AXIOMS FOR THE INTEGERS

Size: px
Start display at page:

Download "AXIOMS FOR THE INTEGERS"

Transcription

1 AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook, with a couple of differences explained in Remark 1 below. Near the end, there are also a couple of examples of proof by contradiction. Although we have been careful when using commutativity and associativity in this note, you do not need to invoke them explicitly in your own proofs. The axioms. The integers, which we denote by Z, is a set, together with a nonempty subset P Z (which we call the positive integers), and two binary operations addition and multiplication, denoted by + and, satisfying the following properties: (Commutativity) For all integers a, b, we have a + b = b + a and a b = b a. (Associativity) For all integers a, b, c, we have a + (b + c) = (a + b) + c and a (b c) = (a b) c. (Distributivity) For all integers a, b, c, we have (a + b) c = a c + b c. (Identity) There exist integers 0 and 1, such that for all integers a, we have a + 0 = a and a 1 = a. (Additive inverses) For any integer a, there exists an integer a such that a + ( a) = 0. (Closure for P) If a, b are positive integers, then a + b and a b are positive integers. (Trichotomy) For every integer a, exactly one of the following three possibilities hold: either a is a positive integer, or a = 0, or a is a positive integer. (Well-ordering) Every nonempty subset of the positive integers has a smallest element. For the well-ordering property, we have not yet defined smallest, so we can rephrase it more formally as follows: if S is a nonempty set of positive integers, then S contains an element a such that for every b in S which is not equal to a, we have b a is a positive integer. Remark 1. There are a couple of differences from the axioms as presented in Appendix A of the textbook. First, the book lists closure as an axiom, but we don t need to state it separately, because when we say that + and are binary operations on the integers, this means precisely that they give rules which associate to any pair of integers a and b a new integer a + b (or a b). More significantly, the book lists the cancellation law as an axiom, but we will see in Corollary 11 that it actually follows from the other axioms. We use the conventional order of operations, with multiplications occurring prior to additions. Thus, in the distributive law, a c + b c means (a c) + (b c). As usual, we will write a b as an abbreviation for a + ( b). 1

2 Uniqueness observations. Notice first that 0 and 1 have been defined implicitly in the axioms, as the additive and multiplicative identities. However, in order to know that there is no ambiguity in defining them this way, we need to know: Lemma 2. 0 and 1 are uniquely defined by the property of being the additive and multiplicative identity, respectively. Proof. Suppose that 0, 0 are integers, and both are additive identities, so that for all integers a, we have a + 0 = a = a + 0. Then we want to show that we must have 0 = 0. But using also commutivity, we have 0 = = = 0, The same argument works for 1 with multiplication in place of addition. Similarly, we want to know that inverses are unique (otherwise, in the statement of trichotomy, we might have to worry about which a we are considering. Lemma 3. If a is any integer, then a is uniquely defined by the property that a + ( a) = 0. Proof. Suppose that b, b are integers and a + b = 0 = a + b. We want to see that b = b. But using commutivity and associativity, b = b + 0 = b + (a + b ) = (b + a) + b = b + (a + b) = b + 0 = b, It then makes sense to say the following: Proposition 4. 0 = 0. Proof = 0 by definition of 0, so by definition of additive inverse we see that 0 is the additive inverse of itself, which is to say that 0 = 0. Ordering and consequences. We will define ordering on the integers using the set of positive integers: Definition 5. If a, b are integers, we say a is greater than b, and write a > b, if a b is positive. We say a is smaller than b, and write a < b, if b a is positive. As usual, we write a b to mean that either a > b or a = b, and similarly with a b. Notice in particular that a > 0 if and only if a is positive. This is not our definition, but we see that it is the same using Proposition 4! We take for granted what are sometimes called properties of equality : for instance, if a = b, then for any c we have a c = b c. This is because a = b means that a and b are the same integers, and by definition multiplication is a well-defined operation on integers, so if we write a given integer two different ways, that doesn t affect what happens when we multiply it. However, inequalities are a different matter: because we have defined them in terms of the set of positive integers (about which in principle we know nothing beyond what is stated in the axioms), we ought to check that the familiar properties of inequalities still hold in the integers. For instance, we have: Proposition 6. Suppose that a, b, c are integers with a > b and c > 0. Then a c > b c. This turns out to require some intermediate steps! Lemma 7. If a is any integer, then a 0 = 0. 2

