IST 597 Deep Learning Tensorflow Tutorial. -- Feed Forward Neural Network

Size: px
Start display at page:

Download "IST 597 Deep Learning Tensorflow Tutorial. -- Feed Forward Neural Network"

Transcription

1 IST 597 Deep Learning Tensorflow Tutorial -- Feed Forward Neural Network September 19, 2018 Dataset Introduction The MNIST database (Modified National Institute of Standards and Technology database) is a large database of handwritten digits that is commonly used for training various image processing systems. The MNIST database contains 60,000 training images and 10,000 testing images. The black and white images from NIST were normalized to fit into a 28x28 pixel bounding box and anti-aliased, which introduced grayscale levels. Models Example 1 Softmax Regression import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt input_dim = 784 output_dim = 10 # load data mnist = input_data.read_data_sets("mnist_data/", one_hot=true) trx, try, tex, tey = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, input_dim]) Y = tf.placeholder("float", [None, output_dim]) # define model w = tf.variable(tf.random_normal([input_dim, output_dim], stddev=0.01)) b = tf.variable(tf.zeros([output_dim]) + 0.1) py_x = tf.matmul(x, w) + b

2 # define loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=y)) train_op = tf.train.gradientdescentoptimizer(0.05).minimize(loss) predict_op = tf.argmax(py_x, axis = 1) y_target = tf.argmax(y, axis = 1) accuracy = tf.reduce_mean(tf.cast(tf.equal(predict_op, y_target),tf.float32)) loss_vec = [] train_accuracy = [] test_accuracy = [] # Start Training with tf.session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trx), 128), range(128, len(trx)+1, 128)): sess.run(train_op, feed_dict = {X: trx[start:end], Y: try[start:end]}) temp_loss = sess.run(loss, feed_dict = {X: trx, Y: try}) loss_vec.append(temp_loss) train_acc_temp = sess.run(accuracy, feed_dict = {X: trx, Y:trY}) train_accuracy.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict = {X: tex, Y:teY}) test_accuracy.append(test_acc_temp) print(i, test_acc_temp) # Plot Figures plt.plot(train_accuracy) plt.plot(test_accuracy) plt.title('accuracy on training dataset and Test dataset') plt.ylabel('accuracy') plt.legend(['training accuracy','testing accuracy']) plt.ylim(0.85,0.95) plt.legend(loc='lower right') plt.plot(loss_vec) plt.title('loss on training dataset')

3

4 The performance of softmax regression is about 92.5%. Example 2 Multilayer Perceptron import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt input = 784 hidden = 625 output = 10 # define model def model(x, w_h, w_o, b_1, b_2): h = tf.nn.sigmoid(tf.matmul(x, w_h)+b_1) return tf.matmul(h, w_o)+b_2 # load data mnist = input_data.read_data_sets("mnist_data/", one_hot=true) trx, try, tex, tey = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) # Initial parameters w_h = tf.variable(tf.random_normal([input, hidden],stddev=0.01)) w_o = tf.variable(tf.random_normal([hidden, output],stddev=0.01)) b_1 = tf.variable(tf.zeros([hidden]) + 0.1) b_2 = tf.variable(tf.zeros([output]) + 0.1) py_x = model(x, w_h, w_o, b_1, b_2) # define loss loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=y)) train_op = tf.train.gradientdescentoptimizer(0.05).minimize(loss) predict_op = tf.argmax(py_x, 1) y_target = tf.argmax(y, 1) accuracy = tf.reduce_mean(tf.cast(tf.equal(predict_op, y_target),tf.float32)) loss_vec = [] train_accuracy = [] test_accuracy = []

5 # Start Training with tf.session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trx), 128), range(128, len(trx)+1, 128)): sess.run(train_op, feed_dict={x: trx[start:end], Y: try[start:end]}) temp_loss = sess.run(loss, feed_dict = {X: trx, Y: try}) loss_vec.append(temp_loss) train_acc_temp = sess.run(accuracy, feed_dict = {X: trx, Y:trY}) train_accuracy.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict = {X: tex, Y:teY}) test_accuracy.append(test_acc_temp) print(i, test_acc_temp) # Plot figures plt.plot(train_accuracy) plt.plot(test_accuracy) plt.title('accuracy on training dataset and Test dataset') plt.ylabel('accuracy') plt.legend(['training accuracy','testing accuracy']) plt.ylim(0.85,1.0) plt.legend(loc='lower right') plt.plot(loss_vec) plt.title('loss on training dataset') The performance of multilayer perceptron is about 95.4%.

