U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 *** WITH SOLUTIONS *** COMP 261 ALGORITHMS and DATA STRUCTURES

Size: px
Start display at page:

Download "U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 *** WITH SOLUTIONS *** COMP 261 ALGORITHMS and DATA STRUCTURES"

Transcription

1 T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 *** WITH SOLUTIONS *** COMP 261 ALGORITHMS and DATA STRUCTURES Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Only silent non-programmable calculators or silent programmable calculators with their memories cleared are permitted in this examination. Instructions: Attempt ALL Questions. Answer in the appropriate boxes if possible if you write your answer elsewhere, make it clear where your answer can be found. The exam will be marked out of 120 marks. Non-electronic foreign to English language dictionaries are permitted. Alphabetic order: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Questions Marks 1. Path Finding [12] 2. Articulation Points [20] 3. 3D Graphics [8] 4. Parsing [28] 5. String Searching [17] 6. Text Compression [15] 7. B+ Trees [20] COMP 261 Page 1 of 23

2 Question 1. Path Finding [12 marks] (a) [2 marks] State one data structure appropriate for the fringe in Dijkstra s Algorithm. Priority queue. (b) Consider the following undirected graph, where the numbers on the edges are the edge lengths, and the numbers in the brackets by the nodes are the estimated heuristic values for A* search. The start node is node S, and the goal node is node G. (i) [3 marks] Describe what a heuristic must satisfy to be admissible. An admissible heuristic never overestimates the distance to the goal node. (ii) [2 marks] State whether the heuristic in the above graph is admissible or not. The heuristic is admissible. For all the nodes, the heuristic value is no greater than the true min cost to the goal node. COMP 261 Page 2 of 23

3 (iii) [5 marks] The heuristic in the graph above is not consistent. Find one counter example in the graph. h(s) h(b) = 11 > cost(s, B) h(c) h(d) = 9 > cost(c, D) h(c) h(e) = 7 > cost(c, E) Giving one of the above three is enough. COMP 261 Page 3 of 23

4 Question 2. Articulation Points [20 marks] (a) [3 marks] Circle all the articulation points in the following graph. B, D, F, H COMP 261 Page 4 of 23

5 (b) [7 marks] Finding all the articulation points requires traversing the graph using depthfirst search and setting counter numbers for the nodes. Given the following graph, draw the depth-first search tree rooted at node A, and put the counter number of each node next to it. Draw the edges that are in the graph but not in the search tree using dashed lines. The counter number starts from 0, and the root of the search tree is given for you to start with. If a node has multiple neighbours, the search will visit the neighbours in alphabetic order. COMP 261 Page 5 of 23

6 (c) [10 marks] In the following depth-first-search tree, the count numbers (count) of the nodes are given. Calculate the reachback values of each node. Mark the articulation points in the graph. The algorithm is given on the facing page for your reference. COMP 261 Page 6 of 23

7 FindArticulationPoints (graph, start ): for each node: node.count, articulationpoints { } start.count 0, numsubtrees 0 for each neighbour of start if neighbour.count = then RecursiveArtPts(neighbour, 1, start) numsubtrees ++ if numsubtrees > 1 then add start to articulationpoints RecursiveArtPts(node, count, fromnode): node.count count, reachback count, for each neighbour of node other than fromnode if neighbour.count < then reachback min(neighbour.count, reachback) else childreach RecursiveArtPts(neighbour, count + 1, node) reachback min(childreach, reachback ) if childreach count then add node to articulationpoints return reachback COMP 261 Page 7 of 23

8 Question 3. 3D Graphics [8 marks] (a) [8 marks] Consider the triangular polygon below. The coordinates of the three vertices are v1 = (v1.x, v1.y, v1.z), v2 = (v2.x, v2.y, v2.z), v3 = (v3.x, v3.y, v3.z). A point v = (v.x, v.y,?) inside the polygon is on a horizontal line that intersects the edges (v1, v2) and (v1, v3). The calculation of v.z requires a sequence of linear interpolation steps. Each step is a call of the method Interpolate(), which is described on the facing page. Write the steps to calculate v.z. The first two steps are already given. xleft = Interpolate(v.y, v1.x, v1.y, v2.x, v2.y); zleft = Interpolate(v.y, v1.z, v1.y, v2.z, v2.y); xright = Interpolate(v.y, v1.x, v1.y, v3.x, v3.y); zright = Interpolate(v.y, v1.z, v1.y, v3.z, v3.y); v.z = Interpolate(v.x, zleft, xleft, zright, xright); COMP 261 Page 8 of 23

9 Consider an edge in a 2D x-y plane, the two end-nodes are (x1, y1) and (x2, y2). For a point (?, y) on the edge, the method Interpolate() calculates its x coordinate based on its y coordinate. double Interpolate(double y, double x1, double y1, double x2, double y2) { double slope = (x2 x1) / (y2 y1); double x = x1 + slope (y y1); return x; } COMP 261 Page 9 of 23

