HW2 solutions You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = b; sbn a, temp,.+1 # a = a (b) = a + b;

 Terence Griffith
 11 months ago
 Views:
Transcription
1 HW2 solutions 3.10 Pseuodinstructions What is accomplished Minimum sequence of Mips Move $t5, $t3 $t5=$t3 Add $t5, $t3, $0 Clear $t5 $t5=0 Xor $t5, $t5, $t5 Li $t5, small $t5=small Addi $t5, $0, small Li $t5, big $t5=big lui $t5, big[31:16] Ori $t5, $t5, big[15:0] Lw $t5, big($t3) $t5=mem[$t3+big] Lui $t5, big[31:26] Ori $t5, $t0, big[15:0] Add $t3, $t3, $t5 Lw $t5, 0($t3) Addi $t5, $t3, big $t5=$t3+big Lui $t5, big[31:16] Ori $t5, big[15:0] Addi $t5, $t5, $t3 Beq $t5, small, L If $t5=small, branch to L Addi $at, $0, small Beq $t5, $at, L Beq $t5, big, L If $t5=big, branch to L Lui $at, big[31:16] Ori $at, big[15:0] Beq $at, $t5, L Ble $t5, $t3, L If $t5<=$t3, branch to L Slt $at, $t3, $t5 Beq $at, $0, L Bge $t5, $t3, L If $t5>=$t3, branch to L Slt $at, $t5, $3 Beq $at, $0, L Bgt $t5, $t3, L If $t5>$t3, branch to L Slt $at, $t3, $t5 Bne $at, $0 L 3.25 You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = b; sbn a, temp,.+1 # a = a (b) = a + b; 3.30 sbn neg_a, neg_a,.+1 # neg_a = 0; sbn neg_a, a,.+1 # neg_a = a; sbn c, c,.+1 # c = 0; loop: sbn b, one,.+1 # do { b = b 1; sbn c, neg_a,.+1 # c = c + a; sbn temp, temp,.+1 # temp = 0; sbn temp, b, loop # } while (b > 0);
2 Note (1) This solution does not work if b = 0, because the problem description said to assume that a and b are greater than 0. Perfectionist students are likely to write solutions that do work for b = 0 though, so their answers would be an instruction or too long add $t2, $t3, $t4 slt $t2, $t2, $t You need only alter the full adder for the MSB such that the Set output is the value of the full adder output XORed with the Overflow 4.24 (a * 2^32 + b) * (c * 2^32 + d) = (a * c * 2^64 + a * d * 2^32 + b * c * 2^32 + b * d multu $t5, $t7 # b * d mflo $t3 # product[31:0] = (b * d)[31:0] mfhi $t2 # product[63:32] = (b * d)[64:32] multu $t4, $t7 # a * d mflo $t8 # $t8 = (a * d)[31:0] mfhi $t1 # product[95:64] = (a * d)[63:32] addu $t2, $t2, $t8 # product[63:32] += (a * d)[31:0] sltu $t8, $t2, $t8 # $t8 = carry of 63:32 in last op
3 addu $t1, $t1, $t8 # product[95:64] += carry sltu $t0, $t1, $t8 # product[127:96] = carry in 95:64 multu $t1, $t2 # b * c mflo $t8 # $t8 = (b * c)[31:0] addu $t2, $t2, $t8 # product[63:32] += (b * c)[31:0] sltu $t8, $t2, $t8` # $t8 = carry of 63:32 in last op addu $t1, $t1, $t8 # product[95:64] += carry mfhi $t8 # $t8 = (b * c)[63:32] addu $t1, $t1, $t8 # product[95:64] += (b * c)[63:32] sltu $t8, $t1, $t8 # $t8 = carry of 95:64 in last op addu $t0, $t0, $t8 # product[127:96] += carry multu $t4, $t6 # a * c mflo $t8 # $t8 = (a * c)[31:0] addu $t1, $t1, $t8 # product[95:64] += (a * c)[31:0] sltu $t8, $t1, $t8 # $t8 = carry of 95:64 in last op addu $t0, $t0, $t8 # product[127:96] += carry mfhi $t8 # $t8 = (a * c)[63:32] addu $t0, $t0, $t8 # product[127:96] += (a * c)[63:32] 4.52 Each CSA has a delay of 2T. The iterative CLAbased multiplier takes: 16 layers * CLA delay = 16 * 7T = 112T The CSA multiplier takes: 6 layers * 2T + CLA delay = 6 * 2T + 7T = 19T