6

IST 597 Deep Learning Overfitting and Regularization. Sep. 27, 2018

IST 597 Deep Learning Overfitting and Regularization. Sep. 27, 2018 IST 597 Deep Learning Overfitting and Regularization 1. Overfitting Sep. 27, 2018 Regression model y 1 3 x3 13 2 x2 36x10 import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import

More information

Tensorflow Example: Fizzbuzz. Sargur N. Srihari

Tensorflow Example: Fizzbuzz. Sargur N. Srihari Tensorflow Example: Fizzbuzz Sargur N. srihari@cedar.buffalo.edu 1 Fizzbuzz in Tensorflow Fizzbuzz: Print the numbers from 1 to 100, except that if the number is divisible by 3 print "fizz", if it's divisible

More information

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) Convolutional Neural Networks (CNN) By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Convolution on Image I. 1.1. Convolution in 1D II. 1.2. Convolution

More information

Basic Models in TensorFlow. CS 20SI: TensorFlow for Deep Learning Research Lecture 3 1/20/2017

Basic Models in TensorFlow. CS 20SI: TensorFlow for Deep Learning Research Lecture 3 1/20/2017 Basic Models in TensorFlow CS 20SI: TensorFlow for Deep Learning Research Lecture 3 1/20/2017 1 2 Agenda Review Linear regression in TensorFlow Optimizers Logistic regression on MNIST Loss functions 3

More information

Lecture 3: Overview of Deep Learning System. CSE599W: Spring 2018

Lecture 3: Overview of Deep Learning System. CSE599W: Spring 2018 Lecture 3: Overview of Deep Learning System CSE599W: Spring 2018 The Deep Learning Systems Juggle We won t focus on a specific one, but will discuss the common and useful elements of these systems Typical

More information

Autoencoder. 1. Unsupervised Learning. By Prof. Seungchul Lee Industrial AI Lab POSTECH.

Autoencoder. 1. Unsupervised Learning. By Prof. Seungchul Lee Industrial AI Lab  POSTECH. Autoencoder By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Unsupervised Learning II. 2. Autoencoders III. 3. Autoencoder with TensorFlow I. 3.1. Import

More information

Autoencoder. By Prof. Seungchul Lee isystems Design Lab UNIST. Table of Contents

Autoencoder. By Prof. Seungchul Lee isystems Design Lab  UNIST. Table of Contents Autoencoder By Prof. Seungchul Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIST Table of Contents I. 1. Unsupervised Learning II. 2. Autoencoders III. 3. Autoencoder with TensorFlow I. 3.1. Import

More information

Autoencoder. 1. Unsupervised Learning. By Prof. Seungchul Lee Industrial AI Lab POSTECH.

Autoencoder. 1. Unsupervised Learning. By Prof. Seungchul Lee Industrial AI Lab  POSTECH. Autoencoder By Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Unsupervised Learning II. 2. Autoencoders III. 3. Autoencoder with TensorFlow I. 3.1. Import

More information

Homework 01 : Deep learning Tutorial

Homework 01 : Deep learning Tutorial Homework 01 : Deep learning Tutorial Introduction to TensorFlow and MLP 1. Introduction You are going to install TensorFlow as a tutorial of deep learning implementation. This instruction will provide

More information

Get Started Tutorials How To Mobile API Resources About

Get Started Tutorials How To Mobile API Resources About 11/28/2016 Introduction Get Started Tutorials How To Mobile API Resources About Introduction Let's get you up and running with TensorFlow! But before we even get started, let's peek at what TensorFlow

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network Table of Contents I. 1. Recurrent Neural Network (RNN) I. 1.1. Feedforward Network and Sequential Data II. 1.2. Structure of RNN III. 1.3. RNN with LSTM IV. 1.4. RNN and Sequential

More information

Manage Experiments. CS 20SI: TensorFlow for Deep Learning Research Lecture 5 1/27/2017

