COSC Software Engineering. Lecture 16: Managing Memory Managers

Size: px
Start display at page:

Download "COSC Software Engineering. Lecture 16: Managing Memory Managers"

Transcription

1 COSC Software Engineering Lecture 16: Managing Memory Managers

2 Outline Typical problems (from previous lectures) Memory leaks aren t just for (Objective) C Tracking malloc() calls Catching calls to zero length malloc() Eradicating un-initialized memory Bulletproofing Catching leaks Catching buffer over-runs and under-runs Assumption for this lecture: we do not have access to the internals of the memory management routines: malloc(), free(), realloc(), etc.

3 A memory leak in Java public class Stack<E> { private int capacity, size; private Object[] array; // constructor, size(), push(), &c public E pop() { assert size > 0; Object r = array[--size]; return (E)r;

4 How does that leak Stack<Document> s = new Stack<Document>; s.push(a_large_document); s.pop(); // Now you think the document has gone, and // you certainly can t get it back, but // s.array[0] still points to it, so // the Java garbage collector will not reclaim it.

5 How do you stop that? public E pop() { assert size > 0; Object r = array[size--]; array[size] = null; return (E)r; Vector.setSize, removeelementat, removeallelements, remove, clear; ArrayList.remove, clear; all take care to do this.

6 Typical Problems in C Allocate zero length blocks Allocate a block and use its uninitialized contents Free a block then use it Call realloc() then use the old pointer Allocate a block then lose the pointer to it Read and write beyond the boundaries of a block Fail to notice any of these

7 malloc() Tracking Put a wrapper around malloc() aspt_malloc.h #ifdef MALLOC_DEBUG #define aspt_malloc(s) do_aspt_malloc( LINE, FILE, s) extern void *do_aspt_malloc(long, char const *, size_t); #else #define aspt_malloc(s) malloc(s) #endif aspt_malloc.c #include <stdio.h> #include <stdlib.h> void *do_aspt_malloc(long line, char const *file, size_t size) { void *r = malloc(size); printf("%s(%d): log, malloc(%d) => %p\n", file, line, size, r); return r;

8 main.c #include <stdlib.h> #define MALLOC_DEBUG #include "aspt_malloc.h" malloc() Tracking int main(void) { aspt_malloc(100); return 0; Output main.c(6): log, malloc(100) Why use #ifdef MALLOC_DEBUG?

9 Zero Length Blocks Zero size is left implementation-defined in the ISO C standards We catch all cases and return NULL (ISO allows) aspt_malloc.c void *do_aspt_malloc(long line, char const *file, size_t size) { if (size == 0) { printf("%s(%d): error, zero length malloc\n", file, line); return NULL; else { #ifdef MALLOC_DEBUG_ALL printf("%s(%d): log, malloc(%d)\n", file, line, size); #endif return malloc(size);

10 Uninitialized Memory Leads to unpredictable behavior so initialize it! aspt_malloc.c #define BAD_MEM 0xCC void *do_aspt_malloc(long line, char const *file, size_t size) { char *mem; if (size == 0) { printf("%s(%d): error, zero length malloc\n", file, line); return NULL; else { #ifdef MALLOC_DEBUG_ALL printf("%s(%d): log, malloc(%d)\n", file, line, size); #endif mem = malloc(size); if (mem == NULL) { printf("%s(%d): error, malloc failure (NULL returned)\n, file, line); return NULL; return memset(mem, BAD_MEM, size);

11 BAD_MEM, why 0xCC? S. Maguire, Writing Solid Code Must look like garbage but not be garbage 0x00, 0xFF, 0x01 all look like valid values Maguire recommends 0xCC on PC (Macs too now) If word-alignment is enforced then make it odd p = malloc(sizeof (int)); **p = 5; /* will crash */ As an index into an array it is large (and noticeable) p = malloc(sizeof (int)); a[*p]=5; /* p is very large */ If ever called it will crash p = malloc(sizeof (int)); p(); /* will crash */ Easy to spot long sequences in a debugger Easy to spot the value in a printf() All done to make it crash at the first opportunity Increase instability when the program goes wrong

12 Bulletproofing Bulletproofing Making a program (module / class / method) robust to bad, incorrect, or unexpected input Bulletproofing malloc() Forbid zero-length calls Forbid the return of un-initalised memory Why should we bulletproof? Why should we not bulletproof? How else can we bulletproof malloc() and free()?