3 Proof. Using distributivity, we have a 0 = a (0 + 0) = a 0 + a 0. If we add (a 0) to both sides, we get 0 = (a 0) + (a 0) = (a 0 + a 0) + (a 0) = a 0 + (a 0 + (a 0)) = a = a 0, Lemma 8. If a is any integer, then ( a) = a. Proof. By definition of additive inverse, we want ( a) + a = 0, but a + ( a) = 0 by definition, so this follows from commutativity. Lemma 9. If a, b, c are any integers, then: (i) a = a ( 1); (ii) ( a) b = (a b) = a ( b); (iii) ( a) ( b) = ab; (iv) (a b) c = a c b c; Proof. For (i), we want a + a ( 1) = 0. But using distributivity and Lemma 7, For (ii), we apply (i) repeatedly to find a + a ( 1) = a 1 + a ( 1) = a (1 + ( 1)) = a 0 = 0. a ( b) = a (b ( 1)) = (a b) ( 1) = (a b). Using this (with a and b reversed) we also see that ( a) b = b ( a) = (b a) = (a b), proving (ii). For (iii), we use (ii) and Lemma 8 to see that ( a) ( b) = (a ( b)) = ( (a b)) = a b. Finally, for (iv) we can use (ii) and distributivity to get (a b) c = (a + ( b)) c = a c + ( b) c = a c + ( (b c)) = a c b c, Proof of Proposition 6. By definition, a c > b c is the same as saying a c b c is positive. But using Lemma 9 (iv) we have a c b c = (a b) c, and a > b and c > 0 mean that a b and c are positive, so by the closure axiom (a b) c is also positive, and we conclude that a c > b c, However, it s impractical to prove every property of inequality, and most of them are more straightforward: for instance, that a > b and b > c implies a > c follows easily from the closure of P, and a > b implies b > a is also easy from what we ve done. So while it s a good habit to think carefully about which properties of inequalities are being used and why they re true, we ll generally take them for granted. 3

4 Cancellation. As asserted above, the cancellation law can actually be deduced from our axioms. We are now ready to prove this. Having built up some familiarity with basic proofs, our arguments will use a couple of steps at a time now. Lemma 10. Suppose that a and b are integers, and a b = 0. Then either a = 0 or b = 0. Proof. We use trichotomy to consider all possible cases with a and b both nonzero. First, if a and b are both positive, then a b must also be positive, by closure. If a is positive and b is positive, then by Lemma 9 (ii) we have that a ( b) = (a b) is positive, so again a b is not zero. Similarly, if a and b are positive, then (a b) is again positive, and if a and b are positive, then ( (a b)) = a b is positive (using Lemma 8). In all of these cases, a b is not zero, and these are only cases for which neither a or b is zero, so we conclude the lemma. Corollary 11 (Cancellation law). Suppose that a, b, c are integers, and c 0. Then if a c = b c, it follows that a = b. Proof. Given that a c = b c, we have from Lemma 9 (iv) that 0 = a c b c = (a b) c. Since we assume that c 0, it follows from Lemma 10 that a b = 0, and hence that a = b, as desired. The smallest positive integer. We defined 1 to be the multiplicative identity, but it is also the smallest positive integer, as we now explain. Proposition is the smallest positive integer. Proof. By the well-ordering principle, we know that there is some smallest positive integer; let s call it a. First suppose that a < 1. By Proposition 6, we have a 2 < 1 a = a. But if a is positive, a 2 is also positive by closure, and this contradicts that a is the smallest positive integer. In order to rule out a > 1, we just need to know that 1 is positive. But if 1 were positive, then for any positive a we d have a = a ( 1) also positive, contradicting trichotomy. Also, if we have 1 = 0, then for any positive a we d have a = a 1 = a 0 = 0, again contradicting trichotomy (note that here we are using that P is assumed nonempty). We thus conclude by trichotomy that 1 is positive, and hence is the smallest positive integer. Although such specific definitions won t really come up for us during the class, we could now define 2 to be the smallest positive integer which isn t 1, and 3 to be the smallest positive integer which isn t 1 or 2, etc. More symbols. In this note, we ve tried to minimize use of symbols to make it friendlier. However, usually in math we use more symbols, including for in, for for all, and for there exists. We would thus write the closure axiom for positive integers as: for all a, b P, we have a + b P and a b P, or even more briefly, as a, b P, we have a + b P and a b P. More consequences of well-ordering. We ll begin by proving a couple of variants of the wellordering principle. Proposition 13. Any nonempty subset of the integers which is bounded below has a least element. By bounded below, we mean that there exists an integer which is less than or equal to every integer in the subset. Proof. Let S be a nonempty subset of Z, bounded below by some integer a. Then let T = {b a+1 : b S}. Then since b a for all b S, we see that T consists entirely of positive integers. By the well-ordering principle, T has a least element, say c. Then c + a 1 is the least element of S. 4