Manage Experiments. CS 20SI: TensorFlow for Deep Learning Research Lecture 5 1/27/2017 Manage Experiments CS 20SI: TensorFlow for Deep Learning Research Lecture 5 1/27/2017 1 2 Guest lectures They are amazing. Read their papers! Justin Johnson Jon Shlens Stanford Vision Lab Google Brain

More information

BinaryMatcher2. Preparing the Data. Preparing the Raw Data: 32 rows Binary and 1-Hot. D. Thiebaut. March 19, 2017

BinaryMatcher2. Preparing the Data. Preparing the Raw Data: 32 rows Binary and 1-Hot. D. Thiebaut. March 19, 2017 BinaryMatcher2 D. Thiebaut March 19, 2017 This Jupyter Notebook illustrates how to design a simple multi-layer Tensorflow Neural Net to recognize integers coded in binary and output them as 1-hot vector.

More information

R for SQListas, a Continuation

R for SQListas, a Continuation 3-2 - 1-0: Classifying Digits with R R for SQListas, a Continuation R for SQListas: Now that we're in the tidyverse... what can we do now? Machine Learning MNIST - the Drosophila of Machine Learning (attributed

More information

TF Mutiple Hidden Layers: Regression on Boston Data

TF Mutiple Hidden Layers: Regression on Boston Data TF Mutiple Hidden Layers: Regression on Boston Data This is adapted from Frossard's tutorial (http://www.cs.toronto.edu/~frossard/post/tensorflow/). This approach is not batched, and the number of layers

More information

ECE 5470 Classification, Machine Learning, and Neural Network Review

ECE 5470 Classification, Machine Learning, and Neural Network Review ECE 5470 Classification, Machine Learning, and Neural Network Review Due December 1. Solution set Instructions: These questions are to be answered on this document which should be submitted to blackboard

More information

TensorFlow for Deep Learning

TensorFlow for Deep Learning TensorFlow for Deep Learning Oliver Dürr Datalab-Lunch Seminar Series Winterthur, 23 Nov, 2016 Code: github.com/oduerr/dl_tutorial/ 4 Leftovers Notes and things I forgot The Mandelbrot example now also

More information

python numpy tensorflow tutorial

python numpy tensorflow tutorial python numpy tensorflow tutorial September 11, 2016 1 What is Python? From Wikipedia: - Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. - Design philosophy

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

Assignment4. November 29, Follow the directions on https://www.tensorflow.org/install/ to install Tensorflow on your computer.

Assignment4. November 29, Follow the directions on https://www.tensorflow.org/install/ to install Tensorflow on your computer. Assignment4 November 29, 2017 1 CSE 252A Computer Vision I Fall 2017 1.1 Assignment 4 1.2 Problem 1: Install Tensorflow [2 pts] Follow the directions on https://www.tensorflow.org/install/ to install Tensorflow

More information

TensorFlow. Research at Scale. Rajat Monga

TensorFlow. Research at Scale. Rajat Monga TensorFlow Research at Scale Rajat Monga Decision Trees Signal Processing Neural Nets Linear Algebra BayesFlow Random Forests C++ Frontend Python Frontend... TensorFlow Distributed Execution Engine CPU

More information

ndpi & Machine Learning A future concrete idea

ndpi & Machine Learning A future concrete idea ndpi & Machine Learning A future concrete idea 1. Conjunction between DPI & ML 2. Introduction to Tensorflow and ConvNet project Traffic classification approaches Category Classification methodology Attribute(s)

More information

Deep RL and Controls Homework 2 Tensorflow, Keras, and Cluster Usage

Deep RL and Controls Homework 2 Tensorflow, Keras, and Cluster Usage 10-703 Deep RL and Controls Homework 2 Tensorflow, Keras, and Cluster Usage Devin Schwab Spring 2017 Table of Contents Homework 2 Cluster Usage Tensorflow Keras Conclusion DQN This homework is signficantly

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

Polytechnic University of Tirana

Polytechnic University of Tirana 1 Polytechnic University of Tirana Department of Computer Engineering SIBORA THEODHOR ELINDA KAJO M ECE 2 Computer Vision OCR AND BEYOND THE PRESENTATION IS ORGANISED IN 3 PARTS : 3 Introduction, previous

More information

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. By Sanjay Surendranath Girija

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. By Sanjay Surendranath Girija TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS By Sanjay Surendranath Girija WHAT IS TENSORFLOW? TensorFlow is an interface for expressing machine learning algorithms, and

