NAG Fortran Library Routine Document D05BYF.1

Size: px
Start display at page:

Download "NAG Fortran Library Routine Document D05BYF.1"

Transcription

1 NAG Fortran Library Routine Document Note: before using tis routine, lease read te Users Note for your imlementation to ceck te interretation of bold italicised terms and oter imlementation-deendent details. 1 Purose comutes te fractional quadrature weigts associated wit te Backward Differentiation Formulae (BDF) of orders 4, 5 and 6. Tese weigts can ten be used in te solution of weakly singular equations of Abel tye. 2 Secification SUBROUTINE (IORDER, IQ, LENFW, WT, SW, LDSW, WORK, LWK, IFAIL) INTEGER IORDER, IQ, LENFW, LDSW, LWK, IFAIL real WT(LENFW), SW(LDSW,2IORDER-1), WORK(LWK) 3 Descrition comutes te weigts W n;j and! i for a family of quadrature rules related to a BDF metod for aroximating te integral: Z 1 t ðsþ ffi ds 2 2 X W n;j ðjþþ X n! n j ðjþ; 0 t T; ð1þ t s 0 j¼2 1 wit t ¼ n ðn 0Þ, for some given. In (1), is te order of te BDF metod used and W n;j,! i are te fractional starting and te fractional convolution weigts resectively. Te algoritm for te generation of! i is based on Newton s iteration. Fast Fourier transform (FFT) tecniques are used for comuting tese weigts and subsequently W n;j (see Baker and Deraksan (1987) and Henrici (1979) for ractical details and Lubic (1986) for teoretical details). Some secial functions can be reresented as te fractional integrals of simler functions and fractional quadratures can be emloyed for teir comutation (see Lubic (1986)). A descrition of ow tese weigts can be used in te solution of weakly singular equations of Abel tye is given in Section 8. 4 References Baker C T H and Deraksan M S (1987) Comutational aroximations to some ower series Aroximation Teory (ed L Collatz, G Meinardus and G Nürnberger) Henrici P (1979) Fast Fourier metods in comutational comlex analysis SIAM Rev Lubic C (1986) Discretized fractional calculus SIAM J. Mat. Anal Parameters 1: IORDER INTEGER Inut On entry: te order of te BDF metod to be used,. Constraint: 4 IORDER 6. 2: IQ INTEGER Inut On entry: determines te number of weigts to be comuted. fractional convolution weigts are comuted. Constraint: IQ 0. By setting IQ to a value, 2 IQþ1.1

2 NAG Fortran Library Manual 3: LENFW INTEGER Inut On entry: te lengt of te array WT. Constraint: LENFW 2 IQþ2. 4: WT(LENFW) real array Outut On exit: te first 2 IQþ1 elements of WT contains te fractional convolution weigts! i, for i ¼ 0; 1;...; 2 IQþ1 1. Te remainder of te array is used as worksace. 5: SW(LDSW,2IORDER-1) real array Outut On exit: SWðn; j þ 1Þ contains te fractional starting weigts W n 1;j, for n ¼ 1; 2;..., ð2 IQþ1 þ 2 IORDER 1Þ; j ¼ 0; 1;...; 2 IORDER 2. 6: LDSW INTEGER Inut On entry: te first dimension of te array SW as declared in te (sub)rogram from wic is called. Constraint: LDSW 2 IQþ1 þ 2 IORDER 1. 7: WORK(LWK) real array Worksace 8: LWK INTEGER Inut On entry: te dimension of te array WORK as declared in te (sub)rogram from wic is called. Constraint: LWK 2 IQþ3. 9: IFAIL INTEGER Inut/Outut On entry: IFAIL must be set to 0, 1 or 1. Users wo are unfamiliar wit tis arameter sould refer to Cater P01 for details. On exit: IFAIL ¼ 0 unless te routine detects an error (see Section 6). For environments were it migt be inaroriate to alt rogram execution wen an error is detected, te value 1 or 1 is recommended. If te outut of error messages is undesirable, ten te value 1 is recommended. Oterwise, for users not familiar wit tis arameter te recommended value is 0. Wen te value 1 or 1 is used it is essential to test te value of IFAIL on exit. 6 Error Indicators and Warnings If on entry IFAIL ¼ 0or 1, exlanatory error messages are outut on te current error message unit (as defined by X04AAF). Errors or warnings detected by te routine: IFAIL ¼ 1 On entry, IORDER < 4 or IORDER > 6, or IQ < 0, or LENFW < 2 IQþ2, or LDSW < 2 IQþ1 þ 2 IORDER 1, or LWK < 2 IQþ3. 7 Accuracy None..2