5 Proposition 14. Any nonempty subset of the integers which is bounded above has a greatest element. Proof. Let S be a nonempty subset of Z, belowed above by some integer a. Then let T = { b : b S}. Then T is bounded below by a, so T has a least element, say c. Then c is the greatest element of S. More substantively, we discuss proofs by induction, and why their validity follows from well ordering. A proof by induction works as follows: if you want to prove that a statement is true for all positive integers n, you first prove it for n = 1 (the base case ), and then show that if the statement is true for some n (the induction hypothesis ), then it also has to be true for n + 1 (the induction step ). One then concludes that it is true for all n. We can formalize this in the following theorem. Theorem 15 (Mathematical induction). Let S be a subset of P which contains 1, and which has the property that for any n, if n S then n + 1 S. Then S = P. In the statement, we picture that the set S is the set of n for which our desired statement is true. Proof. Let S be as above, and let T be the set of positive integers which are not contained in S. We thus want to show that T is empty. If T is not empty, then the well-ordering principle tells us that it contains a least element, say a. Then a 1, since we have assumed 1 S. Thus, by Proposition 12, we must have a > 1, so a 1 P. Since a is the least element of T, we conclude that a 1 S. But then by hypothesis, a S, which is a contradiction. What this is saying is that the fact that proofs by induction work follows from the well-ordering principle. This is saying that any proof by induction could instead be phrased as a proof using the well-ordering principle. In fact, it is also true that the well-ordering principle follows from induction, so that we could use either one in our axioms for the integers, and any proof using well-ordering could be stated in terms of induction. However, in a given proof it is often more natural or convenient to use one or the other. More often than not, we will find it more convenient to use the well-ordering principle directly in our arguments in this class, but we now give an example of a proof using induction. Proposition 16. For any n P, we have n k = n(n + 1). 2 Proof. We can rewrite the desired formula to avoid division as n 2 k = n(n + 1). The base case is n = 1. In this case, we just have 2 1 k = 2 = 1 2, so it is true. Now, suppose the statement holds for a particular n, so that for the induction step we want to show it is also true for n + 1. We calculate (using the induction hypothesis for the second equality) ( n+1 n ) 2 k = 2 k + 2(n + 1) = n(n + 1) + 2(n + 1) = (n + 2)(n + 1) = (n + 1)(n + 2). This proves the desired formula for n + 1, and by induction we conclude the statement of the proposition. 5

6 Note that induction can also be used to prove statements that hold for all integers n which are greater than or equal to a given integer c. In this case, we use n = c as the base case instead of n = 1. 6

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures

Lamé s Theorem. Strings. Recursively Defined Sets and Structures. Recursively Defined Sets and Structures Lamé s Theorem Gabriel Lamé (1795-1870) Recursively Defined Sets and Structures Lamé s Theorem: Let a and b be positive integers with a b Then the number of divisions used by the Euclidian algorithm to

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Mathematically Rigorous Software Design Review of mathematical prerequisites

Mathematically Rigorous Software Design Review of mathematical prerequisites Mathematically Rigorous Software Design 2002 September 27 Part 1: Boolean algebra 1. Define the Boolean functions and, or, not, implication ( ), equivalence ( ) and equals (=) by truth tables. 2. In an

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes.

