Curve Fitting Igor Pro compared with pro Fit


 Molly Quinn
 7 months ago
 Views:
Transcription
1 Χ 2 = ( y obs y ) 2 theory Curve Fitting Igor Pro compared with pro Fit 0.8 Signal 0.4 Kd = 0.81 ± 0.37 µm Au = ± Ab = 0.97 ± [Ligand]tot Fit Algorithm: LevenbergMarquardt Iterations: Chi squared = e2 Fitted parameters: Standard deviations: Kd = Kd = Au = e2 Au = e2 Ab = Ab = e2
2 Χ 2 = ( y obs y ) 2 theory Curve Fitting Igor Pro compared with pro Fit Signal Kd = 0.81 ± 0.37 µm Au = ± 0.08 Ab = 0.97 ± [Ligand]tot Igor Pro Curve Fit Results Wed, Apr 22, :25:52 PM Fit Type: least squares fit Function: BinaryBinding Coefficient values ± 67% Confidence Interval Kd = ± Au = ± Ab = ± Fit Algorithm: LevenbergMarquardt Iterations: Chi squared = e2 Fitted parameters: Standard deviations: Kd = Kd = Au = e2 Au = e2 Ab = Ab = e2 Kd = 0.81 ± 0.39 µm Au = ± 0.08 Ab = 0.97 ± 0.07
3 Χ 2 = ( y obs y ) 2 theory Curve Fitting Igor Pro compared with pro Fit Signal Kd = 0.81 ± 0.37 µm Au = ± 0.08 Ab = 0.97 ± [Ligand]tot Igor Pro Curve Fit Results Wed, Apr 22, :25:52 PM Fit Type: least squares fit Function: BinaryBinding Coefficient values ± 67% Confidence Interval Kd = ± Au = ± Ab = ± Fit Algorithm: LevenbergMarquardt Iterations: Chi squared = e2 Fitted parameters: Standard deviations: Kd = Kd = Au = e2 Au = e2 Ab = Ab = e2 Kd = 0.81 ± 0.39 µm Au = ± 0.08 Ab = 0.97 ± 0.07
4 pro Fit function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; Programming the function Igor #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End ( f ( L t ) = A u + ( A b A u ) P T + K d ) ( P T + K d ) 2 4P T L T 2L T
5 pro Fit function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; Programming the function Igor #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End ( f ( L t ) = A u + ( A b A u ) P T + K d ) ( P T + K d ) 2 4P T L T 2L T
6 Programming the function function Binding; function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; f L t #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> 2L T #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab Function BinaryBinding(w,Lt) : FitFunc Pt0 = 1 tmp = Pt0 + Lt + w[0] ( ( ) = A u + ( A b A u ) P + L + K T T d ) ( P T + K d ) 2 4P T L T Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) pro Fit Igor
7 pro Fit function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; Programming the function Igor #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End ( f ( L t ) = A u + ( A b A u ) P T + K d ) ( P T + K d ) 2 4P T L T 2L T
8 pro Fit function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; Programming the function Igor #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End ( f ( L t ) = A u + ( A b A u ) P T + K d ) ( P T + K d ) 2 4P T L T 2L T
9 pro Fit function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; {Variable declarations } var tmp,pl: extended; begin tmp := a[1] + a[2] + x; pl:= 0.5* (tmp  sqrt(sqr(tmp)4*a[2]*x)) / a[2]; y := a[3] + ((a[4]a[3])*pl); end; Programming the function Function BinaryBinding(w,Lt) : FitFunc //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab #pragma rtglobals=1 // Use modern global access method. #include <AllStatsProcedures> #include <Function Grapher> Function BinaryBinding(w,Lt) : FitFunc Wave w Variable Lt variable tmp variable pl variable Pt0 //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ Lt //CurveFitDialog/ Coefficients 3 Igor //CurveFitDialog/ w[0] = Kd //CurveFitDialog/ w[1] = Au //CurveFitDialog/ w[2] = Ab function Binding; inputs a[1]:=10,active,'kd',0,inf; a[2]:=1,inactive,'pt',0,inf; a[3]:=0,active,'au',inf,inf; a[4]:=1,active,'ab',inf,inf; ( f ( L t ) = A u + ( A b A u ) P T + K d ) P T + K d Pt0 = 1 tmp = Pt0 + Lt + w[0] pl = 0.5*(tmpsqrt((tmp*tmp)4*Pt0*Lt)) / Pt0 return w[1] + ( (w[2]w[1]) * pl ) End ( ) 2 4P T L T 2L T pro Fit
10 Igor  Setting up a Fit 6
11 Igor  Setting up a Fit 6
12 Igor  Setting up a Fit Enter your function Data columns (waves) to be Fit 7
13 Igor  Setting up a Fit Parameters to be Fit X value Enter function to be Fit 8
14 Igor  Setting up a Fit Starting guesses Test your guesses function to be Fit 9
15 Igor  Setting up a Fit 10
16 Igor  readily generates confidence bands and residual plots Residuals IMPORTANT  helps decide if you are using the correct function (for example, should I be using a single or double exponential?) Prediction Band Reflects the probability that a future measurement will fall within a certain range Confidence Band Reflects the probability that a future set of measurements will result in fit parameters that fall within a certain range.