13 Leak Detection Keep a set (e.g., in a tree) of in-use memory For brevity source code not included here Four routines needed: Add an node to the tree void *aspt_mem_add(void *mem, long size, char const *file, long line) Delete a node from the tree void *aspt_mem_delete(void *mem) Find a node in the tree and return its size long aspt_mem_size(void *mem) List all nodes in the tree void aspt_mem_leaks(void) This set is called the in-use set.

14 Changes to malloc() void *do_aspt_malloc(long line, char const *file, size_t size) { void *mem; if (size == 0) { printf("%s(%ld): error, zero length malloc\n", file, line); return NULL; else #ifdef MALLOC_DEBUG_ALL printf("%s(%ld): log, malloc(%d)\n", file, line, size); #endif mem = malloc(size); if (mem == NULL) { printf("%s(%ld): error, malloc failure (NULL returned)\n", file, line); return NULL; memset(mem, BAD_MEM, size); if (aspt_mem_add(mem, size, file, line)) { return mem; else { free(mem); return NULL;

15 Changes to free() From aspt_malloc.h #define aspt_free(p) do_aspt_free( LINE, FILE, p) void do_aspt_free(long line, char const *file, void *p); From aspt_malloc.c void do_aspt_free(long line, char const *file, char *mem) { size_t const size = aspt_mem_size(mem); if (size > 0) { aspt_mem_delete(mem); memset(mem, BAD_MEM, size); free(mem); do_aspt_free() Clears the unused memory (set equal to BAD_MEM) Removes it from the in-use set Can we fit p = NULL into the macro somehow?

16 From main.c int main(int argc, char **argv) { char *g; int index; int const n = 10; atexit(aspt_mem_leaks); g = aspt_malloc(n); Example for (index = 0; index <= n; index++) g[index] = 0; return 0; Output main.c(7): warning leaked 10 bytes A program cannot possibly tell where it should have been freed, only where it was allocated What is the mistake in this slide?

17 The Special-Case of realloc() Problem realloc() sometimes moves memory Solution Leads to irreproducible behavior Example: dangling pointers in a tree (node->str) Debug version Always move the block Release version Avoid moving the block if possible Remember to debug both versions Always test both debug and release versions

18 Uses of the In-Use List At termination of program list all in-use memory These are program leaks atexit(aspt_mem_leaks); Does a pointer point to valid memory? Check the size is greater than zero Validate pointer before calling system routines Prevent memory overwrites Is destination a valid pointer in call to strcpy()? Validate pointer-size before calling system routines Prevent memory overwrites Is destination large enough in call to strncpy()? Pair free() and malloc() calls The allocation location is in the in-use list This technique can be extended to the stack too Requires manual manipulation of stack objects (or does it?)

19 Write Outside Buffer Write past end of buffer char *mem = aspt_malloc(10); for (index = 0; index <= 10; index++) mem[index] = 0; mem User Memory Write before beginning of buffer char *mem = g = aspt_malloc(10); *mem-- = 0; *mem-- = 0; write write mem User Memory

20 Catching Outside Buffer Writes In do_aspt_malloc() insert padding at each end Padding base mem User Memory Padding Similar to last lecture Allocate size + 2 * sizeof (Padding) bytes Word align everything correctly Put one at each end of the block Initialize the whole block (BAD_MEM) Return mem + sizeof (Padding) This hides the existence of the padding

21 Catching Outside Buffer Writes In do_aspt_free() check padding is BAD_MEM Padding mem In do_aspt_free() Check under-writes (underflow) if (!aspt_pad_check(mem sizeof (Padding),sizeof (Padding))) printf("%s(%ld): error, memory under-run\n", file, line); Check over-writes (overflow) if (!aspt_pad_check(mem + aspt_mem_size(mem),sizeof(padding))) printf("%s(%ld): error, memory over-run\n", file, line); aspt_pad_check() long aspt_pad_check(char *where, long size) { char *ch; for (ch = where; ch < where + size; ch++) if (*ch!= (char)bad_mem) return 0; return 1; How (and when) can this check fail? User Memory Padding