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Answers to specimen paper questions Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Question 1. (a) The degree of a vertex x is the number

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security 1/27 Reasoning About Code Often functions make certain assumptions about their arguments, and it is the caller s responsibility to make sure those assumptions

More information

Ramsey s Theorem on Graphs

Ramsey s Theorem on Graphs Ramsey s Theorem on Graphs 1 Introduction Exposition by William Gasarch Imagine that you have 6 people at a party. We assume that, for every pair of them, either THEY KNOW EACH OTHER or NEITHER OF THEM

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

Lecture 20 : Trees DRAFT

Lecture 20 : Trees DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/12/2011 Lecture 20 : Trees Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed graphs. Today we continue this discussion,

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

Recursively Defined Functions

Recursively Defined Functions Section 5.3 Recursively Defined Functions Definition: A recursive or inductive definition of a function consists of two steps. BASIS STEP: Specify the value of the function at zero. RECURSIVE STEP: Give

More information

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:

More information

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1 CS 70 Discrete Mathematics for CS Fall 2000 Wagner MT1 Sol Solutions to Midterm 1 1. (16 pts.) Theorems and proofs (a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Figure 4.1: The evolution of a rooted tree.

Figure 4.1: The evolution of a rooted tree. 106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Solutions to the Second Midterm Exam

Solutions to the Second Midterm Exam CS/Math 240: Intro to Discrete Math 3/27/2011 Instructor: Dieter van Melkebeek Solutions to the Second Midterm Exam Problem 1 This question deals with the following implementation of binary search. Function

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Chapter 4. Number Theory. 4.1 Factors and multiples

Chapter 4. Number Theory. 4.1 Factors and multiples Chapter 4 Number Theory We ve now covered most of the basic techniques for writing proofs. So we re going to start applying them to specific topics in mathematics, starting with number theory. Number theory

More information

Chapter 1. Math review. 1.1 Some sets

Chapter 1. Math review. 1.1 Some sets Chapter 1 Math review This book assumes that you understood precalculus when you took it. So you used to know how to do things like factoring polynomials, solving high school geometry problems, using trigonometric

More information

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points Hu Yuzhong Chen Luping Zhu Hui Ling Xiaofeng (Supervisor) Abstract Consider the following problem. Given n, k N,

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

A NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH

A NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH A NOTE ON THE NUMBER OF DOMINATING SETS OF A GRAPH STEPHAN WAGNER Abstract. In a recent article by Bród and Skupień, sharp upper and lower bounds for the number of dominating sets in a tree were determined.

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

Applied Algorithm Design Lecture 3

Applied Algorithm Design Lecture 3 Applied Algorithm Design Lecture 3 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 3 1 / 75 PART I : GREEDY ALGORITHMS Pietro Michiardi (Eurecom) Applied Algorithm

More information

Recursive Definitions Structural Induction Recursive Algorithms

Recursive Definitions Structural Induction Recursive Algorithms Chapter 4 1 4.3-4.4 Recursive Definitions Structural Induction Recursive Algorithms 2 Section 4.1 3 Principle of Mathematical Induction Principle of Mathematical Induction: To prove that P(n) is true for

More information

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences

Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Section 5.3 1 Recursion 2 Recursion Recursion defining an object (or function, algorithm, etc.) in terms of itself. Recursion can be used to define sequences Previously sequences were defined using a specific

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Math 221 Final Exam Review

Math 221 Final Exam Review Math 221 Final Exam Review Preliminary comment: Some of these problems a formulated using language and structures from graph theory. However they are generally self contained; no theorems from graph theory

More information

Algebra of Sets (Mathematics & Logic A)

Algebra of Sets (Mathematics & Logic A) Algebra of Sets (Mathematics & Logic A) RWK/MRQ October 28, 2002 Note. These notes are adapted (with thanks) from notes given last year by my colleague Dr Martyn Quick. Please feel free to ask me (not