10 Question 4. Parsing [28 marks] Consider the following grammar for very simple robot programs, where nonterminals are in uppercase, terminals are enclosed in quotation marks, and PROG is the start symbol. Assume that tokens will be separated by spaces. Note that nonterminal COND uses a regular expression to define the terminals it accepts. PROG ::= "{" STMT+ "}" STMT ::= "if" "(" COND ")" PROG ACT ";" ACT ::= "F" "L" "R" COND ::= ID ID ::= [a-z]+ (a) [4 marks] For each of the following strings, state whether it belongs to the language defined by this grammar. (i) if ( a ) { F ; } } yes (ii) { F ; R } no (iii) { if ( a ) { if ( b ) { F; } } } yes (iv) { if ( a ) F; if { b } R; } no COMP 261 Page 10 of 23

11 (b) [4 marks] Draw a concrete syntax tree (or parse tree) for the following string, using the above grammar: { if ( a ) { L ; } } You may abbreviate nonterminals to their first letter, writing P for PROG, S for STMT, etc.. (c) [4 marks] Show how your concrete syntax tree in part (b) can be simplified to obtain an abstract syntax tree, and explain the changes you have made. (see text in latex file) Delete constant strings in the rules. Delete unnecessary (singleton) nonterminals. COMP 261 Page 11 of 23

12 (d) [10 marks] Suppose you are writing a recursive descent parser for the above grammar. Below is a heading for one of the methods you will need. Complete this method, following the style discussed in lectures, assuming that the other methods that make up the parser have been written. Briefly explain the purpose of any other methods you call (this should take no more than four words per method). Note that the parser just returns a boolean, indicating whether the input was valid or not. You may write your methods in Java, or in a suitable pseudocode. public boolean parsestmt(scanner s) { } COMP 261 Page 12 of 23

13 (e) [6 marks] Suppose you want to extend the language to allow complex conditions, with infix operators and brackets. You start by writing the following grammar rule: COND ::= ID COND "and" COND COND "or" COND "(" COND ")" Discuss briefly why you cannot write a recursive descent parser based on this grammar rule, and how you would modify the above rule so that it can be used to construct the required parser. The grammar is both ambiguous and left-recursive. (Being ambiguous means that you can t decide which branch to take based on the next token; being left-recursive means the parser will go into an infinite loop.) Change the grammar to use repetition, which turns into a loop in the parser. COND ::= ID [BOOLOP ID]+ "(" COND ")" BOOLOP ::= "and" "or or, better still, to give correct precedence:. COND ::= COND1 ["or" COND1 ]+ COND1 ::= COND2 [ "and" COND2 ]+ COND2 ::= ID "(" COND ")" COMP 261 Page 13 of 23

14 Question 5. String Searching [17 marks] (a) [5 marks] The brute force string search algorithm can be very inefficient. What is the worst case cost? Give an example that would lead to the worse case cost. The algorithm can examine characters of the text many times. Worse case is when T is n a s, and S is m 1 as followed by a b. In this case we get m.n comparisons. (Actually m(n m + 1), which tends to 1 as m reduces to 1 or increases to n, so is max when m = n/2.) (b) [6 marks] The Knuth-Morris-Pratt (KMP) algorithm uses a table, derived from the search string, to speed up string search. Explain briefly how the table is used to speed up the search, using the following example table, where S = ABACABABC is the search string, and M is the partial match table.. S A B A C A B A B C M i COMP 261 Page 14 of 23

15 (c) [6 marks] Show the table that the following KMP table building algorithm would construct given the string S = "anant": computekmptable(s) initialise M to an array of integers with same length as S M[0] 1, M[1] 0, pos 2, j 0, while pos < S.length if S[pos 1] = S[j] M[pos] j+1, pos pos+1, j j+1 else if j > 0 j table[ j ] else M[pos] 0, pos pos+1 return M S a n a n t M i COMP 261 Page 15 of 23

16 Question 6. Text Compression [15 marks] (a) [10 marks] Explain the key idea of the Lempel-Ziv 77 compression algorithm, using the following text as an example: ban bananas Eliminate repeating patterns ban bananas [0,0,b][0,0,a][0,0,n][0,0, ][0,3,a]... (b) [5 marks] Explain briefly, the key idea of Huffman coding. NO ANSWER PROVIDED COMP 261 Page 16 of 23

17 SPARE PAGE FOR EXTRA ANSWERS Cross out rough working that you do not want marked. Specify the question number for work that you do want marked. COMP 261 Page 17 of 23

18 Question 7. B and B+ Trees [20 marks] (a) [8 marks] Consider the following B-tree of order 5: H L P B D E J K M N O X Y Z Show how the B-tree is modified as each of the keys Z, M, X and L is deleted. Briefly describe what you have done for each key that is deleted. Note, the empty trees below are to save you time; you may modify their structure if you choose. The B-tree after deleting key value Z: The B-tree after deleting key values Z and M: (Question 7 continued on next page) COMP 261 Page 18 of 23