22 More Besides These techniques do not catch everything Dangling pointers to re-allocated memory Memory trashes outside the Padding Thought experiment: is it possible to Check the padding during runtime? Keep a list of all used and unused memory? Verify the heap is OK? Verify the free-list and the in-use list? Verify every single memory access in the program? Set p = NULL after each call to free(p)? How would we do all this?

23 Conclusions Memory leaks are easily caught Memory over-runs and under-runs are easily caught Memory size mismatches are easily caught Uninitialized memory blocks easily spotted in debugger Always manage the memory manager Wait a second Shouldn t there be a library that does all this?

24 References S. Maguire, Writing Solid Code, Chapter 3 Electric Fence; see man 3 efence in Linux. Forked as DUMA (Detect Unintended Memory Access) at mtrace(3), muntrace(3), malloc_hook(3) in Linux Valgrind, basically emulates your program. It runs on Mac OS X but not ios (although it does handle Android). See valgrind.org

o Code, executable, and process o Main memory vs. virtual memory

o Code, executable, and process o Main memory vs. virtual memory Goals for Today s Lecture Memory Allocation Prof. David August COS 217 Behind the scenes of running a program o Code, executable, and process o Main memory vs. virtual memory Memory layout for UNIX processes,

More information

CSC209H Lecture 3. Dan Zingaro. January 21, 2015

CSC209H Lecture 3. Dan Zingaro. January 21, 2015 CSC209H Lecture 3 Dan Zingaro January 21, 2015 Streams (King 22.1) Stream: source of input or destination for output We access a stream through a file pointer (FILE *) Three streams are available without

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Lecture 9 Assertions and Error Handling CS240

Lecture 9 Assertions and Error Handling CS240 Lecture 9 Assertions and Error Handling CS240 The C preprocessor The C compiler performs Macro expansion and directive handling Preprocessing directive lines, including file inclusion and conditional compilation,

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Memory Management. CS449 Fall 2017

Memory Management. CS449 Fall 2017 Memory Management CS449 Fall 2017 Life9mes Life9me: 9me from which a par9cular memory loca9on is allocated un9l it is deallocated Three types of life9mes Automa9c (within a scope) Sta9c (dura9on of program)

More information

TI2725-C, C programming lab, course

TI2725-C, C programming lab, course Valgrind tutorial Valgrind is a tool which can find memory leaks in your programs, such as buffer overflows and bad memory management. This document will show per example how Valgrind responds to buggy

More information

DAY 3. CS3600, Northeastern University. Alan Mislove

DAY 3. CS3600, Northeastern University. Alan Mislove C BOOTCAMP DAY 3 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh and Pascal Meunier s course at Purdue Memory management 2 Memory management Two

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science Memory Allocation in C C Programming and Software Tools N.C. State Department of Computer Science The Easy Way Java (JVM) automatically allocates and reclaims memory for you, e.g... Removed object is implicitly

More information

COSC Software Engineering. Lectures 14 and 15: The Heap and Dynamic Memory Allocation

COSC Software Engineering. Lectures 14 and 15: The Heap and Dynamic Memory Allocation COSC345 2013 Software Engineering Lectures 14 and 15: The Heap and Dynamic Memory Allocation Outline Revision The programmer s view of memory Simple array-based memory allocation C memory allocation routines

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

CSci 4061 Introduction to Operating Systems. Programs in C/Unix

CSci 4061 Introduction to Operating Systems. Programs in C/Unix CSci 4061 Introduction to Operating Systems Programs in C/Unix Today Basic C programming Follow on to recitation Structure of a C program A C program consists of a collection of C functions, structs, arrays,

More information

Secure Coding in C and C++

Secure Coding in C and C++ Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Sept 21, 2017 Acknowledgement: These slides are based on author Seacord s original presentation Issues Dynamic Memory Management Common Dynamic

More information

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313.