More information

Hand Written Digit Recognition Using Tensorflow and Python

Hand Written Digit Recognition Using Tensorflow and Python Hand Written Digit Recognition Using Tensorflow and Python Shekhar Shiroor Department of Computer Science College of Engineering and Computer Science California State University-Sacramento Sacramento,

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

An introduction to TensorFlow! Chip Huyen CS224N 1/25/2018

An introduction to TensorFlow! Chip Huyen CS224N 1/25/2018 An introduction to TensorFlow! Chip Huyen (chiphuyen@cs.stanford.edu) CS224N 1/25/2018 1 2 Agenda Why TensorFlow Graphs and Sessions Linear Regression tf.data word2vec Structuring your model Managing experiments

More information

DECISION SUPPORT SYSTEM USING TENSOR FLOW

DECISION SUPPORT SYSTEM USING TENSOR FLOW Volume 118 No. 24 2018 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ DECISION SUPPORT SYSTEM USING TENSOR FLOW D.Anji Reddy 1, G.Narasimha 2, K.Srinivas

More information

MNIST handwritten digits

MNIST handwritten digits MNIST handwritten digits Description and using Mazdak Fatahi Oct. 2014 Abstract Every scientific work needs some measurements. To compare the performance and accuracy of handwriting recognition methods

More information

Machine Learning Workshop

Machine Learning Workshop Machine Learning Workshop {Presenters} Feb. 20th, 2018 Theory of Neural Networks Architecture and Types of Layers: Fully Connected (FC) Convolutional Neural Network (CNN) Pooling Drop out Residual Recurrent

More information

Analyze the work and depth of this algorithm. These should both be given with high probability bounds.

Analyze the work and depth of this algorithm. These should both be given with high probability bounds. CME 323: Distributed Algorithms and Optimization Instructor: Reza Zadeh (rezab@stanford.edu) TA: Yokila Arora (yarora@stanford.edu) HW#2 Solution 1. List Prefix Sums As described in class, List Prefix

More information

Foolbox Documentation

Foolbox Documentation Foolbox Documentation Release 1.2.0 Jonas Rauber & Wieland Brendel Jun 27, 2018 User Guide 1 Robust Vision Benchmark 3 1.1 Installation................................................ 3 1.2 Tutorial..................................................

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

CS224n: Natural Language Processing with Deep Learning 1

CS224n: Natural Language Processing with Deep Learning 1 CS224n: Natural Language Processing with Deep Learning 1 Lecture Notes: TensorFlow 2 Winter 2017 1 Course Instructors: Christopher Manning, Richard Socher 2 Authors: Zhedi Liu, Jon Gauthier, Bharath Ramsundar,

More information

A HPX backend for TensorFlow

A HPX backend for TensorFlow A HPX backend for TensorFlow Lukas Troska Institute for Numerical Simulation University Bonn April 5, 2017 Lukas Troska April 5, 2017 1 / 45 Table of Contents 1 Introduction to TensorFlow What is it? Examples

More information

Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL

Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL Training Neural Networks with Mixed Precision MICHAEL CARILLI CHRISTIAN SAROFEEN MICHAEL RUBERRY BEN BARSDELL 1 THIS TALK Using mixed precision and Volta your networks can be: 1. 2-4x faster 2. half the

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Getting Started with TensorFlow : Part II

Getting Started with TensorFlow : Part II TensorFlow Workshop 2018 Getting Started with TensorFlow Part II : Monitoring Training and Validation Nick Winovich Department of Mathematics Purdue University July 2018 Outline 1 Monitored Training Sessions

More information

Lecture note 4: How to structure your model in TensorFlow

Lecture note 4: How to structure your model in TensorFlow Lecture note 4: How to structure your model in TensorFlow CS 20SI: TensorFlow for Deep Learning Research (cs20si.stanford.edu) Prepared by Chip Huyen ( huyenn@stanford.edu ) Reviewed by Danijar Hafner

More information

Frameworks in Python for Numeric Computation / ML

Frameworks in Python for Numeric Computation / ML Frameworks in Python for Numeric Computation / ML Why use a framework? Why not use the built-in data structures? Why not write our own matrix multiplication function? Frameworks are needed not only because

More information

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets)

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft Module Outline

More information

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Raphaël Couturier, Michel Salomon FEMTO-ST - DISC Department - AND Team November 2 & 3, 2015 / Besançon