19 (Question 7 continued) The B-tree after deleting key values Z, M, and X: The B-tree after deleting key values Z, M, X, and L: (Question 7 continued on next page) COMP 261 Page 19 of 23

20 (Question 7 continued) (b) [8 marks] Consider the following B+ tree, which has internal nodes holding up to 3 keys, and leaf nodes holding up to 4 key-value pairs. The keys are letters; the values are numbers. Show how the B+ tree below would be changed if the following key-value pairs were added to it: Z-5 F-18 T-2 L-34 State any assumptions you make. root: K S B-15 E-5 G-3 H-15 K-21 M-9 P-12 S-2 V-19 W-8 Assumptions (if any): WRONG AND OLD: When the leaf is too full, it could be split 2-3 or 3-2; Here, we have split it 3-2. (Question 7 continued on next page) COMP 261 Page 20 of 23

21 (Question 7 continued) (c) [4 marks] Suppose you are implementing a B+ tree in a file, storing each node of the tree in one block. The keys of the B+ tree are share market codes (for example AAPL ), and the values are company names. Each share market code is up to 10 characters long, and the company names are limited to 100 characters. The blocks are 1024 bytes long. Assume that each character takes one byte. How many key-value pairs can be stored in a leaf node? Explain your reasoning, show your working, and state any assumptions you make about the information stored in the blocks. WRONG and OLD: 6 or 7 key-value pairs in node, depending on bytes for number of pairs. Leaf needs 1 byte to store block type, (or even just one bit!) 1, 2, or 4 bytes to store the number of pairs, (or even as few as 3 bits) 4 bytes for the index of the next block, and leaving 506, 505, or 503 bytes for the K-V pairs. 72 bytes for each pair means 506/72 = 7 K-V pairs, if 1 byte for number of pairs 505/72 = 7 K-V pairs, if 2 bytes for number of pairs 503/72 = 6 K-V pairs, if 4 bytes for number of pairs * * * * * * * * * * * * * * * COMP 261 Page 21 of 23

22 SPARE PAGE FOR EXTRA ANSWERS Cross out rough working that you do not want marked. Specify the question number for work that you do want marked. COMP 261 Page 22 of 23

23 SPARE PAGE FOR EXTRA ANSWERS Cross out rough working that you do not want marked. Specify the question number for work that you do want marked. COMP 261 Page 23 of 23

Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2014 TRIMESTER 1 *** WITH SOLUTIONS ***

Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2014 TRIMESTER 1 *** WITH SOLUTIONS *** T E W H A R E W Ā N A N G A O T E Student ID:....................... Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2014 TRIMESTER 1 *** WITH SOLUTIONS

More information

O T E Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 *** WITH SOLUTIONS ***

O T E Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 *** WITH SOLUTIONS *** T E W H A R E W Ā N A N G A VICTORIA O T E Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N VUW EXAMINATIONS 2015 Student ID:....................... TRIMESTER 1 *** WITH SOLUTIONS

More information

Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 *** WITH SOLUTIONS ***

Ū P O K O O T E I K A A M Ā U I U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 *** WITH SOLUTIONS *** T E W H A R E W Ā N A N G A O T E Student ID:....................... Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 *** WITH SOLUTIONS

More information

COMP 261 ALGORITHMS and DATA STRUCTURES

COMP 261 ALGORITHMS and DATA STRUCTURES T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2012 TRIMESTER 2 *** WITH SOLUTIONS *** COMP

More information

EXAMINATIONS 2017 TRIMESTER 2

EXAMINATIONS 2017 TRIMESTER 2 T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 2 COMP103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

More information

EXAMINATIONS 2016 TRIMESTER 2

EXAMINATIONS 2016 TRIMESTER 2 T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2016 TRIMESTER 2 COMP103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

More information

EXAMINATIONS 2015 COMP103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

EXAMINATIONS 2015 COMP103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS T E W H A R E W Ā N A N G A O T E Student ID:....................... Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 2 COMP103 INTRODUCTION

More information

Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2006

More information

CSE 413 Final Exam. June 7, 2011

CSE 413 Final Exam. June 7, 2011 CSE 413 Final Exam June 7, 2011 Name The exam is closed book, except that you may have a single page of hand-written notes for reference plus the page of notes you had for the midterm (although you are

More information

Syntax. A. Bellaachia Page: 1

Syntax. A. Bellaachia Page: 1 Syntax 1. Objectives & Definitions... 2 2. Definitions... 3 3. Lexical Rules... 4 4. BNF: Formal Syntactic rules... 6 5. Syntax Diagrams... 9 6. EBNF: Extended BNF... 10 7. Example:... 11 8. BNF Statement