III8Curve Fitting. Chapter III8
Chapter III8 III8Curve Fitting Overview... 152 Curve Fitting Terminology... 152 Overview of Curve Fitting... 153 Iterative Fitting... 153 Initial Guesses... 154 Termination Criteria... 154 Errors in
More informationWhat is Process Capability?
6. Process or Product Monitoring and Control 6.1. Introduction 6.1.6. What is Process Capability? Process capability compares the output of an incontrol process to the specification limits by using capability
More informationNonLinear Least Squares Analysis with Excel
NonLinear Least Squares Analysis with Excel 1. Installation An addin package for Excel, which performs certain specific nonlinear least squares analyses, is available for use in Chem 452. The package,
More informationConfirmatory Factor Analysis on the Twin Data: Try One
Confirmatory Factor Analysis on the Twin Data: Try One /************ twinfac2.sas ********************/ TITLE2 'Confirmatory Factor Analysis'; %include 'twinread.sas'; proc calis corr; /* Analyze the correlation
More informationIntroduction to Fitting ASCII Data with Errors: Single Component Source Models
Fitting ASCII Data Sherpa Introduction to Fitting ASCII Data with Errors: Single Component Source Models Sherpa Threads (CIAO 3.4) Introduction to Fitting ASCII Data with Errors: Single Component Source
More informationPolymath 6. Overview
Polymath 6 Overview Main Polymath Menu LEQ: Linear Equations Solver. Enter (in matrix form) and solve a new system of simultaneous linear equations. NLE: Nonlinear Equations Solver. Enter and solve a new
More informationAn introduction to plotting data
An introduction to plotting data Eric D. Black California Institute of Technology February 25, 2014 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a
More informationLecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010
Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors
More informationMultivariate Calibration Quick Guide
Last Updated: 06.06.2007 Table Of Contents 1. HOW TO CREATE CALIBRATION MODELS...1 1.1. Introduction into Multivariate Calibration Modelling... 1 1.1.1. Preparing Data... 1 1.2. Step 1: Calibration Wizard
More informationMultivariate Normal Random Numbers
Multivariate Normal Random Numbers Revised: 10/11/2017 Summary... 1 Data Input... 3 Analysis Options... 4 Analysis Summary... 5 Matrix Plot... 6 Save Results... 8 Calculations... 9 Summary This procedure
More information1. Basic Steps for Data Analysis Data Editor. 2.4.To create a new SPSS file
1 SPSS Guide 2009 Content 1. Basic Steps for Data Analysis. 3 2. Data Editor. 2.4.To create a new SPSS file 3 4 3. Data Analysis/ Frequencies. 5 4. Recoding the variable into classes.. 5 5. Data Analysis/
More informationDiffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012
Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate
More informationMatlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name:
1 Matlab Tutorial 1 What is Matlab? Matlab is a powerful tool for almost any kind of mathematical application. It enables one to develop programs with a high degree of functionality. The user can write
More informationCHAPTER 4: Polynomial and Rational Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
More informationConditional and Unconditional Regression with No Measurement Error
Conditional and with No Measurement Error /* reg2ways.sas */ %include 'readsenic.sas'; title2 ''; proc reg; title3 'Conditional Regression'; model infrisk = stay census; proc calis cov; /* Analyze the
More informationTHIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010
THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE
More informationSolar Radiation Data Modeling with a Novel Surface Fitting Approach
Solar Radiation Data Modeling with a Novel Surface Fitting Approach F. Onur Hocao glu, Ömer Nezih Gerek, Mehmet Kurban Anadolu University, Dept. of Electrical and Electronics Eng., Eskisehir, Turkey {fohocaoglu,ongerek,mkurban}
More informationIn SigmaPlot, a restricted but useful version of the global fit problem can be solved using the Global Fit Wizard.