More information

Lecture 3: Constructing the Natural Numbers

Lecture 3: Constructing the Natural Numbers Math/CS 120: Intro. to Math Professor: Padraic Bartlett Lecture 3: Constructing the Natural Numbers Weeks 3-4 UCSB 2014 When we defined what a proof was in our first set of lectures, we mentioned that

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

Relations, Equivalence Relations, and Partial Orders

Relations, Equivalence Relations, and Partial Orders Massachusetts Institute of Technology Lecture 6 6.042J/18.062J: Mathematics for Computer Science February 17, 2000 Professors David Karger and Nancy Lynch Relations, Equivalence Relations, and Partial

More information

9 Directed graphs & Partial Orders

9 Directed graphs & Partial Orders mcs 2015/5/18 1:43 page 317 #325 9 Directed graphs & Partial Orders Directed graphs, called digraphs for short, provide a handy way to represent how things are connected together and how to get from one

More information

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1 Introduction to Automata Theory BİL405 - Automata Theory and Formal Languages 1 Automata, Computability and Complexity Automata, Computability and Complexity are linked by the question: What are the fundamental

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

(Provisional) Lecture 20: OCaml Fun!

(Provisional) Lecture 20: OCaml Fun! CS17 Integrated Introduction to Computer Science Hughes (Provisional) Lecture 20: OCaml Fun! 10:00 AM, Oct 23, 2017 Contents 1 Dictionaries 1 2 Well-Ordering Proof Practice 3 3 Summary 5 Objectives By

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 taking a regular n-gon back to itself, with the operation being composition. These polygons

More information

Section 0.3 The Order of Operations

Section 0.3 The Order of Operations Section 0.3 The Contents: Evaluating an Expression Grouping Symbols OPERATIONS The Distributive Property Answers Focus Exercises Let s be reminded of those operations seen thus far in the course: Operation

More information

Formal Methods of Software Design, Eric Hehner, segment 24 page 1 out of 5

Formal Methods of Software Design, Eric Hehner, segment 24 page 1 out of 5 Formal Methods of Software Design, Eric Hehner, segment 24 page 1 out of 5 [talking head] This lecture we study theory design and implementation. Programmers have two roles to play here. In one role, they

More information

Propositional Logic Formal Syntax and Semantics. Computability and Logic

Propositional Logic Formal Syntax and Semantics. Computability and Logic Propositional Logic Formal Syntax and Semantics Computability and Logic Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim:

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim: We have seen that the insert operation on a RB takes an amount of time proportional to the number of the levels of the tree (since the additional operations required to do any rebalancing require constant

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Order from Chaos. University of Nebraska-Lincoln Discrete Mathematics Seminar

Order from Chaos. University of Nebraska-Lincoln Discrete Mathematics Seminar Order from Chaos University of Nebraska-Lincoln Discrete Mathematics Seminar Austin Mohr Department of Mathematics Nebraska Wesleyan University February 8, 20 The (, )-Puzzle Start by drawing six dots

More information

Notes on Turing s Theorem and Computability

Notes on Turing s Theorem and Computability Notes on Turing s Theorem and Computability Walter Neumann About 60 years ago there was a revolution in mathematics and philosophy. First Gödel and then Turing showed that there are impossible problems

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074 COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME CHRIS BURNS AND BENJAMIN PURCELL Department of Mathematics Oberlin College Oberlin OH 44074 Abstract. Ralf Stephan recently

More information

Guidelines for Writing Mathematical Proofs

Guidelines for Writing Mathematical Proofs Appendix A Guidelines for Writing Mathematical Proofs One of the most important forms of mathematical writing is writing mathematical proofs. The writing of mathematical proofs is an acquired skill and

More information

Lecture 15 : Review DRAFT

Lecture 15 : Review DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/10/2011 Lecture 15 : Review Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Today slectureservesasareviewofthematerialthatwillappearonyoursecondmidtermexam.

