtest.o: In function `main': libtest.o(.text+0x4): undefined reference to `libfun'

21 Loading Executable Object Files Executable Object File ELF header Program header table (required for executables).init section.text section.rodata section.data section 0 0xc x Kernel virtual memory User stack (created at runtime) Memory-mapped region for shared libraries Memory invisible to user code %esp (stack pointer).bss section.symtab.debug.line.strtab Section header table (required for relocatables) 0x Run-time heap (created by malloc) Read/write segment (.data,.bss) Read-only segment (.init,.text,.rodata) Unused brk Loaded from the executable file

22

23 Internet Worm and IM War November, 1988 Internet Worm attacks thousands of Internet hosts. How did it happen?

24 Internet Worm and IM War November, 1988 Internet Worm attacks thousands of Internet hosts. How did it happen? July, 1999 Microsoft launches MSN Messenger (instant messaging system). Messenger clients can access popular AOL Instant Messaging Service (AIM) servers AIM MSN MSN AIM AIM

25 Internet Worm and IM War (cont.) August 1999 Mysteriously, Messenger clients can no longer access AIM servers. Microsoft and AOL begin the IM war: AOL changes server to disallow Messenger clients Microsoft makes changes to clients to defeat AOL changes. At least 13 such skirmishes. How did it happen? The Internet Worm and AOL/Microsoft War were both based on stack buffer overflow exploits! many Unix functions do not check argument sizes. allows target buffers to overflow.

26 String Library Code Implementation of Unix function gets() /* Get string from stdin */ char *gets(char *dest) { int c = getchar(); char *p = dest; while (c!= EOF && c!= '\n') { *p++ = c; c = getchar(); } *p = '\0'; return dest; } No way to specify limit on number of characters to read Similar problems with other Unix functions strcpy: Copies string of arbitrary length scanf, fscanf, sscanf, when given %s conversion specification

27 Vulnerable Buffer Code /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); } int main() { printf("type a string:"); echo(); return 0; } unix>./bufdemo Type a string: unix>./bufdemo Type a string: Segmentation Fault unix>./bufdemo Type a string: abc Segmentation Fault

28 Buffer Overflow Disassembly f0 <echo>: 80484f0: 55 push %ebp 80484f1: 89 e5 mov %esp,%ebp 80484f3: 53 push %ebx 80484f4: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx 80484f7: 83 ec 14 sub $0x14,%esp 80484fa: 89 1c 24 mov %ebx,(%esp) 80484fd: e8 ae ff ff ff call 80484b0 <gets> : 89 1c 24 mov %ebx,(%esp) : e8 8a fe ff ff call a: 83 c4 14 add $0x14,%esp d: 5b pop %ebx e: c9 leave f: c3 ret 80485f2: e8 f9 fe ff ff call 80484f0 <echo> 80485f7: 8b 5d fc mov 0xfffffffc(%ebp),%ebx 80485fa: c9 leave 80485fb: 31 c0 xor %eax,%eax 80485fd: c3 ret

29 Buffer Overflow Stack Before call to gets Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf %ebp /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ gets(buf); puts(buf); } Stack Frame for echo echo: pushl %ebp movl %esp, %ebp pushl %ebx leal -8(%ebp),%ebx subl $20, %esp movl %ebx, (%esp) call gets... # Save %ebp on stack # Save %ebx # Compute buf as %ebp-8 # Allocate stack space # Push buf on stack # Call gets

30 Buffer Overflow Stack Example Before call to gets Stack Frame for main Carnegie Mellon unix> gdb bufdemo (gdb) break echo Breakpoint 1 at 0x (gdb) run Breakpoint 1, 0x in echo () (gdb) print /x $ebp $1 = 0xffffc638 (gdb) print /x *(unsigned *)$ebp $2 = 0xffffc658 (gdb) print /x *((unsigned *)$ebp + 1) $3 = 0x80485f7 Before call to gets Stack Frame 0xffffc658 for main Return Address Saved %ebp f7 ff ff c6 58 0xffffc638 [3] [2] [1] [0] Stack Frame for echo buf xx xx xx xx buf Stack Frame for echo 80485f2: call 80484f0 <echo> 80485f7: mov 0xfffffffc(%ebp),%ebx # Return Point

31 Buffer Overflow Example #1 Before call to gets Input Stack Frame for main 0xffffc658 Stack Frame for main 0xffffc f7 ff ff c6 58 xx xx xx xx buf Stack Frame for echo 0xffffc f7 ff ff c6 58 0xffffc buf Stack Frame for echo Overflow buf, but no problem

32 Buffer Overflow Example #2 Before call to gets Input Stack Frame for main 0xffffc658 Stack Frame for main 0xffffc f7 ff ff c6 58 xx xx xx xx buf Stack Frame for echo 0xffffc f7 ff ff c6 00 0xffffc buf Stack Frame for echo Base pointer corrupted a: 83 c4 14 add $0x14,%esp # deallocate space d: 5b pop %ebx # restore %ebx e: c9 leave # movl %ebp, %esp; popl %ebp f: c3 ret # Return