3 8 Furter Comments Fractional quadrature weigts can be used for solving weakly singular integral equations of Abel tye. In tis section, we roose te following algoritm wic users may find useful in solving a linear weakly singular integral equation of te form yðtþ ¼fðtÞþ 1 Z t Kðt; sþyðsþ ffi ds; 0 t T; ð2þ 0 t s using. In (2), Kðt; sþ and fðtþ are given and te solution yðtþ is sougt on a uniform mes of size suc tat T ¼ N. Discretization of (2) yields y n ¼ fðnþþ 2 2 X W n;j Kðn; jþy j þ X n! n j Kðn; jþy j ; ð3þ j¼2 1 were y n yðnþ. We roose te following algoritm for comuting y n from (3) after a call to : (a) (b) (c) Set N ¼ 2 IQþ1 þ 2 IORDER 2 and ¼ T=N. Equation (3) requires 2 IORDER 2 starting values, y j, for j ¼ 1; 2;...; 2 IORDER 2, wit y 0 ¼ fð0þ. Tese starting values can be comuted by solving te system y n ¼ fðnþþ X 2IORDER 2 Comute te inomogeneous terms SWðn þ 1;jþ 1ÞKðn; jþy j ; n ¼ 1; 2;...; 2 IORDER 2: (d) n ¼ fðnþþ X 2IORDER 2 SWðn þ 1;jþ 1ÞKðn; jþy j ; n ¼ 2 IORDER 1; 2 IORDER;...;N: Start te iteration for n ¼ 2 IORDER 1; 2 IORDER;...;N to comute y n from: ð1 WTð1ÞKðn; nþþyn ¼ n þ X n 1 WTðn j þ 1ÞKðn; jþy j : j¼2iorder 1 Note tat for nonlinear weakly singular equations, te solution of a nonlinear algebraic system is required at ste (b) and a single nonlinear equation at ste (d). 9 Examle Te following examle generates te first 16 fractional convolution and 23 fractional starting weigts generated by te fourt-order BDF metod. 9.1 Program Text Note: te listing of te examle rogram resented below uses bold italicised terms to denote recision-deendent details. Please read te Users Note for your imlementation to ceck te interretation of tese terms. As exlained in te Essential Introduction to tis manual, te results roduced may not be identical for all imlementations. Examle Program Text Mark 16 Release. NAG Coyrigt Parameters.. INTEGER NOUT PARAMETER (NOUT=6) INTEGER IORDER, IQ, ITPMT, ITIQ, LENFW, LDSW, LWK PARAMETER (IORDER=4,IQ=3,ITPMT=2IORDER-1,ITIQ=2(IQ+1), + LENFW=2ITIQ,LDSW=ITIQ+ITPMT,LWK=4ITIQ).. Local Scalars.. INTEGER I, IFAIL, J.. Local Arrays.. real SW(LDSW,ITPMT), WORK(LWK), WT(LENFW).. External Subroutines.. EXTERNAL.3