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313. NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313 http://www.csee.umbc.edu/courses/undergraduate/313/fall11/" Programming in C! Advanced Pointers! Reminder! You can t use a pointer until it points

More information

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco

CS 326 Operating Systems C Programming. Greg Benson Department of Computer Science University of San Francisco CS 326 Operating Systems C Programming Greg Benson Department of Computer Science University of San Francisco Why C? Fast (good optimizing compilers) Not too high-level (Java, Python, Lisp) Not too low-level

More information

Reminder: compiling & linking

Reminder: compiling & linking Reminder: compiling & linking source file 1 object file 1 source file 2 compilation object file 2 library object file 1 linking (relocation + linking) load file source file N object file N library object

More information

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1 Announcements assign due tonight No late submissions Labs start this week Very helpful for assign1 Goals for Today Pointer operators Allocating memory in the heap malloc and free Arrays and pointer arithmetic

More information

Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013

Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013 Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013 Acknowledgement: These slides are based on author Seacord s original presentation Issues Dynamic Memory Management Common Dynamic

More information

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community http://csc.cs.rit.edu History and Evolution of Programming Languages 1. Explain the relationship between machine

More information

Common Misunderstandings from Exam 1 Material

Common Misunderstandings from Exam 1 Material Common Misunderstandings from Exam 1 Material Kyle Dewey Stack and Heap Allocation with Pointers char c = c ; char* p1 = malloc(sizeof(char)); char** p2 = &p1; Where is c allocated? Where is p1 itself

More information

Memory (Stack and Heap)

Memory (Stack and Heap) Memory (Stack and Heap) Praktikum C-Programmierung Nathanael Hübbe, Eugen Betke, Michael Kuhn, Jakob Lüttgau, Jannek Squar Wissenschaftliches Rechnen Fachbereich Informatik Universität Hamburg 2018-12-03

More information

CA341 - Comparative Programming Languages

CA341 - Comparative Programming Languages CA341 - Comparative Programming Languages David Sinclair Dynamic Data Structures Generally we do not know how much data a program will have to process. There are 2 ways to handle this: Create a fixed data

More information

Linked data structures. EECS 211 Winter 2019

Linked data structures. EECS 211 Winter 2019 Linked data structures EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/07linked.tgz tar zx $ cd 07linked Preliminaries 3 4 Two views on malloc and free The client/c view: malloc(n)

More information

CS 137 Part 5. Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors. October 25th, 2017

CS 137 Part 5. Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors. October 25th, 2017 CS 137 Part 5 Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors October 25th, 2017 Exam Wrapper Silently answer the following questions on paper (for yourself) Do you think that the problems on

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

Week 5, continued. This is CS50. Harvard University. Fall Cheng Gong

Week 5, continued. This is CS50. Harvard University. Fall Cheng Gong This is CS50. Harvard University. Fall 2014. Cheng Gong Table of Contents News... 1 Buffer Overflow... 1 Malloc... 6 Linked Lists... 7 Searching... 13 Inserting... 16 Removing... 19 News Good news everyone!

More information

ECE264 Spring 2014 Exam 2, March 11, 2014

ECE264 Spring 2014 Exam 2, March 11, 2014 ECE264 Spring 2014 Exam 2, March 11, 2014 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

ch = argv[i][++j]; /* why does ++j but j++ does not? */

ch = argv[i][++j]; /* why does ++j but j++ does not? */ CMPS 12M Introduction to Data Structures Lab Lab Assignment 4 The purpose of this lab assignment is to get more practice programming in C, including the character functions in the library ctype.h, and

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically, as the program

More information

Dynamic Memory Management

Dynamic Memory Management Dynamic Memory Management 1 Goals of this Lecture Help you learn about: Dynamic memory management techniques Garbage collection by the run-time system (Java) Manual deallocation by the programmer (C, C++)

More information

Processes. Johan Montelius KTH

Processes. Johan Montelius KTH Processes Johan Montelius KTH 2017 1 / 47 A process What is a process?... a computation a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C C Pointers and Arrays 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically,

More information

CSE 333 Midterm Exam Sample Solution 7/28/14

CSE 333 Midterm Exam Sample Solution 7/28/14 Question 1. (20 points) C programming. For this question implement a C function contains that returns 1 (true) if a given C string appears as a substring of another C string starting at a given position.