Global Fitting Problem description Global fitting (related to Multiresponse onlinear Regression) is a process for fitting one or more fit models to one or more data sets simultaneously. It is a generalization
More informationBivariate (Simple) Regression Analysis
Revised July 2018 Bivariate (Simple) Regression Analysis This set of notes shows how to use Stata to estimate a simple (twovariable) regression equation. It assumes that you have set Stata up on your
More informationFor Additional Information...
For Additional Information... The materials in this handbook were developed by Master Black Belts at General Electric Medical Systems to assist Black Belts and Green Belts in completing Minitab Analyses.
More informationMinitab 17 commands Prepared by Jeffrey S. Simonoff
Minitab 17 commands Prepared by Jeffrey S. Simonoff Data entry and manipulation To enter data by hand, click on the Worksheet window, and enter the values in as you would in any spreadsheet. To then save
More informationAdministrivia. Next Monday is Thanksgiving holiday. Tuesday and Wednesday the lab will be open for makeup labs. Lecture as usual on Thursday.
Administrivia Next Monday is Thanksgiving holiday. Tuesday and Wednesday the lab will be open for makeup labs. Lecture as usual on Thursday. Lab notebooks will be due the week after Thanksgiving, when
More informationExam 4. In the above, label each of the following with the problem number. 1. The population Least Squares line. 2. The population distribution of x.
Exam 4 15. Normal Population. The scatter plot show below is a random sample from a 2D normal population. The bell curves and dark lines refer to the population. The sample Least Squares Line (shorter)
More informationIntroduction to SAS proc calis
Introduction to SAS proc calis /* path1.sas */ %include 'SenicRead.sas'; title2 ''; /************************************************************************ * * * Cases are hospitals * * * * stay Average
More informationDescriptive Statistics, Standard Deviation and Standard Error
AP Biology Calculations: Descriptive Statistics, Standard Deviation and Standard Error SBI4UP The Scientific Method & Experimental Design Scientific method is used to explore observations and answer questions.
More informationMinitab detailed
Minitab 18.1  detailed  ADDITIVE contact sales: 06172590530 or minitab@additivenet.de ADDITIVE contact Technik/ Support/ Installation: 06172590520 or support@additivenet.de
More informationThe Coefficient of Determination
The Coefficient of Determination Lecture 46 Section 13.9 Robb T. Koether HampdenSydney College Wed, Apr 17, 2012 Robb T. Koether (HampdenSydney College) The Coefficient of Determination Wed, Apr 17,
More informationSoftware Tutorial Session Universal Kriging
Software Tutorial Session Universal Kriging The example session with PG2000 which is described in this and Part 1 is intended as an example run to familiarise the user with the package. This documented
More informationTechnical Report of ISO/IEC Test Program of the MDISC Archival DVD Media June, 2013
Technical Report of ISO/IEC 10995 Test Program of the MDISC Archival DVD Media June, 2013 With the introduction of the MDISC family of inorganic optical media, Traxdata set the standard for permanent
More informationKevin James. MTHSC 102 Section 1.5 Polynomial Functions and Models
MTHSC 102 Section 1.5 Polynomial Functions and Models Definition A quadratic function is a function whose second differences are constant. It achieves either a local max or a local min and has no inflection
More informationName: INSERT YOUR NAME HERE UWNetID: INSERT YOUR NETID
AMath 584 Homework 3 Due to dropbox by 6pm PDT, November 4, 2011 Name: INSERT YOUR NAME HERE UWNetID: INSERT YOUR NETID Use latex for this assignment! Submit a pdf file to the dropbox. You do not need
More informationSlides 11: Verification and Validation Models
Slides 11: Verification and Validation Models Purpose and Overview The goal of the validation process is: To produce a model that represents true behaviour closely enough for decision making purposes.