4 4.53 (ai+1 ai ai1) == NOP + NOP = NOP == NOP + multiplicand = multiplicand == 2 * multiplicand + (multiplicand) = multiplicand == 2 * multiplicand + NOP = 2 * multiplicand == (2 * multiplicand) + NOP = (2 * multiplicand) == (2 * multiplicand) + multiplicand = multiplicand == NOP + multiplicand = multiplicand == NOP + NOP = NOP 4.54 See Lecture notes. Basic algorithm is: Take the top 4 bits of the dividend, and subtract off the divisor. Based on the top value of the result, we choose whether the next stage is an add (top bit was 1), or a subtract (top bit was 0). The inverted value of this top bit is also the quotient result. The next stage is simply the lower 3 bits of the subtracted (or added) results, along with the next bit of the dividend. The divisor remains the same.
5 You continue this until you have used up all the bits of the dividend. The remainder is the final sum, unless the top bit is 1, in which case you have to add the divisor to that final sum to fix the remainder. A5.ktext 0x sw $a0, save0 sw $a1, save1 mfc0 $k0, $13 # Move Cause into $k0 mfc0 $k1, $14 # Move EPC into $k1 addiu $v0, $zero, 0x44 slt $v0, $v0, $k0 # Ignore interrupts bgtz $v0, _restore mov $a0, $k0 # Move Cause into $a0 mov $a1, $k1 # EPC into $a1 jal print_excp # Print exception error msg _restore: lw $a0, save0 lw $a1, save1 lw $k0, 4($k1) # $k0 = previous instruction srl $k0, $k0, 26 # $k0 = opcode of prev instr ori $k1, $zero, 2 # opcode of j beq $k0, $k1, _delayslot # ori $k0, $zero, 4 # opcode of beq beq $k0, $k1, _delayslot # and so on for: jr, jal, bne, bltz, bgezal, bczt... _done: mfc0 $k1, $14 # reload EPC into $k1 addiu $k1, $k1, 4 # Do not reexecute fault instr jr $k1 rfe # done in delayslot of jr _delayslot: mfc0 $k1, $14 # reload EPC into $k1 addiu $k0, $k1, 4 # $k0 = EPC  4 addiu $k1, $k1, 4 # $k1 = EPC + 4 jr $k0 # poke at branching instr j _check _check: rfe jr $k1 or $zero,$zero,$zero.kdata Save0:.word 0 save1:.word 0 This problem is hard. The basic idea of this solution is to do everything possible in order not to touch the instruction that caused the exception. We need a way to poke the branching instruction, that is, execute the instruction without executing any instructions around it. This procedure works by calling the branching instruction with jr, but putting a j in the delayslot of the jr, so that we will jump back after executing the branching instruction and not execute its regular delayslot. If it turns out that the branch is not taken (which may happen with a bne or beq), then we jump back to EPC+4. Note: this
6 solution assumes that j in branch delay slots will NOT executed if branch is taken! Other elegant solutions will be highly appreciated B.6 B.10 A B!A!B!(A+B)!A *!B!(A*B)!A +!B a) F = (!x3 &&!x2 && x1) (!x3 && x2 &&!x1) (x3 &&!x2 &&!x1) b) F = (!x3 && x2 && x1) (x3 &&!x2 && x1) (x3 && x2 &&!x1) c) F = (!x3 &&!x2) (!x3 &&!x1) d) F = (x3 &&!x2) (x3 && x1) B.14 Simply use two muxes: B.21
7 B.22 State Assignments: Left (00), Middle a (01), Right (10), Middle b (11) S1 S0 S1 S Solving the KMaps for S1 and S0, you get: S1 = XOR (S1, S0) S0 = NOT (S0) The Outputs are associated with the state (where both Middle a, b output Middle) C.1 This looks just like the PLA on page C20, except that there is now S0 through S9. The logic is the same, it just looks a lot bigger. Each column should also only be connected to one of the state bits.