33 Buffer Overflow Example #3 Before call to gets Stack Frame for main 0xffffc658 Input ABC Stack Frame for main 0xffffc f7 ff ff c6 58 xx xx xx xx buf Stack Frame for echo 0xffffc xffffc buf Stack Frame for echo Return address corrupted 80485f2: call 80484f0 <echo> 80485f7: mov 0xfffffffc(%ebp),%ebx # Return Point

34 Malicious Use of Buffer Overflow Stack after call to gets() void foo(){ bar();... } return address A B foo stack frame int bar() { char buf[64]; gets(buf);... return...; } data written by gets() B pad exploit code bar stack frame Input string contains byte representation of executable code Overwrite return address with address of buffer When bar() executes ret, will jump to exploit code

35 Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines Internet worm Early versions of the finger server (fingerd) used gets() to read the argument sent by the client: finger Worm attacked fingerd server by sending phony argument: finger exploit-code padding new-returnaddress exploit code: executed a root shell on the victim machine with a direct TCP connection to the attacker.

36 Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines IM War AOL exploited existing buffer overflow bug in AIM clients exploit code: returned 4-byte signature (the bytes at some location in the AIM client) to server. When Microsoft changed code to match signature, AOL changed signature location.

37 Date: Wed, 11 Aug :30: (PDT) From: Phil Bucking Subject: AOL exploiting buffer overrun bug in their own software! To: Mr. Smith, I am writing you because I have discovered something that I think you might find interesting because you are an Internet security expert with experience in this area. I have also tried to contact AOL but received no response. I am a developer who has been working on a revolutionary new instant messaging client that should be released later this year.... It appears that the AIM client has a buffer overrun bug. By itself this might not be the end of the world, as MS surely has had its share. But AOL is now *exploiting their own buffer overrun bug* to help in its efforts to block MS Instant Messenger.... Since you have significant credibility with the press I hope that you can use this information to help inform people that behind AOL's friendly exterior they are nefariously compromising peoples' security. Sincerely, Phil Bucking Founder, Bucking Consulting philbucking@yahoo.com It was later determined that this originated from within Microsoft!

38 Code Red Worm History June 18, Microsoft announces buffer overflow vulnerability in IIS Internet server July 19, over 250,000 machines infected by new virus in 9 hours White house must change its IP address. Pentagon shut down public WWW servers for day When We Set Up CS:APP Web Site Received strings of form GET /default.ida? NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN %u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9 090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003 %u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0" "-" "-"

39 Code Red Exploit Code Starts 100 threads running Spread self Generate random IP addresses & send attack string Between 1st & 19th of month Attack Send 98,304 packets; sleep for 4-1/2 hours; repeat Denial of service attack Between 21st & 27th of month Deface server s home page After waiting 2 hours

40 Code Red Effects Later Version Even More Malicious Code Red II As of April, 2002, over 18,000 machines infected Still spreading Paved Way for NIMDA Variety of propagation methods One was to exploit vulnerabilities left behind by Code Red II ASIDE (security flaws start at home).rhosts used by Internet Worm Attachments used by MyDoom (1 in 6 s Monday morning!)

41 Avoiding Overflow Vulnerability /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ fgets(buf, 4, stdin); puts(buf); } Use library routines that limit string lengths fgets instead of gets strncpy instead of strcpy Don t use scanf with %s conversion specification Use fgets to read the string Or use %ns where n is a suitable integer

42 System-Level Protections Randomized stack offsets At start of program, allocate random amount of space on stack Makes it difficult for hacker to predict beginning of inserted code Nonexecutable code segments In traditional x86, can mark region of memory as either read-only or writeable Can execute anything readable Add explicit execute permission unix> gdb bufdemo (gdb) break echo (gdb) run (gdb) print /x $ebp $1 = 0xffffc638 (gdb) run (gdb) print /x $ebp $2 = 0xffffbb08 (gdb) run (gdb) print /x $ebp $3 = 0xffffc6a8

43 Worms and Viruses Worm: A program that Can run by itself Can propagate a fully working version of itself to other computers Virus: Code that Add itself to other programs Cannot run independently Both are (usually) designed to spread among computers and to wreak havoc

Sungkyunkwan University

Sungkyunkwan University November, 1988 Internet Worm attacks thousands of Internet hosts. How did it happen? November, 1988 Internet Worm attacks thousands of Internet hosts. How did it happen? July, 1999 Microsoft launches MSN

More information

Introduction to Computer Systems , fall th Lecture, Sep. 28 th

Introduction to Computer Systems , fall th Lecture, Sep. 28 th Introduction to Computer Systems 15 213, fall 2009 9 th Lecture, Sep. 28 th Instructors: Majd Sakr and Khaled Harras Last Time: Structures struct rec { int i; int a[3]; int *p; }; Memory Layout i a p 0