More information

Dynamic memory allocation (malloc)

Dynamic memory allocation (malloc) 1 Plan for today Quick review of previous lecture Array of pointers Command line arguments Dynamic memory allocation (malloc) Structures (Ch 6) Input and Output (Ch 7) 1 Pointers K&R Ch 5 Basics: Declaration

More information

ANITA S SUPER AWESOME RECITATION SLIDES

ANITA S SUPER AWESOME RECITATION SLIDES ANITA S SUPER AWESOME RECITATION SLIDES 15/18-213: Introduction to Computer Systems Dynamic Memory Allocation Anita Zhang, Section M UPDATES Cache Lab style points released Don t fret too much Shell Lab

More information

COSC345 Software Engineering. The Heap And Dynamic Memory Allocation

COSC345 Software Engineering. The Heap And Dynamic Memory Allocation COSC345 Software Engineering The Heap And Dynamic Memory Allocation Outline Revision The programmer s view of memory Simple array-based memory allocation C memory allocation routines Virtual memory Swapping

More information

A process. the stack

A process. the stack A process Processes Johan Montelius What is a process?... a computation KTH 2017 a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other processes

More information

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam Three November 20 th 2013 Name: Q1: /8 Q2: /30 Q3: /30 Q4: /32 Total: /100 1/10 For functional call related questions, let s assume

More information

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C Lecture 1 C primer What we will cover A crash course in the basics of C You should read the K&R C book for lots more details Various details will be exemplified later in the course Outline Overview comparison

More information

PRINCIPLES OF OPERATING SYSTEMS

PRINCIPLES OF OPERATING SYSTEMS PRINCIPLES OF OPERATING SYSTEMS Tutorial-1&2: C Review CPSC 457, Spring 2015 May 20-21, 2015 Department of Computer Science, University of Calgary Connecting to your VM Open a terminal (in your linux machine)

More information

Robust Programming. Style of programming that prevents abnormal termination and unexpected actions

Robust Programming. Style of programming that prevents abnormal termination and unexpected actions Robust Programming Style of programming that prevents abnormal termination and unexpected actions Code handles bad inputs reasonably Code assumes errors will occur and takes appropriate action Also called

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 16, SPRING 2013 TOPICS TODAY Project 6 Perils & Pitfalls of Memory Allocation C Function Call Conventions in Assembly Language PERILS

More information

Memory Leak. C++: Memory Problems. Memory Leak. Memory Leak. Pointer Ownership. Memory Leak

Memory Leak. C++: Memory Problems. Memory Leak. Memory Leak. Pointer Ownership. Memory Leak Memory Leak C++ Memory Problems or When Good Memory Goes Bad A bug in a program that prevents it from freeing up memory that it no longer needs. As a result, the program grabs more and more memory until

More information

C: Pointers, Arrays, and strings. Department of Computer Science College of Engineering Boise State University. August 25, /36

C: Pointers, Arrays, and strings. Department of Computer Science College of Engineering Boise State University. August 25, /36 Department of Computer Science College of Engineering Boise State University August 25, 2017 1/36 Pointers and Arrays A pointer is a variable that stores the address of another variable. Pointers are similar

More information

Memory Organization. The machine code and data associated with it are in the code segment

Memory Organization. The machine code and data associated with it are in the code segment Memory Management Memory Organization During run time, variables can be stored in one of three pools : 1. Stack 2. Global area (Static heap) 3. Dynamic heap The machine code and data associated with it

More information

Dynamic Memory Allocation (and Multi-Dimensional Arrays)

Dynamic Memory Allocation (and Multi-Dimensional Arrays) Dynamic Memory Allocation (and Multi-Dimensional Arrays) Professor Hugh C. Lauer CS-2303, System Programming Concepts (Slides include materials from The C Programming Language, 2 nd edition, by Kernighan