More information

Tutorial 1. Linear Regression

Tutorial 1. Linear Regression Tutorial 1. Linear Regression January 11, 2017 1 Tutorial: Linear Regression Agenda: 1. Spyder interface 2. Linear regression running example: boston data 3. Vectorize cost function 4. Closed form solution

More information

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Deep Learning Workshop Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Why deep learning? The ImageNet Challenge Goal: image classification with 1000 categories Top 5 error rate of 15%. Krizhevsky, Alex,

More information

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( )

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( ) Structure: 1. Introduction 2. Problem 3. Neural network approach a. Architecture b. Phases of CNN c. Results 4. HTM approach a. Architecture b. Setup c. Results 5. Conclusion 1.) Introduction Artificial

More information

THE MNIST DATABASE of handwritten digits Yann LeCun, Courant Institute, NYU Corinna Cortes, Google Labs, New York

THE MNIST DATABASE of handwritten digits Yann LeCun, Courant Institute, NYU Corinna Cortes, Google Labs, New York THE MNIST DATABASE of handwritten digits Yann LeCun, Courant Institute, NYU Corinna Cortes, Google Labs, New York The MNIST database of handwritten digits, available from this page, has a training set

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

Day 1 Lecture 6. Software Frameworks for Deep Learning

Day 1 Lecture 6. Software Frameworks for Deep Learning Day 1 Lecture 6 Software Frameworks for Deep Learning Packages Caffe Theano NVIDIA Digits Lasagne Keras Blocks Torch TensorFlow MxNet MatConvNet Nervana Neon Leaf Caffe Deep learning framework from Berkeley

More information

SVM multiclass classification in 10 steps 17/32

SVM multiclass classification in 10 steps 17/32 SVM multiclass classification in 10 steps import numpy as np # load digits dataset from sklearn import datasets digits = datasets. load_digits () # define training set size n_samples = len ( digits. images

More information

Computer Vision: Homework 5 Optical Character Recognition using Neural Networks

Computer Vision: Homework 5 Optical Character Recognition using Neural Networks 16-720 Computer Vision: Homework 5 Optical Character Recognition using Neural Networks Instructors: Deva Ramanan TAs: Achal Dave*, Sashank Jujjavarapu, Siddarth Malreddy, Brian Pugh Originally developed

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Tutorial Deep Learning : Unsupervised Feature Learning

Tutorial Deep Learning : Unsupervised Feature Learning Tutorial Deep Learning : Unsupervised Feature Learning Joana Frontera-Pons 4th September 2017 - Workshop Dictionary Learning on Manifolds OUTLINE Introduction Representation Learning TensorFlow Examples

More information

Weiguang Guan Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz

Weiguang Guan Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz Weiguang Guan guanw@sharcnet.ca Code & data: guanw.sharcnet.ca/ss2017-deeplearning.tar.gz Outline Part I: Introduction Overview of machine learning and AI Introduction to neural network and deep learning

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

Lecture note 7: Playing with convolutions in TensorFlow

Lecture note 7: Playing with convolutions in TensorFlow Lecture note 7: Playing with convolutions in TensorFlow CS 20SI: TensorFlow for Deep Learning Research (cs20si.stanford.edu) Prepared by Chip Huyen ( huyenn@stanford.edu ) This lecture note is an unfinished

More information

Opening the Black Box Data Driven Visualizaion of Neural N

Opening the Black Box Data Driven Visualizaion of Neural N Opening the Black Box Data Driven Visualizaion of Neural Networks September 20, 2006 Aritificial Neural Networks Limitations of ANNs Use of Visualization (ANNs) mimic the processes found in biological

More information

Derek Bridge School of Computer Science and Information Technology University College Cork

Derek Bridge School of Computer Science and Information Technology University College Cork CS4619: Artificial Intelligence II Overfitting and Underfitting Derek Bridge School of Computer Science and Information Technology University College Cork Initialization In [1]: %load_ext autoreload %autoreload

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Big Orange Bramble. August 09, 2016

Big Orange Bramble. August 09, 2016 Big Orange Bramble August 09, 2016 Overview HPL SPH PiBrot Numeric Integration Parallel Pi Monte Carlo FDS DANNA HPL High Performance Linpack is a benchmark for clusters Created here at the University