More information

Lecture 16: Linking Computer Architecture and Systems Programming ( )

Lecture 16: Linking Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 16: Linking Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Last time: memory hierarchy L1/L2

More information

Systems I. Linking II

Systems I. Linking II Systems I Linking II Topics Relocation Static libraries Loading Dynamic linking of shared libraries Relocating Symbols and Resolving External References Symbols are lexical entities that name functions

More information

Example C program. 11: Linking. Why linkers? Modularity! Static linking. Why linkers? Efficiency! What do linkers do? 10/28/2013

Example C program. 11: Linking. Why linkers? Modularity! Static linking. Why linkers? Efficiency! What do linkers do? 10/28/2013 Example C program 11: Linking Computer Architecture and Systems Programming 252 61, Herbstsemester 213 Timothy Roscoe main.c int buf[2] = 1, 2; swap(); return ; swap.c static int *bufp = &buf[]; void swap()

More information

Example C Program The course that gives CMU its Zip! Linking March 2, Static Linking. Why Linkers? Page # Topics

Example C Program The course that gives CMU its Zip! Linking March 2, Static Linking. Why Linkers? Page # Topics 15-213 The course that gives CMU its Zip! Topics Linking March 2, 24 Static linking Dynamic linking Case study: Library interpositioning Example C Program main.c int buf[2] = 1, 2; int main() swap(); return

More information

Linking February 24, 2005

Linking February 24, 2005 15-213 The course that gives CMU its Zip! Linking February 24, 2005 Topics Static linking Dynamic linking Case study: Library interpositioning 13-linking.ppt Example C Program main.c int buf[2] = {1, 2};

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Linking 1 12: Linking Computer Architecture

More information

Linux Memory Layout. Lecture 6B Machine-Level Programming V: Miscellaneous Topics. Linux Memory Allocation. Text & Stack Example. Topics.

Linux Memory Layout. Lecture 6B Machine-Level Programming V: Miscellaneous Topics. Linux Memory Allocation. Text & Stack Example. Topics. Lecture 6B Machine-Level Programming V: Miscellaneous Topics Topics Linux Memory Layout Understanding Pointers Buffer Overflow Upper 2 hex digits of address Red Hat v. 6.2 ~1920MB memory limit FF C0 Used

More information

BUFFER OVERFLOW. Jo, Heeseung

BUFFER OVERFLOW. Jo, Heeseung BUFFER OVERFLOW Jo, Heeseung IA-32/LINUX MEMORY LAYOUT Heap Runtime stack (8MB limit) Dynamically allocated storage When call malloc(), calloc(), new() DLLs (shared libraries) Data Text Dynamically linked

More information

Buffer Overflow. Jo, Heeseung

Buffer Overflow. Jo, Heeseung Buffer Overflow Jo, Heeseung IA-32/Linux Memory Layout Heap Runtime stack (8MB limit) Dynamically allocated storage When call malloc(), calloc(), new() DLLs (shared libraries) Data Text Dynamically linked

More information

Machine-Level Programming V: Miscellaneous Topics Sept. 24, 2002

Machine-Level Programming V: Miscellaneous Topics Sept. 24, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming V: Miscellaneous Topics Sept. 24, 2002 Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code class09.ppt

More information

Example C Program. Linking CS Instructor: Sanjeev Se(a. int buf[2] = {1, 2}; extern int buf[]; int main() { swap(); return 0; }

Example C Program. Linking CS Instructor: Sanjeev Se(a. int buf[2] = {1, 2}; extern int buf[]; int main() { swap(); return 0; } Linking Instructor: Sanjeev Se(a 1 Example C Program main.c int buf[2] = {1, 2; int main() { swap(); return 0; swap.c extern int buf[]; static int *bufp0 = &buf[0]; static int *bufp1; void swap() { int

More information

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32/Linux Memory Layout Runtime stack (8MB limit) Heap Dynamically allocated storage

More information

Linking Oct. 26, 2009"

Linking Oct. 26, 2009 Linking Oct. 26, 2009" Linker Puzzles" int x; p1() {} p1() {} int x; p1() {} int x; p2() {} int x; int y; p1() {} int x=7; int y=5; p1() {} double x; p2() {} double x; p2() {} int x=7; p1() {} int x; p2()

More information

Giving credit where credit is due

Giving credit where credit is due JDEP 284H Foundations of Computer Systems Machine-Level Programming V: Wrap-up Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides

More information

CSE 2421: Systems I Low-Level Programming and Computer Organization. Linking. Presentation N. Introduction to Linkers

CSE 2421: Systems I Low-Level Programming and Computer Organization. Linking. Presentation N. Introduction to Linkers CSE 2421: Systems I Low-Level Programming and Computer Organization Linking Read/Study: Bryant 7.1 7.10 Gojko Babić 11-15-2017 Introduction to Linkers Linking is the process of collecting and combining