4 NAG Fortran Library Manual.. Executable Statements.. WRITE (NOUT,) Examle Program Results WRITE (NOUT,) IFAIL = 0 CALL (IORDER,IQ,LENFW,WT,SW,LDSW,WORK,LWK,IFAIL) WRITE (NOUT,) Fractional convolution weigts WRITE (NOUT,) DO 20 I = 1, ITIQ WRITE (NOUT,99999) I - 1, WT(I) 20 CONTINUE WRITE (NOUT,) WRITE (NOUT,) Fractional starting weigts WRITE (NOUT,) DO 40 I = 1, LDSW WRITE (NOUT,99999) I - 1, (SW(I,J),J=1,ITPMT) 40 CONTINUE STOP FORMAT (1X,I5,7F9.4) END 9.2 Program Data None. 9.3 Program Results Examle Program Results Fractional convolution weigts Fractional starting weigts

5 (last)

NAG Fortran Library Routine Document G05LZF.1

NAG Fortran Library Routine Document G05LZF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document G05RAF.1

NAG Fortran Library Routine Document G05RAF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document G01ADF.1

NAG Fortran Library Routine Document G01ADF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document C05PBF/C05PBA

NAG Library Routine Document C05PBF/C05PBA NAG Library Routine Document /C05PBA Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G02BUF.1

NAG Library Routine Document G02BUF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document C05RBF.1

NAG Library Routine Document C05RBF.1 C05 Roots of One or More Transcendental Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Fortran Library Routine Document G01AJF.1

NAG Fortran Library Routine Document G01AJF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document C05QBF.1

NAG Library Routine Document C05QBF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document D02MVF.1

NAG Fortran Library Routine Document D02MVF.1 D02 Ordinary Differential Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Library Routine Document F04MCF.1

NAG Library Routine Document F04MCF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document C05PBF.1

NAG Fortran Library Routine Document C05PBF.1 C05 Roots of One or More Transcendental Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of

More information

NAG Library Routine Document D02MWF.1

NAG Library Routine Document D02MWF.1 D02 Ordinary Differential Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms

More information

NAG Fortran Library Routine Document F01CTF.1

NAG Fortran Library Routine Document F01CTF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document E04GYF.1

NAG Library Routine Document E04GYF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F04JAF.1

NAG Fortran Library Routine Document F04JAF.1 F4 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Fortran Library Routine Document F01CWF.1

NAG Fortran Library Routine Document F01CWF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document G08AJF.1

NAG Fortran Library Routine Document G08AJF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F04BGF.1

NAG Fortran Library Routine Document F04BGF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F11ZPF.1

NAG Fortran Library Routine Document F11ZPF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G02BGF.1

NAG Library Routine Document G02BGF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document D04AAF.1

NAG Library Routine Document D04AAF.1 D04 Numerical Differentiation NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

NAG Library Routine Document G01ABF.1

NAG Library Routine Document G01ABF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F04JGF.1

NAG Fortran Library Routine Document F04JGF.1 F4 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Library Routine Document D02HBF.1

NAG Library Routine Document D02HBF.1 D02 Ordinary Differential Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms

More information

NAG Library Routine Document F04JAF.1

NAG Library Routine Document F04JAF.1 F4 Simultaneous Linear Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and

More information

NAG Fortran Library Routine Document F04CAF.1

NAG Fortran Library Routine Document F04CAF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Fortran Library Routine Document G02HKF.1

NAG Fortran Library Routine Document G02HKF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document G01ARF.1

NAG Fortran Library Routine Document G01ARF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document E02BCF.1

NAG Fortran Library Routine Document E02BCF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G02CFF.1

NAG Library Routine Document G02CFF.1 G2 orrelation and Regression Analysis NAG Library Routine Document Note before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms

More information

NAG Fortran Library Routine Document D02KAF.1

NAG Fortran Library Routine Document D02KAF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G12ABF.1

NAG Library Routine Document G12ABF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G13CDF.1

NAG Library Routine Document G13CDF.1 G13 Time Series Analysis NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

NAG Library Routine Document G05PGF.1

NAG Library Routine Document G05PGF.1 G05 Random Number Generators NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

NAG Library Routine Document G05RGF.1

NAG Library Routine Document G05RGF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G05REF.1

NAG Library Routine Document G05REF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document E02BCF.1

NAG Library Routine Document E02BCF.1 E02 Curve and Surface Fitting NAG Library Routine Document Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and