More information

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou COMP-421 Compiler Design Presented by Dr Ioanna Dionysiou Administrative! Any questions about the syllabus?! Course Material available at www.cs.unic.ac.cy/ioanna! Next time reading assignment [ALSU07]

More information

Defining syntax using CFGs

Defining syntax using CFGs Defining syntax using CFGs Roadmap Last time Defined context-free grammar This time CFGs for specifying a language s syntax Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S)

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

More information

Parsing II Top-down parsing. Comp 412

Parsing II Top-down parsing. Comp 412 COMP 412 FALL 2018 Parsing II Top-down parsing Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled

More information

A programming language requires two major definitions A simple one pass compiler

A programming language requires two major definitions A simple one pass compiler A programming language requires two major definitions A simple one pass compiler [Syntax: what the language looks like A context-free grammar written in BNF (Backus-Naur Form) usually suffices. [Semantics:

More information

2.2 Syntax Definition

2.2 Syntax Definition 42 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR sequence of "three-address" instructions; a more complete example appears in Fig. 2.2. This form of intermediate code takes its name from instructions

More information

CSE 413 Final Exam Spring 2011 Sample Solution. Strings of alternating 0 s and 1 s that begin and end with the same character, either 0 or 1.

CSE 413 Final Exam Spring 2011 Sample Solution. Strings of alternating 0 s and 1 s that begin and end with the same character, either 0 or 1. Question 1. (10 points) Regular expressions I. Describe the set of strings generated by each of the following regular expressions. For full credit, give a description of the sets like all sets of strings

More information

Question Points Score

Question Points Score CS 453 Introduction to Compilers Midterm Examination Spring 2009 March 12, 2009 75 minutes (maximum) Closed Book You may use one side of one sheet (8.5x11) of paper with any notes you like. This exam has

More information

COMP 103 Introduction to Data Structures and Algorithms

COMP 103 Introduction to Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:..................... EXAMINATIONS 2005 END-YEAR COMP 103 Introduction to Data

More information

EXAMINATIONS 2006 SUMMER TRIMESTER. COMP103 Introduction to Data Structures and Algorithms

EXAMINATIONS 2006 SUMMER TRIMESTER. COMP103 Introduction to Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I ÎÍÏ V I C T O R I A UNIVERSITY OF WELLINGTON EXAMINATIONS 2006 SUMMER TRIMESTER COMP103 Introduction to Data Structures and Algorithms

More information

EXAMINATIONS 2012 MID YEAR. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS

EXAMINATIONS 2012 MID YEAR. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2012 MID YEAR COMP103 Introduction to Data

More information

A Simple Syntax-Directed Translator

A Simple Syntax-Directed Translator Chapter 2 A Simple Syntax-Directed Translator 1-1 Introduction The analysis phase of a compiler breaks up a source program into constituent pieces and produces an internal representation for it, called

More information

CS164: Midterm I. Fall 2003

CS164: Midterm I. Fall 2003 CS164: Midterm I Fall 2003 Please read all instructions (including these) carefully. Write your name, login, and circle the time of your section. Read each question carefully and think about what s being

More information

COMP 103. Data Structures and Algorithms

COMP 103. Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I V I C T O R I A UNIVERSITY OF WELLINGTON EXAMINATIONS 2004 END-YEAR COMP 103 Data Structures and Algorithms Time Allowed: 3 Hours Instructions:

More information

Question Marks 1 /20 2 /16 3 /7 4 /10 5 /16 6 /7 7 /24 Total /100

Question Marks 1 /20 2 /16 3 /7 4 /10 5 /16 6 /7 7 /24 Total /100 CSC 460/660, Midterm March 14, 2005 Name: Student ID: Signature: You have 75 minutes to write the 7 questions on this examination. A total of 100 marks is available. Justify all of your answers You may

More information

SOLUTIONS. COMP103 Introduction to Data Structures and Algorithms

SOLUTIONS. COMP103 Introduction to Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2011 MID YEAR COMP103 Introduction to Data

More information

1. Consider the following program in a PCAT-like language.

1. Consider the following program in a PCAT-like language. CS4XX INTRODUCTION TO COMPILER THEORY MIDTERM EXAM QUESTIONS (Each question carries 20 Points) Total points: 100 1. Consider the following program in a PCAT-like language. PROCEDURE main; TYPE t = FLOAT;

More information

Practical Session 10 - Huffman code, Sort properties, QuickSort algorithm, Selection

Practical Session 10 - Huffman code, Sort properties, QuickSort algorithm, Selection Practical Session 0 - Huffman code, Sort properties, QuickSort algorithm, Selection Huffman Code Algorithm Description Example Huffman coding is an encoding algorithm used for lossless data compression,

More information

Building a Parser III. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1

Building a Parser III. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1 Building a Parser III CS164 3:30-5:00 TT 10 Evans 1 Overview Finish recursive descent parser when it breaks down and how to fix it eliminating left recursion reordering productions Predictive parsers (aka