More information

Conditional Generative Adversarial Networks for Particle Physics

Conditional Generative Adversarial Networks for Particle Physics Conditional Generative Adversarial Networks for Particle Physics Capstone 2016 Charles Guthrie ( cdg356@nyu.edu ) Israel Malkin ( im965@nyu.edu ) Alex Pine ( akp258@nyu.edu ) Advisor: Kyle Cranmer ( kyle.cranmer@nyu.edu

More information

Notes on Multilayer, Feedforward Neural Networks

Notes on Multilayer, Feedforward Neural Networks Notes on Multilayer, Feedforward Neural Networks CS425/528: Machine Learning Fall 2012 Prepared by: Lynne E. Parker [Material in these notes was gleaned from various sources, including E. Alpaydin s book

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

Handwritten Hindi Numerals Recognition System

Handwritten Hindi Numerals Recognition System CS365 Project Report Handwritten Hindi Numerals Recognition System Submitted by: Akarshan Sarkar Kritika Singh Project Mentor: Prof. Amitabha Mukerjee 1 Abstract In this project, we consider the problem

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

PLT: Inception (cuz there are so many layers)

PLT: Inception (cuz there are so many layers) PLT: Inception (cuz there are so many layers) By: Andrew Aday, (aza2112) Amol Kapoor (ajk2227), Jonathan Zhang (jz2814) Proposal Abstract Overview of domain Purpose Language Outline Types Operators Syntax

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning Ian Goodfellow

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning  Ian Goodfellow Practical Methodology Lecture slides for Chapter 11 of Deep Learning www.deeplearningbook.org Ian Goodfellow 2016-09-26 What drives success in ML? Arcane knowledge of dozens of obscure algorithms? Mountains

More information

Derek Bridge School of Computer Science and Information Technology University College Cork

Derek Bridge School of Computer Science and Information Technology University College Cork CS468: Artificial Intelligence I Ordinary Least Squares Regression Derek Bridge School of Computer Science and Information Technology University College Cork Initialization In [4]: %load_ext autoreload

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

TensorFlowOnSpark Scalable TensorFlow Learning on Spark Clusters Lee Yang, Andrew Feng Yahoo Big Data ML Platform Team

TensorFlowOnSpark Scalable TensorFlow Learning on Spark Clusters Lee Yang, Andrew Feng Yahoo Big Data ML Platform Team TensorFlowOnSpark Scalable TensorFlow Learning on Spark Clusters Lee Yang, Andrew Feng Yahoo Big Data ML Platform Team What is TensorFlowOnSpark Why TensorFlowOnSpark at Yahoo? Major contributor to open-source

More information

Deep Nets with. Keras

Deep Nets with. Keras docs https://keras.io Deep Nets with Keras κέρας http://vem.quantumunlimited.org/the-gates-of-horn/ Professor Marie Roch These slides only cover enough to get started with feed-forward networks and do

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions

Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions ENEE 739Q SPRING 2002 COURSE ASSIGNMENT 2 REPORT 1 Classification and Regression using Linear Networks, Multilayer Perceptrons and Radial Basis Functions Vikas Chandrakant Raykar Abstract The aim of the

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University

Multi-layer Perceptron Forward Pass Backpropagation. Lecture 11: Aykut Erdem November 2016 Hacettepe University Multi-layer Perceptron Forward Pass Backpropagation Lecture 11: Aykut Erdem November 2016 Hacettepe University Administrative Assignment 2 due Nov. 10, 2016! Midterm exam on Monday, Nov. 14, 2016 You are

More information

First Contact with TensorFlow Part 1: Basics

First Contact with TensorFlow Part 1: Basics First Contact with TensorFlow Part 1: Basics PRACE Advanced Training Centre Course: Big Data Analytics Autonomic Systems and ebusiness Platforms Computer Science Department Jordi Torres 10/02/2016 1 Complete

More information

Introduction to TensorFlow. Mor Geva, Apr 2018

Introduction to TensorFlow. Mor Geva, Apr 2018 Introduction to TensorFlow Mor Geva, Apr 2018 Introduction to TensorFlow Mor Geva, Apr 2018 Plan Why TensorFlow Basic Code Structure Example: Learning Word Embeddings with Skip-gram Variable and Name Scopes