Chapter loop: lw $v1, 0($a0) addi $v0, $v0, 1 sw $v1, 0($a1) addi $a0, $a0, 1 addi $a1, $a1, 1 bne $v1, $zero, loop
Chapter 3 3.7 loop: lw $v1, 0($a0) addi $v0, $v0, 1 sw $v1, 0($a1) addi $a0, $a0, 1 addi $a1, $a1, 1 bne $v1, $zero, loop Instructions Format OP rs rt Imm lw $v1, 0($a0) I 35 4 3 0 addi $v0, $v0, 1 I 8
More informationMIPS Instruction Reference
Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly
More informationOutline. EEL4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions
Outline EEL4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floatingpoint 3.5 3.6 EEL4713 Ann GordonRoss.1 EEL4713
More informationMIPS Instruction Format
MIPS Instruction Format MIPS uses a 32bit fixedlength instruction format. only three different instruction word formats: There are Register format Opcode Rs Rt Rd Function code 000000 sssss ttttt ddddd
More informationMIPS Reference Guide
MIPS Reference Guide Free at PushingButtons.net 2 Table of Contents I. Data Registers 3 II. Instruction Register Formats 4 III. MIPS Instruction Set 5 IV. MIPS Instruction Set (Extended) 6 V. SPIM Programming
More informationTailoring the 32Bit ALU to MIPS
Tailoring the 32Bit ALU to MIPS MIPS ALU extensions Overflow detection: Carry into MSB XOR Carry out of MSB Branch instructions Shift instructions Slt instruction Immediate instructions ALU performance
More informationSPIM Instruction Set
SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large
More informationCOMP MIPS instructions 2 Feb. 8, f = g + h i;
Register names (save, temporary, zero) From what I have said up to now, you will have the impression that you are free to use any of the 32 registers ($0,..., $31) in any instruction. This is not so, however.
More informationComputer Architecture. Chapter 3: Arithmetic for Computers
182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin
More informationECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate
More informationENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5
ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local
More informationECE232: Hardware Organization and Design. Computer Organization  Previously covered
ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization
More informationECE Exam I February 19 th, :00 pm 4:25pm
ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and
More informationCOMP 303 Computer Architecture Lecture 6
COMP 303 Computer Architecture Lecture 6 MULTIPLY (unsigned) Paper and pencil example (unsigned): Multiplicand 1000 = 8 Multiplier x 1001 = 9 1000 0000 0000 1000 Product 01001000 = 72 n bits x n bits =
More informationThe MIPS R2000 Instruction Set
The MIPS R2000 Instruction Set Arithmetic and Logical Instructions In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer). The immediate forms of the instructions
More informationCS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats
CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation
More informationToday s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats
Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:
More informationICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation
ICS 233 COMPUTER ARCHITECTURE MIPS Processor Design Multicycle Implementation Lecture 23 1 Add immediate unsigned Subtract unsigned And And immediate Or Or immediate Nor Shift left logical Shift right
More informationChapter 3 Arithmetic for Computers
Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation
More informationAssembly Programming
Designing Computer Systems Assembly Programming 08:34:48 PM 23 August 2016 AP1 Scott & Linda Wills Designing Computer Systems Assembly Programming In the early days of computers, assembly programming
More informationHomework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures
Homework 3 Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) 1 CSCI 402: Computer Architectures Arithmetic for Computers (2) Fengguang Song Department
More informationWeek 10: Assembly Programming