More information

Linux Memory Layout The course that gives CMU its Zip! Machine-Level Programming IV: Miscellaneous Topics Sept. 24, Text & Stack Example

Linux Memory Layout The course that gives CMU its Zip! Machine-Level Programming IV: Miscellaneous Topics Sept. 24, Text & Stack Example Machine-Level Programming IV: Miscellaneous Topics Sept. 24, 22 class09.ppt 15-213 The course that gives CMU its Zip! Topics Linux Memory Layout Understanding Pointers Buffer Overflow Floating Point Code

More information

A Simplistic Program Translation Scheme

A Simplistic Program Translation Scheme A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems: Efficiency: small change requires complete recompilation Modularity:

More information

Linking Oct. 15, 2002

Linking Oct. 15, 2002 15-213 The course that gives CMU its Zip! Topics Linking Oct. 15, 2002 Static linking Object files Static libraries Loading Dynamic linking of shared libraries class15.ppt Linker Puzzles int x; p1() {}

More information

E = 2 e lines per set. S = 2 s sets tag. valid bit B = 2 b bytes per cache block (the data) CSE351 Inaugural EdiNon Spring

E = 2 e lines per set. S = 2 s sets tag. valid bit B = 2 b bytes per cache block (the data) CSE351 Inaugural EdiNon Spring Last Time Caches E = 2 e lines per set Address of word: t bits s bits b bits S = 2 s sets tag set index block offset data begins at this offset v tag 0 1 2 B 1 valid bit B = 2 b bytes per cache block (the

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Linking Gal A. Kaminka galk@cs.biu.ac.il A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems:

More information

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu x86-64/linux Memory Layout Stack Runtime stack (8MB limit) Heap Dynamically allocated

More information

Buffer Overflow. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Buffer Overflow. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Buffer Overflow Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

LINKING. Jo, Heeseung

LINKING. Jo, Heeseung LINKING Jo, Heeseung PROGRAM TRANSLATION (1) A simplistic program translation scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems: - Efficiency: small

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: January 13, 2017 at 08:55 CS429 Slideset 25: 1 Relocating Symbols

More information

Relocating Symbols and Resolving External References. CS429: Computer Organization and Architecture. m.o Relocation Info

Relocating Symbols and Resolving External References. CS429: Computer Organization and Architecture. m.o Relocation Info Relocating Symbols and Resolving External References CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: January 13,

More information

Exercise Session 7 Computer Architecture and Systems Programming

Exercise Session 7 Computer Architecture and Systems Programming Systems Group Department of Computer Science ETH Zürich Exercise Session 7 Computer Architecture and Systems Programming Herbstsemester 2014 Review of last week s excersice structs / arrays in Assembler

More information

Machine-Level Programming V: Advanced Topics

Machine-Level Programming V: Advanced Topics Machine-Level Programming V: Advanced Topics Slides courtesy of: Randy Bryant & Dave O Hallaron 1 Today Structures Alignment Unions Memory Layout Buffer Overflow Vulnerability Protection 2 R.A. Rutenbar,

More information

Linking. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska

Linking. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska Linking Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran (NYU) Example C

More information

Computer Systems. Linking. Han, Hwansoo

Computer Systems. Linking. Han, Hwansoo Computer Systems Linking Han, Hwansoo Example C Program int sum(int *a, int n); int array[2] = {1, 2}; int sum(int *a, int n) { int i, s = 0; int main() { int val = sum(array, 2); return val; } main.c

More information

COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES. Credit: Mostly Bryant & O Hallaron

COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES. Credit: Mostly Bryant & O Hallaron COMPILING OBJECTS AND OTHER LANGUAGE IMPLEMENTATION ISSUES Credit: Mostly Bryant & O Hallaron Word-Oriented Memory Organization Addresses Specify Byte Locations Address of first byte in word Addresses

More information

Buffer Overflows. Buffer Overflow. Many of the following slides are based on those from

Buffer Overflows. Buffer Overflow. Many of the following slides are based on those from s Many of the following slides are based on those from 1 Complete Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective (CS:APP) Randal E. Bryant and David R. O'Hallaron http://csapp.cs.cmu.edu/public/lectures.html

More information

Machine- Level Programming V: Advanced Topics

Machine- Level Programming V: Advanced Topics Machine- Level Programming V: Advanced Topics Andrew Case Slides adapted from Jinyang Li, Randy Bryant & Dave O Hallaron 1 Today Structures and Unions Memory Layout Buffer Overflow Vulnerability ProtecEon

More information

Machine-Level Prog. V Miscellaneous Topics

Machine-Level Prog. V Miscellaneous Topics Machine-Level Prog. V Miscellaneous Topics Today Buffer overflow Extending IA32 to 64 bits Next time Memory Fabián E. Bustamante, Spring 2010 Internet worm and IM war November, 1988 Internet Worm attacks

More information

Machine-Level Programming IV: Structured Data

Machine-Level Programming IV: Structured Data Machine-Level Programming IV: Structured Data Topics Arrays Structs Basic Data Types Integral 2 Stored & operated on in general registers Signed vs. unsigned depends on instructions used Intel GAS Bytes

More information

Outline. 1 Background. 2 ELF Linking. 3 Static Linking. 4 Dynamic Linking. 5 Summary. Linker. Various Stages. 1 Linking can be done at compile.