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Reconfigurable Computing

Reconfigurable Computing Reconfigurable Computing Long Short-Term Memory Philip Leong (Slides Rui Tang) School of Electrical and Information Engineering http://www.ee.usyd.edu.au/people/philip.leong Permission to use figures have

More information

[February 1, 2017] Neural Networks for Dummies Rolf van Gelder, Eindhoven, NL

[February 1, 2017] Neural Networks for Dummies Rolf van Gelder, Eindhoven, NL [February 1, 2017] Neural Networks for Dummies 2017 Rolf van Gelder, Eindhoven, NL Contents Introduction... 2 How does it work?... 4 Training a Network... 4 Testing / Using a Network... 4 The Test Case:

More information

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Krishna Kumar Singh and Yong Jae Lee University of California, Davis ---- Paper Presentation Yixian

More information

An Introduction to NNs using Keras

An Introduction to NNs using Keras An Introduction to NNs using Keras Michela Paganini michela.paganini@cern.ch Yale University 1 Keras Modular, powerful and intuitive Deep Learning python library built on Theano and TensorFlow Minimalist,

More information

CS5242 : Assignment 1 Sharing session

CS5242 : Assignment 1 Sharing session CS5242 : Assignment 1 Sharing session JOML : A minimalist neural network library written in numpy Julien Jerphanion September, 11th 2018 1 Overview of the presentation Approach to the problem : from some

More information

Convolution Neural Networks for Chinese Handwriting Recognition

Convolution Neural Networks for Chinese Handwriting Recognition Convolution Neural Networks for Chinese Handwriting Recognition Xu Chen Stanford University 450 Serra Mall, Stanford, CA 94305 xchen91@stanford.edu Abstract Convolutional neural networks have been proven

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. PyTorch

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. PyTorch i About the Tutorial is an open source machine learning library for Python and is completely based on Torch. It is primarily used for applications such as natural language processing. is developed by Facebook's

More information

Homework 11 - Debugging

Homework 11 - Debugging 1 of 7 5/28/2018, 1:21 PM Homework 11 - Debugging Instructions: Fix the errors in the following problems. Some of the problems are with the code syntax, causing an error message. Other errors are logical

More information

Handwritten Devanagari Character Recognition Model Using Neural Network

Handwritten Devanagari Character Recognition Model Using Neural Network Handwritten Devanagari Character Recognition Model Using Neural Network Gaurav Jaiswal M.Sc. (Computer Science) Department of Computer Science Banaras Hindu University, Varanasi. India gauravjais88@gmail.com

More information

SGD: Stochastic Gradient Descent

SGD: Stochastic Gradient Descent Improving SGD Hantao Zhang Deep Learning with Python Reading: http://neuralnetworksanddeeplearning.com/index.html Chapter 2 SGD: Stochastic Gradient Descent Main Idea: Given a set of input/output examples

More information

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning

CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning CS231A Course Project Final Report Sign Language Recognition with Unsupervised Feature Learning Justin Chen Stanford University justinkchen@stanford.edu Abstract This paper focuses on experimenting with

More information

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs Table of Contents What Really is a Hidden Unit? Visualizing Feed-Forward NNs Visualizing Convolutional NNs Visualizing Recurrent NNs Visualizing Attention Visualizing High Dimensional Data What do visualizations

More information

Cambridge Interview Technical Talk

Cambridge Interview Technical Talk Cambridge Interview Technical Talk February 2, 2010 Table of contents Causal Learning 1 Causal Learning Conclusion 2 3 Motivation Recursive Segmentation Learning Causal Learning Conclusion Causal learning

More information

Deep Learning With Noise

Deep Learning With Noise Deep Learning With Noise Yixin Luo Computer Science Department Carnegie Mellon University yixinluo@cs.cmu.edu Fan Yang Department of Mathematical Sciences Carnegie Mellon University fanyang1@andrew.cmu.edu

More information

Handwritten Mathematical Expression Recognition

Handwritten Mathematical Expression Recognition Handwritten Mathematical Expression Recognition Group 27 - Abhyãsa Abhishek Gunda abhigun@iitk.ac.in Krishna Karthik jkrishna@iitk.ac.in Harsha Nalluru harshan@iitk.ac.in Aravind Reddy arareddy@iitk.ac.in

More information

Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks to recognize

More information