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Formal Languages and Grammars. Chapter 2: Sections 2.1 and 2.2

Formal Languages and Grammars. Chapter 2: Sections 2.1 and 2.2 Formal Languages and Grammars Chapter 2: Sections 2.1 and 2.2 Formal Languages Basis for the design and implementation of programming languages Alphabet: finite set Σ of symbols String: finite sequence

More information

EXAMINATIONS 2009 END-OF-YEAR. COMP 202 / SWEN 202 Formal Methods of Computer Science / Formal Foundations of Software Engineering

EXAMINATIONS 2009 END-OF-YEAR. COMP 202 / SWEN 202 Formal Methods of Computer Science / Formal Foundations of Software Engineering T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON EXAMINATIONS 2009 END-OF-YEAR COMP 202 / SWEN 202 Formal Methods of Computer Science / Formal

More information

EXAMINATIONS 2005 END-YEAR. COMP 103 Introduction to Data Structures and Algorithms

EXAMINATIONS 2005 END-YEAR. COMP 103 Introduction to Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I ÎÍÏ V I C T O R I A UNIVERSITY OF WELLINGTON EXAMINATIONS 2005 END-YEAR COMP 103 Introduction to Data Structures and Algorithms Time Allowed:

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

York University AK/ITEC INTRODUCTION TO DATA STRUCTURES. Final Sample II. Examiner: S. Chen Duration: Three hours

York University AK/ITEC INTRODUCTION TO DATA STRUCTURES. Final Sample II. Examiner: S. Chen Duration: Three hours York University AK/ITEC 262 3. INTRODUCTION TO DATA STRUCTURES Final Sample II Examiner: S. Chen Duration: Three hours This exam is closed textbook(s) and closed notes. Use of any electronic device (e.g.

More information

Defining syntax using CFGs

Defining syntax using CFGs Defining syntax using CFGs Roadmap Last 8me Defined context-free grammar This 8me CFGs for syntax design Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S) means derives derives

More information

Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2007

More information

This book is licensed under a Creative Commons Attribution 3.0 License

This book is licensed under a Creative Commons Attribution 3.0 License 6. Syntax Learning objectives: syntax and semantics syntax diagrams and EBNF describe context-free grammars terminal and nonterminal symbols productions definition of EBNF by itself parse tree grammars

More information

ADTS, GRAMMARS, PARSING, TREE TRAVERSALS. Regrades 10/6/15. Prelim 1. Prelim 1. Expression trees. Pointers to material

ADTS, GRAMMARS, PARSING, TREE TRAVERSALS. Regrades 10/6/15. Prelim 1. Prelim 1. Expression trees. Pointers to material 1 Prelim 1 2 Max: 99 Mean: 71.2 Median: 73 Std Dev: 1.6 ADS, GRAMMARS, PARSING, R RAVRSALS Lecture 12 CS2110 Spring 2015 3 Prelim 1 Score Grade % 90-99 A 82-89 A-/A 26% 70-82 B/B 62-69 B-/B 50% 50-59 C-/C

More information

CSE P 501 Compilers. Parsing & Context-Free Grammars Hal Perkins Winter /15/ Hal Perkins & UW CSE C-1

CSE P 501 Compilers. Parsing & Context-Free Grammars Hal Perkins Winter /15/ Hal Perkins & UW CSE C-1 CSE P 501 Compilers Parsing & Context-Free Grammars Hal Perkins Winter 2008 1/15/2008 2002-08 Hal Perkins & UW CSE C-1 Agenda for Today Parsing overview Context free grammars Ambiguous grammars Reading:

More information

CMPS Programming Languages. Dr. Chengwei Lei CEECS California State University, Bakersfield

CMPS Programming Languages. Dr. Chengwei Lei CEECS California State University, Bakersfield CMPS 3500 Programming Languages Dr. Chengwei Lei CEECS California State University, Bakersfield Chapter 3 Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing

More information

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

CSE 3302 Programming Languages Lecture 2: Syntax

CSE 3302 Programming Languages Lecture 2: Syntax CSE 3302 Programming Languages Lecture 2: Syntax (based on slides by Chengkai Li) Leonidas Fegaras University of Texas at Arlington CSE 3302 L2 Spring 2011 1 How do we define a PL? Specifying a PL: Syntax:

More information

COMP 250 Midterm #2 March 11 th 2013

COMP 250 Midterm #2 March 11 th 2013 NAME: STUDENT ID: COMP 250 Midterm #2 March 11 th 2013 - This exam has 6 pages - This is an open book and open notes exam. No electronic equipment is allowed. 1) Questions with short answers (28 points;

More information

CS 536 Midterm Exam Spring 2013

CS 536 Midterm Exam Spring 2013 CS 536 Midterm Exam Spring 2013 ID: Exam Instructions: Write your student ID (not your name) in the space provided at the top of each page of the exam. Write all your answers on the exam itself. Feel free