More informationUnit 8 SUPPLEMENT Normal, T, Chi Square, F, and Sums of Normals
BIOSTATS 540 Fall 017 8. SUPPLEMENT Normal, T, Chi Square, F and Sums of Normals Page 1 of Unit 8 SUPPLEMENT Normal, T, Chi Square, F, and Sums of Normals Topic 1. Normal Distribution.. a. Definition..
More informationExperimental Physics I & II "Junior Lab"
MIT OpenCourseWare http://ocw.mit.edu 8.1314 Experimental Physics I & II "Junior Lab" Fall 2007  Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationIntroduction to Visual Basic and Visual C++ Arithmetic Expression. Arithmetic Expression. Using Arithmetic Expression. Lesson 4.
Introduction to Visual Basic and Visual C++ Arithmetic Expression Lesson 4 Calculation I1541A A @ Peter Lo 2010 1 I1541A A @ Peter Lo 2010 2 Arithmetic Expression Using Arithmetic Expression Calculations
More informationTwoStage Least Squares
Chapter 316 TwoStage Least Squares Introduction This procedure calculates the twostage least squares (2SLS) estimate. This method is used fit models that include instrumental variables. 2SLS includes
More information[1] CURVE FITTING WITH EXCEL
1 Lecture 04 February 9, 2010 Tuesday Today is our third Excel lecture. Our two central themes are: (1) curvefitting, and (2) linear algebra (matrices). We will have a 4 th lecture on Excel to further
More informationFitting Grating Data
Fitting Grating Data Sherpa Fitting Grating Data Sherpa Threads (CIAO 3.4) Fitting Grating Data 1 Table of Contents Fitting Grating Data Sherpa Getting Started Reading the Spectrum Files Building the Instrument
More informationFathom Dynamic Data TM Version 2 Specifications
Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other
More informationTHE LINEAR PROBABILITY MODEL: USING LEAST SQUARES TO ESTIMATE A REGRESSION EQUATION WITH A DICHOTOMOUS DEPENDENT VARIABLE
PLS 802 Spring 2018 Professor Jacoby THE LINEAR PROBABILITY MODEL: USING LEAST SQUARES TO ESTIMATE A REGRESSION EQUATION WITH A DICHOTOMOUS DEPENDENT VARIABLE This handout shows the log of a Stata session
More informationSection E. Measuring the Strength of A Linear Association
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More informationNote: Shift + Print Screen to print graphs will not work on Windows machines in DOS.
Program Name: CURVEFIT Language: Compiled BASIC Microcomputer Use: IBMPC and compatibles, PCDOS 2.0, color monitor, memory capacity of 128K or more, and optional printer. Purpose: CURVEFIT is used to
More informationSLStats.notebook. January 12, Statistics:
Statistics: 1 2 3 Ways to display data: 4 generic arithmetic mean sample 14A: Opener, #3,4 (Vocabulary, histograms, frequency tables, stem and leaf) 14B.1: #3,5,8,9,11,12,14,15,16 (Mean, median, mode,
More informationMATH 51: MATLAB HOMEWORK 3
MATH 5: MATLAB HOMEWORK Experimental data generally suffers from imprecision, though frequently one can predict how data should behave by graphing results collected from experiments. For instance, suppose
More informationDownload the procedure file Studentsimanneal2014.ipf and adopt the code, which contains the function sas().