Outline. 1 Background. 2 ELF Linking. 3 Static Linking. 4 Dynamic Linking. 5 Summary. Linker. Various Stages. 1 Linking can be done at compile. Outline CS 6V81-05: System Security and Malicious Code Analysis Revealing Internals of Linkers Zhiqiang Lin Department of Computer Science University of Texas at Dallas March 26 th, 2012 1 Background 2

More information

CS 201 Linking Gerson Robboy Portland State University

CS 201 Linking Gerson Robboy Portland State University CS 201 Linking Gerson Robboy Portland State University 1 15-213, F 02 A Simplistic Program Translation Scheme m.c ASCII source file Translator p Binary executable object file (memory image on disk) Problems:

More information

Linking and Loading. CS61, Lecture 16. Prof. Stephen Chong October 25, 2011

Linking and Loading. CS61, Lecture 16. Prof. Stephen Chong October 25, 2011 Linking and Loading CS61, Lecture 16 Prof. Stephen Chong October 25, 2011 Announcements Midterm exam in class on Thursday 80 minute exam Open book, closed note. No electronic devices allowed Please be

More information

Buffer overflows. Specific topics:

Buffer overflows. Specific topics: Buffer overflows Buffer overflows are possible because C does not check array boundaries Buffer overflows are dangerous because buffers for user input are often stored on the stack Specific topics: Address

More information

Revealing Internals of Linkers. Zhiqiang Lin

Revealing Internals of Linkers. Zhiqiang Lin CS 6V81-05: System Security and Malicious Code Analysis Revealing Internals of Linkers Zhiqiang Lin Department of Computer Science University of Texas at Dallas March 26 th, 2012 Outline 1 Background 2

More information

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM

Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM Buffer overflows (a security interlude) Address space layout the stack discipline + C's lack of bounds-checking HUGE PROBLEM x86-64 Linux Memory Layout 0x00007fffffffffff not drawn to scale Stack... Caller

More information

Machine-Level Prog. V Miscellaneous Topics

Machine-Level Prog. V Miscellaneous Topics Machine-Level Prog. V Miscellaneous Topics Today Buffer overflow Extending IA32 to 64 bits Next time Memory Fabián E. Bustamante, 2007 Internet worm and IM war November, 1988 Internet Worm attacks thousands

More information

Linker Puzzles The course that gives CMU its Zip! Linking Mar 4, A Simplistic Program Translation Scheme. A Better Scheme Using a Linker

Linker Puzzles The course that gives CMU its Zip! Linking Mar 4, A Simplistic Program Translation Scheme. A Better Scheme Using a Linker 15-213 The course that gives CMU its Zi! Toics Static linking Object files Linking Mar 4, 2003 Static libraries Loading Dynamic linking of shared libraries Linker Puzzles 1() { 1() { 1() { 1() { int x=7;

More information

Machine-level Programs Adv. Topics

Machine-level Programs Adv. Topics Computer Systems Machine-level Programs Adv. Topics Han, Hwansoo x86-64 Linux Memory Layout 0x00007FFFFFFFFFFF Stack Runtime stack (8MB limit) E. g., local variables Heap Dynamically allocated as needed

More information

Machine Programming 5: Buffer Overruns and Stack Exploits

Machine Programming 5: Buffer Overruns and Stack Exploits Machine Programming 5: Buffer Overruns and Stack Exploits CS61, Lecture 6 Prof. Stephen Chong September 22, 2011 Thinking about grad school in Computer Science? Panel discussion Tuesday September 27th,

More information

Sungkyunkwan University

Sungkyunkwan University Linking Case study: Library interpositioning main.c int buf[2] = {1, 2}; int main() { swap(); return 0; } swap.c extern int buf[]; int *bufp0 = &buf[0]; static int *bufp1; void swap() { int temp; } bufp1

More information

Machine-Level Programming V: Advanced Topics

Machine-Level Programming V: Advanced Topics Machine-Level Programming V: Advanced Topics CENG331 - Computer Organization Instructor: Murat Manguoglu Adapted from slides of the textbook: http://csapp.cs.cmu.edu/ Today Memory Layout Buffer Overflow

More information

Lecture 12-13: Linking

Lecture 12-13: Linking CSCI-UA.0201-003 Computer Systems Organization Lecture 12-13: Linking Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Source Code to Execution C source Assembly Assembly Compiler Assembly

More information

Computer Systems CEN591(502) Fall 2011

Computer Systems CEN591(502) Fall 2011 Computer Systems CEN591(502) Fall 2011 Sandeep K. S. Gupta Arizona State University 9 th lecture Machine-Level Programming (4) (Slides adapted from CSAPP) Announcements Potentially Makeup Classes on Sat