More information

EXAMINATIONS 2010 END YEAR. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS

EXAMINATIONS 2010 END YEAR. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2010 END YEAR COMP103 Introduction to Data

More information

Chapter 4. Abstract Syntax

Chapter 4. Abstract Syntax Chapter 4 Abstract Syntax Outline compiler must do more than recognize whether a sentence belongs to the language of a grammar it must do something useful with that sentence. The semantic actions of a

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Project 1: Scheme Pretty-Printer

Project 1: Scheme Pretty-Printer Project 1: Scheme Pretty-Printer CSC 4101, Fall 2017 Due: 7 October 2017 For this programming assignment, you will implement a pretty-printer for a subset of Scheme in either C++ or Java. The code should

More information

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019 Comp 411 Principles of Programming Languages Lecture 3 Parsing Corky Cartwright January 11, 2019 Top Down Parsing What is a context-free grammar (CFG)? A recursive definition of a set of strings; it is

More information

6.034 Quiz 1, Spring 2004 Solutions

6.034 Quiz 1, Spring 2004 Solutions 6.034 Quiz 1, Spring 2004 Solutions Open Book, Open Notes 1 Tree Search (12 points) Consider the tree shown below. The numbers on the arcs are the arc lengths. Assume that the nodes are expanded in alphabetical

More information

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2017 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN

More information

CSE 401 Midterm Exam Sample Solution 2/11/15

CSE 401 Midterm Exam Sample Solution 2/11/15 Question 1. (10 points) Regular expression warmup. For regular expression questions, you must restrict yourself to the basic regular expression operations covered in class and on homework assignments:

More information

syntax tree - * * * - * * * * * 2 1 * * 2 * (2 * 1) - (1 + 0)

syntax tree - * * * - * * * * * 2 1 * * 2 * (2 * 1) - (1 + 0) 0//7 xpression rees rom last time: we can draw a syntax tree for the Java expression ( 0). 0 ASS, GRAMMARS, PARSING, R RAVRSALS Lecture 3 CS0 all 07 Preorder, Postorder, and Inorder Preorder, Postorder,

More information

Building a Parser II. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1

Building a Parser II. CS164 3:30-5:00 TT 10 Evans. Prof. Bodik CS 164 Lecture 6 1 Building a Parser II CS164 3:30-5:00 TT 10 Evans 1 Grammars Programming language constructs have recursive structure. which is why our hand-written parser had this structure, too An expression is either:

More information

Question Marks 1 /16 2 /13 3 /12 4 /15 5 /8 6 /15 7 /8 8 /5 9 /8 Total /100

Question Marks 1 /16 2 /13 3 /12 4 /15 5 /8 6 /15 7 /8 8 /5 9 /8 Total /100 CSC 460/660, Midterm March 22, 2006 Name: Student ID: Signature: You have 75 minutes to write the 9 questions on this examination. A total of 100 marks is available. Justify all of your answers You may

More information

Examples of attributes: values of evaluated subtrees, type information, source file coordinates,

Examples of attributes: values of evaluated subtrees, type information, source file coordinates, 1 2 3 Attributes can be added to the grammar symbols, and program fragments can be added as semantic actions to the grammar, to form a syntax-directed translation scheme. Some attributes may be set by

More information

CS 44 Exam #2 February 14, 2001

CS 44 Exam #2 February 14, 2001 CS 44 Exam #2 February 14, 2001 Name Time Started: Time Finished: Each question is equally weighted. You may omit two questions, but you must answer #8, and you can only omit one of #6 or #7. Circle the

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Final Examination (17 pages) Instructor: Douglas Harder April 14, 2004 9:00-12:00 Name (last,

More information

Administrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:30-5:00 TT 10 Evans.

Administrativia. WA1 due on Thu PA2 in a week. Building a Parser III. Slides on the web site. CS164 3:30-5:00 TT 10 Evans. Administrativia Building a Parser III CS164 3:30-5:00 10 vans WA1 due on hu PA2 in a week Slides on the web site I do my best to have slides ready and posted by the end of the preceding logical day yesterday,

More information

Recursive Descent Parsers

Recursive Descent Parsers Recursive Descent Parsers Lecture 7 Robb T. Koether Hampden-Sydney College Wed, Jan 28, 2015 Robb T. Koether (Hampden-Sydney College) Recursive Descent Parsers Wed, Jan 28, 2015 1 / 18 1 Parsing 2 LL Parsers

More information

ECE251 Midterm practice questions, Fall 2010

ECE251 Midterm practice questions, Fall 2010 ECE251 Midterm practice questions, Fall 2010 Patrick Lam October 20, 2010 Bootstrapping In particular, say you have a compiler from C to Pascal which runs on x86, and you want to write a self-hosting Java

More information

Consider a description of arithmetic. It includes two equations that define the structural types of digit and operator:

Consider a description of arithmetic. It includes two equations that define the structural types of digit and operator: Syntax A programming language consists of syntax, semantics, and pragmatics. We formalize syntax first, because only syntactically correct programs have semantics. A syntax definition of a language lists

More information

Syntax Analysis Check syntax and construct abstract syntax tree

Syntax Analysis Check syntax and construct abstract syntax tree Syntax Analysis Check syntax and construct abstract syntax tree if == = ; b 0 a b Error reporting and recovery Model using context free grammars Recognize using Push down automata/table Driven Parsers

More information

CSE 401/M501 18au Midterm Exam 11/2/18. Name ID #

CSE 401/M501 18au Midterm Exam 11/2/18. Name ID # Name ID # There are 7 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed books, closed notes,

More information

MIDTERM EXAMINATION - CS130 - Spring 2003

MIDTERM EXAMINATION - CS130 - Spring 2003 MIDTERM EXAMINATION - CS130 - Spring 2003 Your full name: Your UCSD ID number: This exam is closed book and closed notes Total number of points in this exam: 120 + 10 extra credit This exam counts for

More information

Chapter 3. Describing Syntax and Semantics ISBN

Chapter 3. Describing Syntax and Semantics ISBN Chapter 3 Describing Syntax and Semantics ISBN 0-321-49362-1 Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Copyright 2009 Addison-Wesley. All

More information

Examination in Compilers, EDAN65

Examination in Compilers, EDAN65 Examination in Compilers, EDAN65 Department of Computer Science, Lund University 2016 10 28, 08.00-13.00 Note! Your exam will be marked only if you have completed all six programming lab assignments in

More information

([1-9] 1[0-2]):[0-5][0-9](AM PM)? What does the above match? Matches clock time, may or may not be told if it is AM or PM.

([1-9] 1[0-2]):[0-5][0-9](AM PM)? What does the above match? Matches clock time, may or may not be told if it is AM or PM. What is the corresponding regex? [2-9]: ([1-9] 1[0-2]):[0-5][0-9](AM PM)? What does the above match? Matches clock time, may or may not be told if it is AM or PM. CS 230 - Spring 2018 4-1 More CFG Notation

More information

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 PRACTICE EXAM

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 PRACTICE EXAM T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2018 TRIMESTER 2 COMP 103 PRACTICE EXAM Time Allowed: TWO HOURS ********

More information

15 July, Huffman Trees. Heaps

15 July, Huffman Trees. Heaps 1 Huffman Trees The Huffman Code: Huffman algorithm uses a binary tree to compress data. It is called the Huffman code, after David Huffman who discovered d it in 1952. Data compression is important in

More information

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN

U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW VICTORIA U N I V E R S I T Y O F W E L L I N G T O N EXAMINATIONS 2015 TRIMESTER 1 COMP 102 INTRODUCTION TO COMPUTER PROGRAM DESIGN

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back

More information

Earlier edition Dragon book has been revised. Course Outline Contact Room 124, tel , rvvliet(at)liacs(dot)nl

Earlier edition Dragon book has been revised. Course Outline Contact Room 124, tel , rvvliet(at)liacs(dot)nl Compilerconstructie najaar 2013 http://www.liacs.nl/home/rvvliet/coco/ Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl college 1, dinsdag 3 september 2013 Overview 1 Why this

More information

WITH SOLUTIONS!!! WARNING: THIS COPY CONTAINS SOLUTIONS!!! COMP103 Introduction to Data Structures and Algorithms

WITH SOLUTIONS!!! WARNING: THIS COPY CONTAINS SOLUTIONS!!! COMP103 Introduction to Data Structures and Algorithms T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2007 SUMMER TRIMESTER COMP103 Introduction

More information

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Eliminating Ambiguity Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. Example: consider the following grammar stat if expr then stat if expr then stat else stat other One can

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 12: Red-Black Trees Text Reference: Chapters 12, 13 Binary Search Trees (BST): Review Each node in tree T is a object x Contains attributes: Data Pointers to

More information

CS 161 Fall 2015 Final Exam

CS 161 Fall 2015 Final Exam CS 161 Fall 2015 Final Exam Name: Student ID: 1: 2: 3: 4: 5: 6: 7: 8: Total: 1. (15 points) Let H = [24, 21, 18, 15, 12, 9, 6, 3] be an array of eight numbers, interpreted as a binary heap with the maximum

More information

CSE P 501 Exam 12/1/11

CSE P 501 Exam 12/1/11 Name There are 7 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. You may refer to the following references:

More information

Final Examination CSE 100 UCSD (Practice)

Final Examination CSE 100 UCSD (Practice) Final Examination UCSD (Practice) RULES: 1. Don t start the exam until the instructor says to. 2. This is a closed-book, closed-notes, no-calculator exam. Don t refer to any materials other than the exam

More information

Administrativia. PA2 assigned today. WA1 assigned today. Building a Parser II. CS164 3:30-5:00 TT 10 Evans. First midterm. Grammars.