LAB 5  Simulated Annealing 214 Introduction. In this lab you will write a program for simulated annealing. You will test the program on a onedimensional fitness surface with multiple local maxima. In
More informationAdvanced Curve Fitting. Eric Haller, Secondary Occasional Teacher, Peel District School Board
Advanced Curve Fitting Eric Haller, Secondary Occasional Teacher, Peel District School Board rickyhaller@hotmail.com In many experiments students collect twovariable data, make scatter plots, and then
More informationSURFACE XPLORER. Version 4.2 USER MANUAL
SURFACE XPLORER Version 4.2 USER MANUAL Table of Contents List of Figures... 4 System Requirements... 5 Introduction to SURFACE XPLORER... 6 3D Surface control... 7 Spectrum Panel... 9 Kinetic Profile
More informationBluman & Mayer, Elementary Statistics, A Step by Step Approach, Canadian Edition
Bluman & Mayer, Elementary Statistics, A Step by Step Approach, Canadian Edition Online Learning Centre Technology StepbyStep  Minitab Minitab is a statistical software application originally created
More informationSTAT  Edit Scroll up the appropriate list to highlight the list name at the very top Press CLEAR, followed by the down arrow or ENTER
Entering/Editing Data Use arrows to scroll to the appropriate list and position Enter or edit data, pressing ENTER after each (including the last) Deleting Data (One Value at a Time) Use arrows to scroll
More informationQuick Instruction. For EXAFS Data Analysis
Quick Instruction For EXAFS Data Analysis Using WinXAS, FEFF 7 and ATOMS Programs Farideh Jalilehvand Department of Chemistry University of Calgary email: faridehj@ucalgary.ca Last updated: December 2002
More information) 2 + (y 2. x 1. y c x2 = y
Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this
More informationWarmUp Exercises. Find the xintercept and yintercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7
WarmUp Exercises Find the xintercept and yintercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that
More informationStat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution
Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal
More information225L Acceleration of Gravity and Measurement Statistics
225L Acceleration of Gravity and Measurement Statistics Introduction: The most important and readily available source of acceleration has been gravity, and in particular, free fall. One of the problems
More informationQuantitative  One Population
Quantitative  One Population The Quantitative One Population VISA procedures allow the user to perform descriptive and inferential procedures for problems involving one population with quantitative (interval)
More informationParameter Estimation in Differential Equations: A Numerical Study of Shooting Methods
Parameter Estimation in Differential Equations: A Numerical Study of Shooting Methods Franz Hamilton Faculty Advisor: Dr Timothy Sauer January 5, 2011 Abstract Differential equation modeling is central
More informationGLM II. Basic Modeling Strategy CAS Ratemaking and Product Management Seminar by Paul Bailey. March 10, 2015
GLM II Basic Modeling Strategy 2015 CAS Ratemaking and Product Management Seminar by Paul Bailey March 10, 2015 Building predictive models is a multistep process Set project goals and review background
More informationBasic Calculator Functions
Algebra I Common Graphing Calculator Directions Name Date Throughout our course, we have used the graphing calculator to help us graph functions and perform a variety of calculations. The graphing calculator
More informationStatCalc User Manual. Version 9 for Mac and Windows. Copyright 2018, AcaStat Software. All rights Reserved.
StatCalc User Manual Version 9 for Mac and Windows Copyright 2018, AcaStat Software. All rights Reserved. http://www.acastat.com Table of Contents Introduction... 4 Getting Help... 4 Uninstalling StatCalc...
More informationStat 5100 Handout #12.f SAS: Time Series Case Study (Unit 7)
Stat 5100 Handout #12.f SAS: Time Series Case Study (Unit 7) Data: Weekly sales (in thousands of units) of Super Tech Videocassette Tapes over 161 weeks [see Bowerman & O Connell Forecasting and Time Series:
More informationBoxCox Transformation for Simple Linear Regression
Chapter 192 BoxCox Transformation for Simple Linear Regression Introduction This procedure finds the appropriate BoxCox power transformation (1964) for a dataset containing a pair of variables that are
More informationLecture 8. Divided Differences,LeastSquares Approximations. Ceng375 Numerical Computations at December 9, 2010
Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating
More informationGeneralized least squares (GLS) estimates of the level2 coefficients,
Contents 1 Conceptual and Statistical Background for TwoLevel Models...7 1.1 The general twolevel model... 7 1.1.1 Level1 model... 8 1.1.2 Level2 model... 8 1.2 Parameter estimation... 9 1.3 Empirical
More informationMATH 0310 Graphing Calculator Supplement
All instructions reference the TI83/84 family of calculators. All graphs shown use the viewing window x: [10, 10], y: [10, 10]. Solving an Equation MATH 0310 Graphing Calculator Supplement The equation
More informationSTATS PAD USER MANUAL
STATS PAD USER MANUAL For Version 2.0 Manual Version 2.0 1 Table of Contents Basic Navigation! 3 Settings! 7 Entering Data! 7 Sharing Data! 8 Managing Files! 10 Running Tests! 11 Interpreting Output! 11
More informationError Analysis, Statistics and Graphing
Error Analysis, Statistics and Graphing This semester, most of labs we require us to calculate a numerical answer based on the data we obtain. A hard question to answer in most cases is how good is your
More informationMAPLE CARD. All commands and constants must be typed in the case (UPPER or lower) that is indicated. Syntax Rules
MAPLE CARD All commands and constants must be typed in the case (UPPER or lower) that is indicated Syntax Rules ; a semicolon or a colon and a RETURN must follow every command. % refers to previous display.