More information

Systemprogrammering och operativsystem Laborationer. Linker Puzzles. Systemprogrammering 2007 Föreläsning 1 Compilation and Linking

Systemprogrammering och operativsystem Laborationer. Linker Puzzles. Systemprogrammering 2007 Föreläsning 1 Compilation and Linking Systemprogrammering och operativsystem 2007 Denna kurs behandlar programmering nära operativsystemet. Det operativsystem vi använder är Unix (Solaris på Sun-maskiner och Linux på PC), men principerna gäller

More information

(Extract from the slides by Terrance E. Boult

(Extract from the slides by Terrance E. Boult What software engineers need to know about linking and a few things about execution (Extract from the slides by Terrance E. Boult http://vast.uccs.edu/~tboult/) A Simplistic Program Translation Scheme

More information

Machine- Level Programming V: Advanced Topics

Machine- Level Programming V: Advanced Topics Machine- Level Programming V: Advanced Topics CS 485: Systems Programming Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hjp://csapp.cs.cmu.edu/public/instructors.html)

More information

Linking. Today. Next time. Static linking Object files Static & dynamically linked libraries. Exceptional control flows

Linking. Today. Next time. Static linking Object files Static & dynamically linked libraries. Exceptional control flows Linking Today Static linking Object files Static & dynamically linked libraries Next time Exceptional control flows Fabián E. Bustamante, 2007 Example C program main.c void swap(); int buf[2] = {1, 2;

More information

Machine-Level Programming V: Buffer overflow

Machine-Level Programming V: Buffer overflow Carnegie Mellon Machine-Level Programming V: Buffer overflow Slides adapted from Bryant and O Hallaron Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition 1 Recall: Memory

More information

CSC 252: Computer Organization Spring 2018: Lecture 9

CSC 252: Computer Organization Spring 2018: Lecture 9 CSC 252: Computer Organization Spring 2018: Lecture 9 Instructor: Yuhao Zhu Department of Computer Science University of Rochester Action Items: Assignment 2 is due tomorrow, midnight Assignment 3 is out

More information

Machine-Level Programming V: Advanced Topics

Machine-Level Programming V: Advanced Topics Machine-Level Programming V: Advanced Topics CS140 - Assembly Language and Computer Organization March 29, 2016 Slides courtesy of: Randal E. Bryant and David R. O Hallaron 1 Today Memory Layout Buffer

More information

Link 2. Object Files

Link 2. Object Files Link 2. Object Files Young W. Lim 2017-09-20 Wed Young W. Lim Link 2. Object Files 2017-09-20 Wed 1 / 33 Outline 1 Linking - 2. Object Files Based on Oject Files ELF Sections Example Program Source Codes

More information

Machine-Level Programming V: Advanced Topics

Machine-Level Programming V: Advanced Topics Machine-Level Programming V: Advanced Topics CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides 1 Today Memory Layout Buffer Overflow

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition 1 Machine-Level Programming V: Advanced Topics 15-213/18-213/14-513/15-513: Introduction to Computer Systems 9 th Lecture, September 25, 2018 2 Today Memory Layout Buffer Overflow Vulnerability Protection

More information

Machine-Level Programming V: Advanced Topics

Machine-Level Programming V: Advanced Topics Machine-Level Programming V: Advanced Topics 15-213: Introduction to Computer Systems 9 th Lecture, June 7 Instructor: Brian Railing 1 Today Memory Layout Buffer Overflow Vulnerability Protection Unions

More information

Link 7. Static Linking

Link 7. Static Linking Link 7. Static Linking Young W. Lim 2018-12-21 Fri Young W. Lim Link 7. Static Linking 2018-12-21 Fri 1 / 41 Outline 1 Linking - 7. Static Linking Based on Static Library Examples Linking with Static Libraries

More information

Link 2. Object Files

Link 2. Object Files Link 2. Object Files Young W. Lim 2017-09-23 Sat Young W. Lim Link 2. Object Files 2017-09-23 Sat 1 / 40 Outline 1 Linking - 2. Object Files Based on Oject Files ELF Sections Example Program Source Codes

More information

238P: Operating Systems. Lecture 7: Basic Architecture of a Program. Anton Burtsev January, 2018

238P: Operating Systems. Lecture 7: Basic Architecture of a Program. Anton Burtsev January, 2018 238P: Operating Systems Lecture 7: Basic Architecture of a Program Anton Burtsev January, 2018 What is a program? What parts do we need to run code? Parts needed to run a program Code itself By convention

More information

X86 Assembly Buffer Overflow III:1

X86 Assembly Buffer Overflow III:1 X86 Assembly Buffer Overflow III:1 Admin Link to buffer overflow demo http://nsfsecurity.pr.erau.edu/bom/ ASM quick-reference from Larry Zhang (thanks!) http://www.cs.uaf.edu/2010/fall/cs301/support/x86/gcc.html