More information

CSE 12 Spring 2016 Week One, Lecture Two

CSE 12 Spring 2016 Week One, Lecture Two CSE 12 Spring 2016 Week One, Lecture Two Homework One and Two: hw2: Discuss in section today - Introduction to C - Review of basic programming principles - Building from fgetc and fputc - Input and output

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Dynamic Memory Management

Princeton University Computer Science 217: Introduction to Programming Systems. Dynamic Memory Management Princeton University Computer Science 217: Introduction to Programming Systems Dynamic Memory Management 1 Goals of this Lecture Help you learn about: The need for dynamic* memory mgmt (DMM) Implementing

More information

CS61 Section Notes. Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc

CS61 Section Notes. Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc CS61 Section Notes Section 5 (Fall 2011) Topics to be covered Common Memory Errors Dynamic Memory Allocation Assignment 3: Malloc Common Memory Errors In lecture, we learned about several errors programmers

More information

High Performance Programming Programming in C part 1

High Performance Programming Programming in C part 1 High Performance Programming Programming in C part 1 Anastasia Kruchinina Uppsala University, Sweden April 18, 2017 HPP 1 / 53 C is designed on a way to provide a full control of the computer. C is the

More information

Memory Management in C (Dynamic Strings) Personal Software Engineering

Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Organization Function Call Frames The Stack The call stack grows from the top of memory down. sp Available for allocation The

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

CSE 303: Concepts and Tools for Software Development

CSE 303: Concepts and Tools for Software Development CSE 303: Concepts and Tools for Software Development Hal Perkins Winter 2009 Lecture 7 Introduction to C: The C-Level of Abstraction CSE 303 Winter 2009, Lecture 7 1 Welcome to C Compared to Java, in rough

More information

CptS 360 (System Programming) Unit 4: Debugging

CptS 360 (System Programming) Unit 4: Debugging CptS 360 (System Programming) Unit 4: Debugging Bob Lewis School of Engineering and Applied Sciences Washington State University Spring, 2018 Motivation You re probably going to spend most of your code

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization October 17th-nd, 018 Your instructor:

More information

Call The Project Dynamic-Memory

Call The Project Dynamic-Memory 1 2 2 Call The Project Dynamic-Memory 4 4 Copy-Paste Main # include "Utilities.hpp" int main(int argc, char * argv[]) { short int *PtrNo; (*PtrNo) = 5; printf ("(*PtrNo) = %d\n", (*PtrNo)); } getchar();

More information

Dynamic Memory Management! Goals of this Lecture!

Dynamic Memory Management! Goals of this Lecture! Dynamic Memory Management!!! 1 Goals of this Lecture! Help you learn about:! Dynamic memory management techniques! Garbage collection by the run-time system (Java)! Manual deallocation by the programmer

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Secure Software Programming and Vulnerability Analysis

Secure Software Programming and Vulnerability Analysis Secure Software Programming and Vulnerability Analysis Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Heap Buffer Overflows and Format String Vulnerabilities Secure Software

More information

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef today advanced data types (1) typedef. mon 23 sep 2002 homework #1 due today homework #2 out today quiz #1 next class 30-45 minutes long one page of notes topics: C advanced data types dynamic memory allocation

More information

Advanced Memory Allocation

Advanced Memory Allocation Advanced Memory Allocation Call some useful functions of the GNU C library to save precious memory and to find nasty bugs. by Gianluca Insolvibile Dealing with dynamic memory traditionally has been one

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2012 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Prior experience in programming languages C++ programming? Java programming? C programming? Other languages?