Administrativia. PA2 assigned today. WA1 assigned today. Building a Parser II. CS164 3:30-5:00 TT 10 Evans. First midterm. Grammars. Administrativia Building a Parser II CS164 3:30-5:00 TT 10 Evans PA2 assigned today due in 12 days WA1 assigned today due in a week it s a practice for the exam First midterm Oct 5 will contain some project-inspired

More information

CSE P 501 Exam Sample Solution 12/1/11

CSE P 501 Exam Sample Solution 12/1/11 Question 1. (10 points, 5 each) Regular expressions. Give regular expressions that generate the following sets of strings. You may only use the basic operations of concatenation, choice ( ), and repetition

More information

EXAMINATIONS 2011 Trimester 2, MID-TERM TEST. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS

EXAMINATIONS 2011 Trimester 2, MID-TERM TEST. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2011 Trimester 2, MID-TERM TEST COMP103 Introduction

More information

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) Let the keys are 28, 47, 20, 36, 43, 23, 25, 54 and table size is 11 then H(28)=28%11=6; H(47)=47%11=3;

More information

EXAMINATIONS 2012 Trimester 1, MID-TERM TEST. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS

EXAMINATIONS 2012 Trimester 1, MID-TERM TEST. COMP103 Introduction to Data Structures and Algorithms SOLUTIONS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Student ID:....................... EXAMINATIONS 2012 Trimester 1, MID-TERM TEST COMP103 Introduction

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 5:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday Notes Video Game AI: Lecture 5 Planning for Pathfinding Nathan Sturtevant COMP 3705 Jonathan Schaeffer this Friday Planning vs localization We cover planning today Localization is just mapping a real-valued

More information

Habanero Extreme Scale Software Research Project

Habanero Extreme Scale Software Research Project Habanero Extreme Scale Software Research Project Comp215: Grammars Zoran Budimlić (Rice University) Grammar, which knows how to control even kings - Moliere So you know everything about regular expressions

More information

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b simas@cs.aau.dk Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees

More information

CMSC330 Fall 2014 Midterm 2 Solutions

CMSC330 Fall 2014 Midterm 2 Solutions CMSC330 Fall 2014 Midterm 2 Solutions 1. (5 pts) General. For the following multiple choice questions, circle the letter(s) on the right corresponding to the best answer(s) to each question. a. In the

More information

Specifying Syntax. An English Grammar. Components of a Grammar. Language Specification. Types of Grammars. 1. Terminal symbols or terminals, Σ

Specifying Syntax. An English Grammar. Components of a Grammar. Language Specification. Types of Grammars. 1. Terminal symbols or terminals, Σ Specifying Syntax Language Specification Components of a Grammar 1. Terminal symbols or terminals, Σ Syntax Form of phrases Physical arrangement of symbols 2. Nonterminal symbols or syntactic categories,

More information

Defining Program Syntax. Chapter Two Modern Programming Languages, 2nd ed. 1

Defining Program Syntax. Chapter Two Modern Programming Languages, 2nd ed. 1 Defining Program Syntax Chapter Two Modern Programming Languages, 2nd ed. 1 Syntax And Semantics Programming language syntax: how programs look, their form and structure Syntax is defined using a kind

More information

ADTS, GRAMMARS, PARSING, TREE TRAVERSALS

ADTS, GRAMMARS, PARSING, TREE TRAVERSALS 3//15 1 AD: Abstract Data ype 2 Just like a type: Bunch of values together with operations on them. Used often in discussing data structures Important: he definition says ntthing about the implementation,

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

If you are going to form a group for A2, please do it before tomorrow (Friday) noon GRAMMARS & PARSING. Lecture 8 CS2110 Spring 2014

If you are going to form a group for A2, please do it before tomorrow (Friday) noon GRAMMARS & PARSING. Lecture 8 CS2110 Spring 2014 1 If you are going to form a group for A2, please do it before tomorrow (Friday) noon GRAMMARS & PARSING Lecture 8 CS2110 Spring 2014 Pointers. DO visit the java spec website 2 Parse trees: Text page 592

More information

Compiler Theory. (Semantic Analysis and Run-Time Environments)

Compiler Theory. (Semantic Analysis and Run-Time Environments) Compiler Theory (Semantic Analysis and Run-Time Environments) 005 Semantic Actions A compiler must do more than recognise whether a sentence belongs to the language of a grammar it must do something useful

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Written examination, May 7, 27. Course name: Algorithms and Data Structures Course number: 2326 Aids: Written aids. It is not permitted to bring a calculator. Duration:

More information

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation Concepts Introduced in Chapter 2 A more detailed overview of the compilation process. Parsing Scanning Semantic Analysis Syntax-Directed Translation Intermediate Code Generation Context-Free Grammar A

More information