More information

CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization

CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization Spring 2013 CSE2421 Systems1 Introduction to Low-Level Programming and Computer Organization Kitty Reeves TWRF 8:00-8:55am 1 Compiler Drivers = GCC When you invoke GCC, it normally does preprocessing,

More information

u Linking u Case study: Library interpositioning

u Linking u Case study: Library interpositioning u Linking u Case study: Library interpositioning int sum(int *a, int n); int array[2] = {1, 2}; int sum(int *a, int n) { int i, s = 0; int main() { int val = sum(array, 2); return val; } main.c } for (i

More information

Why do we need Pointers? Call by Value vs. Call by Reference in detail Implementing Arrays Buffer Overflow / The Stack Hack

Why do we need Pointers? Call by Value vs. Call by Reference in detail Implementing Arrays Buffer Overflow / The Stack Hack Chapter 16 Why do we need Pointers? Call by Value vs. Call by Reference in detail Implementing Arrays Buffer Overflow / The Stack Hack A problem with parameter passing via stack Consider the following

More information

Today. Linking. Example C Program. Sta7c Linking. Linking Case study: Library interposi7oning

Today. Linking. Example C Program. Sta7c Linking. Linking Case study: Library interposi7oning Today Linking Linking Case study: Library interposi7oning 15-213 / 18-213: Introduc2on to Computer Systems 12 th Lecture, Feb. 23, 2012 Instructors: Todd C. Mowry & Anthony Rowe 1 2 Example C Program Sta7c

More information

Linking. Explain what ELF format is. Explain what an executable is and how it got that way. With huge thanks to Steve Chong for his notes from CS61.

Linking. Explain what ELF format is. Explain what an executable is and how it got that way. With huge thanks to Steve Chong for his notes from CS61. Linking Topics How do you transform a collection of object files into an executable? How is an executable structured? Why is an executable structured as it is? Learning Objectives: Explain what ELF format

More information

A SimplisHc Program TranslaHon Scheme. TranslaHng the Example Program. Example C Program. Why Linkers? - Modularity. Linking

A SimplisHc Program TranslaHon Scheme. TranslaHng the Example Program. Example C Program. Why Linkers? - Modularity. Linking A SimplisHc Program TranslaHon Scheme Linking ASCII (Text) source file The American Standard Code for InformaHon Interchange (ASCII) CSCI 221: Machine Architecture and OrganizaHon Pen- Chung Yew Department

More information

Machine Programming 1: Introduction

Machine Programming 1: Introduction Machine Programming 1: Introduction CS61, Lecture 3 Prof. Stephen Chong September 8, 2011 Announcements (1/2) Assignment 1 due Tuesday Please fill in survey by 5pm today! Assignment 2 will be released

More information

Buffer Overflow Attacks

Buffer Overflow Attacks CS- Spring Buffer Overflow Attacks Computer Systems..-, CS- Spring Hacking Roots in phone phreaking White Hat vs Gray Hat vs Black Hat Over % of Modern Software Development is Black Hat! Tip the balance:

More information

Buffer Overflows. CSE 351 Autumn Instructor: Justin Hsia

Buffer Overflows. CSE 351 Autumn Instructor: Justin Hsia Buffer Overflows CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan http://xkcd.com/804/

More information

Link 4. Relocation. Young W. Lim Wed. Young W. Lim Link 4. Relocation Wed 1 / 22

Link 4. Relocation. Young W. Lim Wed. Young W. Lim Link 4. Relocation Wed 1 / 22 Link 4. Relocation Young W. Lim 2017-09-13 Wed Young W. Lim Link 4. Relocation 2017-09-13 Wed 1 / 22 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

Link 7.A Static Linking

Link 7.A Static Linking Link 7.A Static Linking Young W. Lim 2019-01-04 Fri Young W. Lim Link 7.A Static Linking 2019-01-04 Fri 1 / 27 Outline 1 Linking - 7.A Static Linking Based on Static Library Examples Linking with Static

More information

Buffer Overflows. CSE 351 Autumn 2018

Buffer Overflows. CSE 351 Autumn 2018 Buffer Overflows CSE 351 Autumn 2018 Instructor: Teaching Assistants: Justin Hsia Akshat Aggarwal An Wang Andrew Hu Brian Dai Britt Henderson James Shin Kevin Bi Kory Watson Riley Germundson Sophie Tian

More information

Buffer Overflows. CSE 410 Winter Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui

Buffer Overflows. CSE 410 Winter Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui Buffer Overflows CSE 410 Winter 2017 Instructor: Justin Hsia Teaching Assistants: Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui Administrivia Lab 2 & mid quarter survey due tonight Lab 3 released

More information

Assembly I: Basic Operations. Jo, Heeseung

Assembly I: Basic Operations. Jo, Heeseung Assembly I: Basic Operations Jo, Heeseung Moving Data (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung ASSEMBLY I: BASIC OPERATIONS Jo, Heeseung MOVING DATA (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