More information

C: Arrays, and strings. Department of Computer Science College of Engineering Boise State University. September 11, /16

C: Arrays, and strings. Department of Computer Science College of Engineering Boise State University. September 11, /16 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/16 1-dimensional Arrays Arrays can be statically declared in C, such as: int A [100]; The space for this

More information

Dynamic Memory Allocation I

Dynamic Memory Allocation I Dynamic Memory Allocation I William J. Taffe Plymouth State University Using the Slides of Randall E. Bryant Carnegie Mellon University Topics Simple explicit allocators Data structures Mechanisms Policies

More information

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12 Week 9 Part 1 Kyle Dewey Overview Dynamic allocation continued Heap versus stack Memory-related bugs Exam #2 Dynamic Allocation Recall... Dynamic memory allocation allows us to request memory on the fly

More information

CS 241 Honors Memory

CS 241 Honors Memory CS 241 Honors Memory Ben Kurtovic Atul Sandur Bhuvan Venkatesh Brian Zhou Kevin Hong University of Illinois Urbana Champaign February 20, 2018 CS 241 Course Staff (UIUC) Memory February 20, 2018 1 / 35

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts 15-213: Introduction to Computer Systems 19 th Lecture, March 30, 2017 Instructor: Franz Franchetti & Seth Copen Goldstein 1 Today Basic concepts Implicit free

More information

Memory Corruption 101 From Primitives to Exploit

Memory Corruption 101 From Primitives to Exploit Memory Corruption 101 From Primitives to Exploit Created by Nick Walker @ MWR Infosecurity / @tel0seh What is it? A result of Undefined Behaviour Undefined Behaviour A result of executing computer code

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

Stanford University Computer Science Department CS 295 midterm. May 14, (45 points) (30 points) total

Stanford University Computer Science Department CS 295 midterm. May 14, (45 points) (30 points) total Stanford University Computer Science Department CS 295 midterm May 14, 2008 This is an open-book exam. You have 75 minutes. Write all of your answers directly on the paper. Make your answers as concise

More information

Recitation: C Review. TA s 20 Feb 2017

Recitation: C Review. TA s 20 Feb 2017 15-213 Recitation: C Review TA s 20 Feb 2017 Agenda Logistics Attack Lab Conclusion C Assessment C Programming Style C Exercise Cache Lab Overview Appendix: Valgrind Clang / LLVM Cache Structure Logistics

More information

unsigned char memory[] STACK ¼ 0x xC of address space globals function KERNEL code local variables

unsigned char memory[] STACK ¼ 0x xC of address space globals function KERNEL code local variables Graded assignment 0 will be handed out in section Assignment 1 Not that bad Check your work (run it through the compiler) Factorial Program Prints out ENTERING, LEAVING, and other pointers unsigned char

More information

Agenda. Dynamic Memory Management. Robert C. Seacord. Secure Coding in C and C++

Agenda. Dynamic Memory Management. Robert C. Seacord. Secure Coding in C and C++ Dynamic Memory Management Secure Coding in C and C++ Robert C. Seacord CERT Coordination Center Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 The CERT Coordination

More information

Limitations of the stack

Limitations of the stack The heap hic 1 Limitations of the stack int *table_of(int num, int len) { int table[len+1]; for (int i=0; i

More information

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT C Review MaxMSP Developers Workshop Summer 2009 CNMAT C Syntax Program control (loops, branches): Function calls Math: +, -, *, /, ++, -- Variables, types, structures, assignment Pointers and memory (***

More information

Memory and C/C++ modules

Memory and C/C++ modules Memory and C/C++ modules From Reading #6 Will return to OOP topics (templates and library tools) soon Compilation/linking revisited source file 1 object file 1 source file 2 compilation object file 2 library

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

Dynamic Memory Allocation I Nov 5, 2002

Dynamic Memory Allocation I Nov 5, 2002 15-213 The course that gives CMU its Zip! Dynamic Memory Allocation I Nov 5, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies class21.ppt Harsh Reality Memory is not unbounded

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization Lecture #9, April th, 016 Your instructor:

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides 1 Today Basic concepts Implicit free lists

More information

System Assertions. Andreas Zeller

System Assertions. Andreas Zeller System Assertions Andreas Zeller System Invariants Some properties of a program must hold over the entire run: must not access data of other processes must handle mathematical exceptions must not exceed

More information

Programming in C First meeting

Programming in C First meeting Programming in C First meeting 8.9.2016 Tiina Niklander Faculty of Science Department of Computer Science www.cs.helsinki.fi 8.9.2016 1 Course structure Weekly exercise deadline on Wednesday, lectures