More informationGEEN 1300 Introduction to Engineering Computing Fall Practice Test for Section Test #1
GEEN 1300 Introduction to Engineering Computing Fall 2009 Practice Test for Section Test #1 1. Match the following by drawing between items in the adjacent columns. F1 key F2 key F9 key F4 key F5 key make
More informationENGG1811: Data Analysis using Spreadsheets Part 1 1
ENGG1811 Computing for Engineers Data Analysis using Spreadsheets 1 I Data Analysis Pivot Tables Simple Statistics Histogram Correlation Fitting Equations to Data Presenting Charts Solving SingleVariable
More informationUnit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys
Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and
More informationA4.8 Fitting relative potencies and the Schild equation
A4.8 Fitting relative potencies and the Schild equation A4.8.1. Constraining fits to sets of curves It is often necessary to deal with more than one curve at a time. Typical examples are (1) sets of parallel
More informationDM4U_B P 1 W EEK 1 T UNIT
MDM4U_B Per 1 WEEK 1 Tuesday Feb 3 2015 UNIT 1: Organizing Data for Analysis 1) THERE ARE DIFFERENT TYPES OF DATA THAT CAN BE SURVEYED. 2) DATA CAN BE EFFECTIVELY DISPLAYED IN APPROPRIATE TABLES AND GRAPHS.
More informationData Analysis Multiple Regression
Introduction VisualXSel 14.0 is both, a powerful software to create a DoE (Design of Experiment) as well as to evaluate the results, or historical data. After starting the software, the main guide shows
More informationPrecalculus Summer Packet
Precalculus Summer Packet Name: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This packet is to help you review various topics that are considered to be prerequisite knowledge
More informationDoE with VisualXSel 13.0
Introduction VisualXSel 13.0 is both, a powerful software to create a DoE (Design of Experiment) as well as to evaluate the results, or historical data. After starting the software, the main guide shows
More informationStatistical Techniques for Validation Sampling. Copyright GCI, Inc. 2016
Statistical Techniques for Validation Sampling Tie Risk to Sampling Data Type Confidence Level Reliability and Risk Typical Performance Levels Onesided or twosided spec Distribution (variables) Risk
More informationData interpolation in pyramid domain
Data interpolation in pyramid domain Xukai Shen ABSTRACT Pyramid domain is defined as a frequencyspace domain with different spatial grids for different frequencies. Data interpolation in pyramid domain
More informationTechnical Support Minitab Version Student Free technical support for eligible products
Technical Support Free technical support for eligible products All registered users (including students) All registered users (including students) Registered instructors Not eligible Worksheet Size Number
More informationEcon 3790: Business and Economics Statistics. Instructor: Yogesh Uppal
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 8: Interval Estimation Population Mean: Known Population Mean: Unknown Margin of Error and the Interval
More informationFitting to a set of data. Lecture on fitting
Fitting to a set of data Lecture on fitting Linear regression Linear regression Residual is the amount difference between a real data point and a modeled data point Fitting a polynomial to data Could use
More information13. Brewster angle measurement
13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p and s polarizations 3. Determination
More informationAn Introduction to the Bootstrap
An Introduction to the Bootstrap Bradley Efron Department of Statistics Stanford University and Robert J. Tibshirani Department of Preventative Medicine and Biostatistics and Department of Statistics,
More informationPoints Lines Connected points XY Scatter. XY Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked HBar Grouped HBar Stacked
Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni and multivariate data. Settings and options in different types of graphs allow for modifications and customizations
More information% Close all figure windows % Start figure window
CS1112 Fall 2016 Project 3 Part A Due Monday 10/3 at 11pm You must work either on your own or with one partner. If you work with a partner, you must first register as a group in CMS and then submit your
More informationBi 1x Spring 2014: Plotting and linear regression
Bi 1x Spring 2014: Plotting and linear regression In this tutorial, we will learn some basics of how to plot experimental data. We will also learn how to perform linear regressions to get parameter estimates.