Linking. CS 485 Systems Programming Fall Instructor: James Griffioen

Linking. CS 485 Systems Programming Fall Instructor: James Griffioen Linking CS 485 Systems Programming Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hip://csapp.cs.cmu.edu/public/instructors.html) 1 Today Linking Case study:

More information

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm

More information

Buffer-Overflow Attacks on the Stack

Buffer-Overflow Attacks on the Stack Computer Systems Buffer-Overflow Attacks on the Stack Introduction A buffer overflow occurs when a program, while writing data to a buffer, overruns the buffer's boundary and overwrites memory in adjacent

More information

Today. Machine-Level Programming V: Advanced Topics. x86-64 Linux Memory Layout. Memory Allocation Example. Today. x86-64 Example Addresses

Today. Machine-Level Programming V: Advanced Topics. x86-64 Linux Memory Layout. Memory Allocation Example. Today. x86-64 Example Addresses Today Machine-Level Programming V: Advanced Topics CSci 2021: Machine Architecture and Organization Lectures #14-15, February 19th-22nd,2016 Your instructor: Stephen McCamant Memory Layout Buffer Overflow

More information

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 26

Link 4. Relocation. Young W. Lim Thr. Young W. Lim Link 4. Relocation Thr 1 / 26 Link 4. Relocation Young W. Lim 2017-09-14 Thr Young W. Lim Link 4. Relocation 2017-09-14 Thr 1 / 26 Outline 1 Linking - 4. Relocation Based on Relocation Relocation Entries Relocating Symbol Reference

More information

CMPSC 497 Buffer Overflow Vulnerabilities

CMPSC 497 Buffer Overflow Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Buffer Overflow

More information

Today. Machine-Level Programming V: Advanced Topics. x86-64 Linux Memory Layout. Memory Allocation Example. Today. x86-64 Example Addresses

Today. Machine-Level Programming V: Advanced Topics. x86-64 Linux Memory Layout. Memory Allocation Example. Today. x86-64 Example Addresses Today Machine-Level Programming V: Advanced Topics CSci 2021: Machine Architecture and Organization October 17th, 2018 Your instructor: Stephen McCamant Memory Layout Buffer Overflow Vulnerability Protection

More information

Introduction Presentation A

Introduction Presentation A CSE 2421/5042: Systems I Low-Level Programming and Computer Organization Introduction Presentation A Read carefully: Bryant Chapter 1 Study: Reek Chapter 2 Skim: Reek Chapter 1 08/22/2018 Gojko Babić Some

More information

Machine Language, Assemblers and Linkers"

Machine Language, Assemblers and Linkers Machine Language, Assemblers and Linkers 1 Goals for this Lecture Help you to learn about: IA-32 machine language The assembly and linking processes 2 1 Why Learn Machine Language Last stop on the language

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 16, SPRING 2013 TOPICS TODAY Project 6 Perils & Pitfalls of Memory Allocation C Function Call Conventions in Assembly Language PERILS

More information

CS , Fall 2002 Exam 1

CS , Fall 2002 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2002 Exam 1 October 8, 2002 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

Buffer-Overflow Attacks on the Stack

Buffer-Overflow Attacks on the Stack Computer Systems Buffer-Overflow Attacks on the Stack Introduction A buffer overflow occurs when a program, while writing data to a buffer, overruns the buffer's boundary and overwrites memory in adjacent

More information

Summary. Alexandre David

Summary. Alexandre David 3.8-3.12 Summary Alexandre David 3.8.4 & 3.8.5 n Array accesses 12-04-2011 Aalborg University, CART 2 Carnegie Mellon N X N Matrix Code Fixed dimensions Know value of N at compile 2me #define N 16 typedef

More information

CS , Fall 2001 Exam 1

CS , Fall 2001 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2001 Exam 1 October 9, 2001 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

Advanced Buffer Overflow

Advanced Buffer Overflow Pattern Recognition and Applications Lab Advanced Buffer Overflow Ing. Davide Maiorca, Ph.D. davide.maiorca@diee.unica.it Computer Security A.Y. 2016/2017 Department of Electrical and Electronic Engineering

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

Buffer Overflows Many of the following slides are based on those from Complete Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective (CS:APP) Randal E. Bryant and David R. O'Hallaron

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition 1 Linking 15-213: Introduction to Computer Systems 13 th Lecture, October 10th, 2017 Instructor: Randy Bryant 2 Today Linking Motivation What it does How it works Dynamic linking Case study: Library interpositioning

More information

Generating Programs and Linking. Professor Rick Han Department of Computer Science University of Colorado at Boulder

Generating Programs and Linking. Professor Rick Han Department of Computer Science University of Colorado at Boulder Generating Programs and Linking Professor Rick Han Department of Computer Science University of Colorado at Boulder CSCI 3753 Announcements Moodle - posted last Thursday s lecture Programming shell assignment

More information