More information

Memory and C/C++ modules

Memory and C/C++ modules Memory and C/C++ modules From Reading #5 and mostly #6 More OOP topics (templates; libraries) as time permits later Program building l Have: source code human readable instructions l Need: machine language

More information

3/7/2018. Sometimes, Knowing Which Thing is Enough. ECE 220: Computer Systems & Programming. Often Want to Group Data Together Conceptually

3/7/2018. Sometimes, Knowing Which Thing is Enough. ECE 220: Computer Systems & Programming. Often Want to Group Data Together Conceptually University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 220: Computer Systems & Programming Structured Data in C Sometimes, Knowing Which Thing is Enough In MP6, we

More information

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3 Under the Hood: Data Representations, Memory and Bit Operations Computer Science 104 Lecture 3 Homework #1 Due Feb 6 Reading TAs Finish Chapter 1 Start Chapter 2 Admin +1 UTA: Michael Zhou Lindsay is Head

More information

Object-Oriented Programming

Object-Oriented Programming iuliana@cs.ubbcluj.ro Babes-Bolyai University 2018 1 / 37 Overview 1 2 3 4 5 2 / 37 Questions we will answer today What is the difference between the stack and the heap? How can we allocate and free memory

More information

Recitation 2/18/2012

Recitation 2/18/2012 15-213 Recitation 2/18/2012 Announcements Buflab due tomorrow Cachelab out tomorrow Any questions? Outline Cachelab preview Useful C functions for cachelab Cachelab Part 1: you have to create a cache simulator

More information

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen Dynamic Memory Allocation: Basic Concepts Kai Shen Dynamic Memory Allocation Programmers use dynamic memory allocators (such as malloc) to acquire memory at run time. For data structures whose size is

More information

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory.

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory. Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

Dynamic Memory & ADTs in C

Dynamic Memory & ADTs in C Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

So far, system calls have had easy syntax. Integer, character string, and structure arguments.

So far, system calls have had easy syntax. Integer, character string, and structure arguments. Pointers Page 1 So far, system calls have had easy syntax Wednesday, September 30, 2015 10:45 AM Integer, character string, and structure arguments. But this is not always true. Today, we begin to explore

More information

CS C Primer. Tyler Szepesi. January 16, 2013

CS C Primer. Tyler Szepesi. January 16, 2013 January 16, 2013 Topics 1 Why C? 2 Data Types 3 Memory 4 Files 5 Endianness 6 Resources Why C? C is exteremely flexible and gives control to the programmer Allows users to break rigid rules, which are

More information

QUIZ How do we implement run-time constants and. compile-time constants inside classes?

QUIZ How do we implement run-time constants and. compile-time constants inside classes? QUIZ How do we implement run-time constants and compile-time constants inside classes? Compile-time constants in classes The static keyword inside a class means there s only one instance, regardless of

More information

CSCI-243 Exam 2 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 2 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-43 Exam Review February, 01 Presented by the RIT Computer Science Community http://csc.cs.rit.edu C Preprocessor 1. Consider the following program: 1 # include 3 # ifdef WINDOWS 4 # include

More information

Hacking in C. Memory layout. Radboud University, Nijmegen, The Netherlands. Spring 2018

Hacking in C. Memory layout. Radboud University, Nijmegen, The Netherlands. Spring 2018 Hacking in C Memory layout Radboud University, Nijmegen, The Netherlands Spring 2018 A short recap The & operator gives us the address of data Inverse of & is the * operator (dereferencing) 2 A short recap

More information

Operating systems. Lecture 9

Operating systems. Lecture 9 Operating systems. Lecture 9 Michał Goliński 2018-11-27 Introduction Recall Reading and writing wiles in the C/C++ standard libraries System calls managing processes (fork, exec etc.) Plan for today fork

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Memory, Files and Bitoperations (yaseminb@kth.se) Overview Overview Lecture 11: Memory, Files and Bit operations Main function; reading and writing Bitwise Operations Lecture 11: Memory, Files

More information