More information

NAG Library Routine Document G05PZF.1

NAG Library Routine Document G05PZF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document E01AEF.1

NAG Fortran Library Routine Document E01AEF.1 E01 Interpolation NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

NAG Library Routine Document D01BAF.1

NAG Library Routine Document D01BAF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G01AJF.1

NAG Library Routine Document G01AJF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document X04CBF.1

NAG Fortran Library Routine Document X04CBF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document F04BEF.1

NAG Library Routine Document F04BEF.1 F04 Simultaneous Linear Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and

More information

NAG Fortran Library Routine Document F04BJF.1

NAG Fortran Library Routine Document F04BJF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Fortran Library Routine Document G08AKF.1

NAG Fortran Library Routine Document G08AKF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F04CJF.1

NAG Fortran Library Routine Document F04CJF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result RT. Complex Fractions Wen working wit algebraic expressions, sometimes we come across needing to simplify expressions like tese: xx 9 xx +, xx + xx + xx, yy xx + xx + +, aa Simplifying Complex Fractions

More information

NAG Fortran Library Routine Document D02PZF.1

NAG Fortran Library Routine Document D02PZF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G05PZF.1

NAG Library Routine Document G05PZF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document H03ADF.1

NAG Library Routine Document H03ADF.1 H Operations Research NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document F04DHF.1

NAG Fortran Library Routine Document F04DHF.1 F04 Simultaneous Linear Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Library Routine Document G02BXF.1

NAG Library Routine Document G02BXF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document G01NBF.1

NAG Fortran Library Routine Document G01NBF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Fortran Library Routine Document D01AJF.1

NAG Fortran Library Routine Document D01AJF.1 D01 Quadrature NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Numerical Derivatives

Numerical Derivatives Lab 15 Numerical Derivatives Lab Objective: Understand and implement finite difference approximations of te derivative in single and multiple dimensions. Evaluate te accuracy of tese approximations. Ten

More information

D01GCF NAG Fortran Library Routine Document

D01GCF NAG Fortran Library Routine Document D1 Quadrature D1GCF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

NAG Library Routine Document D02UCF.1

NAG Library Routine Document D02UCF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

1.4 RATIONAL EXPRESSIONS

1.4 RATIONAL EXPRESSIONS 6 CHAPTER Fundamentals.4 RATIONAL EXPRESSIONS Te Domain of an Algebraic Epression Simplifying Rational Epressions Multiplying and Dividing Rational Epressions Adding and Subtracting Rational Epressions

More information

NAG Library Routine Document D02UAF.1

NAG Library Routine Document D02UAF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

2-D Fir Filter Design And Its Applications In Removing Impulse Noise In Digital Image

2-D Fir Filter Design And Its Applications In Removing Impulse Noise In Digital Image -D Fir Filter Design And Its Alications In Removing Imulse Noise In Digital Image Nguyen Thi Huyen Linh 1, Luong Ngoc Minh, Tran Dinh Dung 3 1 Faculty of Electronic and Electrical Engineering, Hung Yen

More information

A new way to build Oblique Decision Trees using Linear Programming

A new way to build Oblique Decision Trees using Linear Programming A new way to build Oblique Decision Trees using Linear Programming Guy Micel, Jean Luc Lambert Bruno Cremilleux & Micel Henry-Amar GREYC, CNRS UPRESA 6072 - GRECAN, CNRS UPRES 772 Eslanade de la aix -

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

NAG Library Routine Document G02DAF.1

NAG Library Routine Document G02DAF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document E04GBF.1

NAG Library Routine Document E04GBF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Computer Vision and Image Understanding

Computer Vision and Image Understanding Comuter Vision and Image Understanding 113 (009) 73 90 Contents lists available at ScienceDirect Comuter Vision and Image Understanding journal omeage: wwwelseviercom/locate/cviu A motion observable reresentation

More information

D01ARF NAG Fortran Library Routine Document

D01ARF NAG Fortran Library Routine Document D01ARF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

C05 Roots of One or More Transcendental Equations. C05PCF NAG Fortran Library Routine Document