More informationBootstrapping Methods
Bootstrapping Methods example of a Monte Carlo method these are one Monte Carlo statistical method some Bayesian statistical methods are Monte Carlo we can also simulate models using Monte Carlo methods
More informationGraphPad Prism Features
GraphPad Prism Features GraphPad Prism 4 is available for both Windows and Macintosh. The two versions are very similar. You can open files created on one platform on the other platform with no special
More informationAdaptive and Iterative Processing Techniques for Overlapping Signatures
VA11800106TR Adaptive and Iterative Processing Techniques for Overlapping Signatures Technical Summary Report March 2006 PERFORMING ORGANIZATION AETC Incorporated 1225 South Clark Street, Suite 800
More informationExperiment 1 CH Fall 2004 INTRODUCTION TO SPREADSHEETS
Experiment 1 CH 222  Fall 2004 INTRODUCTION TO SPREADSHEETS Introduction Spreadsheets are valuable tools utilized in a variety of fields. They can be used for tasks as simple as adding or subtracting
More informationRSM SplitPlot Designs & Diagnostics Solve RealWorld Problems
RSM SplitPlot Designs & Diagnostics Solve RealWorld Problems Shari Kraber Pat Whitcomb Martin Bezener StatEase, Inc. StatEase, Inc. StatEase, Inc. 221 E. Hennepin Ave. 221 E. Hennepin Ave. 221 E.
More informationA practical guide to computer simulation II
A practical guide to computer simulation II Alexander K. Hartmann, University of Göttingen June 18, 2003 7 Data analysis 7.1 Data plotting Two programs discussed here: gnuplot and xmgrace. gnuplot xmgrace
More informationGeneral Program Description
General Program Description This program is designed to interpret the results of a sampling inspection, for the purpose of judging compliance with chosen limits. It may also be used to identify outlying
More informationColorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.
Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Bundle Adjustment 2 Example Application A vehicle needs to map its environment that it is moving
More informationR Programming Basics  Useful Builtin Functions for Statistics
R Programming Basics  Useful Builtin Functions for Statistics Vectorized Arithmetic  most arthimetic operations in R work on vectors. Here are a few commonly used summary statistics. testvect = c(1,3,5,2,9,10,7,8,6)
More information,!7IA3C1cjfcei!:t;K;k;K;k ISBN Graphing Calculator Reference Card. AddisonWesley s. Basics. Created in conjuction with
AddisonWesley s Graphing Calculator Reference Card Created in conjuction with Basics Converting Fractions to Decimals The calculator will automatically convert a fraction to a decimal. Type in a fraction,
More informationApplied Regression Modeling: A Business Approach
i Applied Regression Modeling: A Business Approach Computer software help: SPSS SPSS (originally Statistical Package for the Social Sciences ) is a commercial statistical software package with an easytouse
More informationWelcome to Microsoft Excel 2013 p. 1 Customizing the QAT p. 5 Customizing the Ribbon Control p. 6 The Worksheet p. 6 Excel 2013 Specifications and
Preface p. xi Welcome to Microsoft Excel 2013 p. 1 Customizing the QAT p. 5 Customizing the Ribbon Control p. 6 The Worksheet p. 6 Excel 2013 Specifications and Limits p. 9 Compatibility with Other Versions
More informationBootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping
Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,
More informationMINITAB Release Comparison Chart Release 14, Release 13, and Student Versions
Technical Support Free technical support Worksheet Size All registered users, including students Registered instructors Number of worksheets Limited only by system resources 5 5 Number of cells per worksheet
More informationCHAOS Chaos Chaos Iterate
CHAOS Chaos is a program that explores data analysis. A sequence of points is created which can be analyzed via one of the following five modes: 1. Time Series Mode, which plots a time series graph, that
More information