More information

Order from Chaos. Nebraska Wesleyan University Mathematics Circle

Order from Chaos. Nebraska Wesleyan University Mathematics Circle Order from Chaos Nebraska Wesleyan University Mathematics Circle Austin Mohr Department of Mathematics Nebraska Wesleyan University February 2, 20 The (, )-Puzzle Start by drawing six dots at the corners

More information

11.9 Connectivity Connected Components. mcs 2015/5/18 1:43 page 419 #427

11.9 Connectivity Connected Components. mcs 2015/5/18 1:43 page 419 #427 mcs 2015/5/18 1:43 page 419 #427 11.9 Connectivity Definition 11.9.1. Two vertices are connected in a graph when there is a path that begins at one and ends at the other. By convention, every vertex is

More information

Lattice Tutorial Version 1.0

Lattice Tutorial Version 1.0 Lattice Tutorial Version 1.0 Nenad Jovanovic Secure Systems Lab www.seclab.tuwien.ac.at enji@infosys.tuwien.ac.at November 3, 2005 1 Introduction This tutorial gives an introduction to a number of concepts

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9 RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES IZZET COSKUN AND JASON STARR Abstract. We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of dimension at least

More information

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

STABILITY AND PARADOX IN ALGORITHMIC LOGIC STABILITY AND PARADOX IN ALGORITHMIC LOGIC WAYNE AITKEN, JEFFREY A. BARRETT Abstract. Algorithmic logic is the logic of basic statements concerning algorithms and the algorithmic rules of deduction between

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction Chapter 2 Splitting Operation and n-connected Matroids The splitting operation on an n-connected binary matroid may not yield an n-connected binary matroid. In this chapter, we provide a necessary and

More information

MITOCW watch?v=kz7jjltq9r4

MITOCW watch?v=kz7jjltq9r4 MITOCW watch?v=kz7jjltq9r4 PROFESSOR: We're going to look at the most fundamental of all mathematical data types, namely sets, and let's begin with the definitions. So informally, a set is a collection

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Computational Geometry: Lecture 5

Computational Geometry: Lecture 5 Computational Geometry: Lecture 5 Don Sheehy January 29, 2010 1 Degeneracy In many of the algorithms that we have discussed so far, we have run into problems when that input is somehow troublesome. For

More information

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19 CSE34T/CSE549T /05/04 Lecture 9 Treaps Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types

More information

Table of Laplace Transforms

Table of Laplace Transforms Table of Laplace Transforms 1 1 2 3 4, p > -1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Heaviside Function 27 28. Dirac Delta Function 29 30. 31 32. 1 33 34. 35 36. 37 Laplace Transforms

More information

Bipartite Coverings and the Chromatic Number

Bipartite Coverings and the Chromatic Number Bipartite Coverings and the Chromatic Number Dhruv Mubayi Sundar Vishwanathan Department of Mathematics, Department of Computer Science Statistics, and Computer Science Indian Institute of Technology University

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

CS525 Winter 2012 \ Class Assignment #2 Preparation

CS525 Winter 2012 \ Class Assignment #2 Preparation 1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 of the plane preserving a regular n-gon, with the operation being composition. These polygons

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017

Scribe: Virginia Williams, Sam Kim (2016), Mary Wootters (2017) Date: May 22, 2017 CS6 Lecture 4 Greedy Algorithms Scribe: Virginia Williams, Sam Kim (26), Mary Wootters (27) Date: May 22, 27 Greedy Algorithms Suppose we want to solve a problem, and we re able to come up with some recursive

More information

Proofwriting Checklist

Proofwriting Checklist CS103 Winter 2019 Proofwriting Checklist Cynthia Lee Keith Schwarz Over the years, we ve found many common proofwriting errors that can easily be spotted once you know how to look for them. In this handout,

More information

Lecture 5 Sorting Arrays

Lecture 5 Sorting Arrays Lecture 5 Sorting Arrays 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning, Rob Simmons We begin this lecture by discussing how to compare running times of functions in an abstract,

More information

Math 126 Number Theory

Math 126 Number Theory Math 16 Number Theory Prof. D. Joyce, Clark University 8 Mar 006 Due Friday. Page 155: exercises 1,, 7. Choose one of the three and write it up completely. Whichever one you choose, find all those solutions

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information