C05 Roots of One or More Transcendental Equations. C05PCF NAG Fortran Library Routine Document NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

NAG Library Routine Document G02DDF.1

NAG Library Routine Document G02DDF.1 G02 Correlation and Regression Analysis NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms

More information

MAPI Computer Vision

MAPI Computer Vision MAPI Computer Vision Multiple View Geometry In tis module we intend to present several tecniques in te domain of te 3D vision Manuel Joao University of Mino Dep Industrial Electronics - Applications -

More information

NAG Library Routine Document G13DPF.1

NAG Library Routine Document G13DPF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Introduction to Computer Graphics 5. Clipping

Introduction to Computer Graphics 5. Clipping Introduction to Computer Grapics 5. Clipping I-Cen Lin, Assistant Professor National Ciao Tung Univ., Taiwan Textbook: E.Angel, Interactive Computer Grapics, 5 t Ed., Addison Wesley Ref:Hearn and Baker,

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

NAG Library Routine Document D02ZAF.1

NAG Library Routine Document D02ZAF.1 D02 Ordinary Differential Equations NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

Mean Shifting Gradient Vector Flow: An Improved External Force Field for Active Surfaces in Widefield Microscopy.

Mean Shifting Gradient Vector Flow: An Improved External Force Field for Active Surfaces in Widefield Microscopy. Mean Sifting Gradient Vector Flow: An Improved External Force Field for Active Surfaces in Widefield Microscopy. Margret Keuper Cair of Pattern Recognition and Image Processing Computer Science Department

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

NAG Library Routine Document G13DMF.1

NAG Library Routine Document G13DMF.1 G13 Time Series Analysis NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

F02WUF NAG Fortran Library Routine Document

F02WUF NAG Fortran Library Routine Document F02 Eigenvalues and Eigenvectors F02WUF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

NAG Fortran Library Routine Document F07AAF (DGESV).1

NAG Fortran Library Routine Document F07AAF (DGESV).1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document G02GPF.1

NAG Library Routine Document G02GPF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

D01FCF NAG Fortran Library Routine Document

D01FCF NAG Fortran Library Routine Document D01FCF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

NAG Library Routine Document F07KDF (DPSTRF)

NAG Library Routine Document F07KDF (DPSTRF) NAG Library Routine Document (DPSTRF) Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Notes: Dimensional Analysis / Conversions

Notes: Dimensional Analysis / Conversions Wat is a unit system? A unit system is a metod of taking a measurement. Simple as tat. We ave units for distance, time, temperature, pressure, energy, mass, and many more. Wy is it important to ave a standard?

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

D02KAF NAG Fortran Library Routine Document

D02KAF NAG Fortran Library Routine Document D02KAF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

NAG Library Routine Document E02DFF.1

NAG Library Routine Document E02DFF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

2.5 Evaluating Limits Algebraically

2.5 Evaluating Limits Algebraically SECTION.5 Evaluating Limits Algebraically 3.5 Evaluating Limits Algebraically Preinary Questions. Wic of te following is indeterminate at x? x C x ; x x C ; x x C 3 ; x C x C 3 At x, x isofteform 0 xc3

More information

E02ZAF NAG Fortran Library Routine Document

E02ZAF NAG Fortran Library Routine Document E02ZAF NAG Fortran Library Routine Document Note Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Micael A. Bekos 1, Micael Kaufmann 2, Katerina Potika 1 Antonios Symvonis 1 1 National Tecnical University of Atens, Scool of Applied Matematical & Pysical Sciences,

More information

Computers & Fluids 80 (2013) Contents lists available at SciVerse ScienceDirect. Computers & Fluids

Computers & Fluids 80 (2013) Contents lists available at SciVerse ScienceDirect. Computers & Fluids Comuters & Fluids 80 (2013) 423 428 Contents lists available at SciVerse ScienceDirect Comuters & Fluids ournal omeage: www.elsevier.com/locate/comfluid Parallel comutations on GPU in 3D using te vortex

More information