Week 10: Assembly Programming Arithmetic instructions Instruction Opcode/Function Syntax Operation add 100000 $d, $s, $t $d = $s + $t addu 100001 $d, $s, $t $d = $s + $t addi 001000 $t, $s, i $t = $s +
More informationCompiling Techniques
Lecture 10: An Introduction to MIPS assembly 18 October 2016 Table of contents 1 Overview 2 3 Assembly program template.data Data segment: constant and variable definitions go here (including statically
More informationECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate
More informationInstruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers
CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers
More informationMips Code Examples Peter Rounce
Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then
More informationMIPS ISA and MIPS Assembly. CS301 Prof. Szajda
MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.52.9 (if you have not already done
More informationMIPS Assembly Programming
COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2
More informationCS 4200/5200 Computer Architecture I
CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational
More informationComputer Architecture Experiment
Computer Architecture Experiment Jiang Xiaohong College of Computer Science & Engineering Zhejiang University Architecture Lab_jxh 1 Topics 0 Basic Knowledge 1 Warm up 2 simple 5stage of pipeline CPU
More informationFast Arithmetic. Philipp Koehn. 19 October 2016
Fast Arithmetic Philipp Koehn 19 October 2016 1 arithmetic Addition (Immediate) 2 Load immediately one number (s0 = 2) li $s0, 2 Add 4 ($s1 = $s0 + 4 = 6) addi $s1, $s0, 4 Subtract 3 ($s2 = $s13 = 3)
More informationSolutions for Chapter 2 Exercises
Solutions for Chapter 2 Exercises 1 Solutions for Chapter 2 Exercises 2.2 By lookup using the table in Figure 2.5 on page 62, 7fff fffa hex = 0111 1111 1111 1111 1111 1111 1111 1010 two = 2,147,483,642
More informationECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of WisconsinMadison. Basics Registers and ALU ops
ECE/CS 552: Instruction Sets Instructor:Mikko H. Lipasti Fall 2010 University of WisconsinMadison Lecture notes partially based on set created by Mark Hill. Instructions (354 Review) Instructions are
More informationForecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer
Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations
More informationCPS311  COMPUTER ORGANIZATION. A bit of history
CPS311  COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer
More informationMIPS PROJECT INSTRUCTION SET and FORMAT
ECE 312: Semester Project MIPS PROJECT INSTRUCTION SET FORMAT This is a description of the required MIPS instruction set, their meanings, syntax, semantics, bit encodings. The syntax given for each instruction
More informationMIPS Instructions: 64bit Core Subset
MIPS Instructions: 64bit Core Subset Spring 2008 General notes: a. R s, R t, and R d specify 64bit general purpose registers b. F s, F t, and F d specify 64bit floating point registers c. C d specifies
More informationReview (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C  Machine Structures
Review (1/2) CS61C  Machine Structures Lecture 11  Starting a Program October 4, 2000 David Patterson http://wwwinst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in
More informationCS 61C: Great Ideas in Computer Architecture. Lecture 11: Datapath. Bernhard Boser & Randy Katz
CS 61C: Great Ideas in Computer Architecture Lecture 11: Datapath Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda MIPS Datapath add instruction register transfer level circuit timing
More informationCS 61c: Great Ideas in Computer Architecture
MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0$s7,$t0$t9, $0
More informationECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate
More informationLecture 14: Recap. Today s topics: Recap for midterm No electronic devices in midterm
Lecture 14: Recap Today s topics: Recap for midterm No electronic devices in midterm 1 Modern Trends Historical contributions to performance: Better processes (faster devices) ~20% Better circuits/pipelines
More informationWe will study the MIPS assembly language as an exemplar of the concept.
MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and
More informationDigital System Design II
Digital System Design II 数字系统设计 II Peng Liu ( 刘鹏 ) Dept. of Info. Sci. & Elec. Engg. Zhejiang University liupeng@zju.edu.cn Lecture 2 MIPS Instruction Set Architecture 2 Textbook reading MIPS ISA 2.12.4
More informationCS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 20140917 August 25: The final ISA showdown: Is ARM, x86, or
More informationUSING A SIMULATOR. QUICK INTRODUCTION From various sources For cs470
USING A SIMULATOR QUICK INTRODUCTION From various sources For cs470 INTRODUCTION MARS INTERFACE SIMULATOR USAGE MIPS ASSEMBLER LANGUAGE PROGRAM EXAMPLE Introduction MARS IDE A simulator for the MIPS processor
More informationPatterson PII. Solutions
Patterson1610874 9780124077263 PII 2 Solutions Chapter 2 Solutions S3 2.1 addi f, h, 5 (note, no subi) add f, f, g 2.2 f = g + h + i 2.3 sub $t0, $s3, $s4 add $t0, $s6, $t0 lw $t1, 16($t0) sw $t1,
More informationEE108B Lecture 3. MIPS Assembly Language II
EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework
More informationMIPS%Assembly% E155%
MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary
More informationAnne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B
Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See P&H Chapter: 2.162.20, 4.14.4,
More informationCS152 Computer Architecture and Engineering. Lecture 1 Introduction & MIPS Review Dave Patterson. wwwinst.eecs.berkeley.
CS152 Computer Architecture and Engineering Lecture 1 Introduction & MIPS Review 20030826 Dave Patterson (www.cs.berkeley.edu/~patterson) wwwinst.eecs.berkeley.edu/~cs152/ CS 152 L01 Introduction &
More informationLecture 6 Decision + Shift + I/O
Lecture 6 Decision + Shift + I/O Instructions so far MIPS C Program add, sub, addi, multi, div lw $t0,12($s0) sw $t0, 12($s0) beq $s0, $s1, L1 bne $s0, $s1, L1 j L1 (unconditional branch) slt reg1,reg2,reg3
More informationCSE Lecture In Class Example Handout
CSE 30321 Lecture 0708 In Class Example Handout Part A: JType Example: If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: e.g. j addr would seemingly
More informationArithmetic. Chapter 3 Computer Organization and Design
Arithmetic Chapter 3 Computer Organization and Design Addition Addition is similar to decimals 0000 0111 + 0000 0101 = 0000 1100 Subtraction (negate) 0000 0111 + 1111 1011 = 0000 0010 Over(under)flow For
More informationChapter 6. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 6 <1>
Chapter 6 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 6 Chapter 6 :: Topics Introduction Assembly Language Machine Language Programming Addressing
More informationCO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14
CO20320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but
More informationControl Unit. Simulation. Result
Control Unit One of the basic modules for a CPU is the control unit. Our task was to design the control unit with the following functions: sw, lw, beq, bne, j, add, sub, and, or, slt, addi. The implementation
More informationCPS 104 Computer Organization and Programming
CPS 104 Computer Organization and Programming Lecture 9: Integer Arithmetic. Robert Wagner CPS104 IMD.1 RW Fall 2000 Overview of Today s Lecture: Integer Multiplication and Division. Read Appendix B CPS104
More informationCHW 362 : Computer Architecture & Organization
CHW 362 : Computer Architecture & Organization Instructors: Dr Ahmed Shalaby Dr Mona Ali http://bu.edu.eg/staff/ahmedshalaby14# http://www.bu.edu.eg/staff/mona.abdelbaset Assignment What is the size of
More informationCS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014
B CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 DUE : March 3, 2014 READ :  Related sections of Chapter 2  Related sections of Chapter 3  Related sections of Appendix A  Related sections
More informationLab 3: Pipelined MIPS Assigned: Wed., 2/13; Due: Fri., 3/1 (Midnight)
CMU 18447 Introduction to Computer Architecture Spring 2013 1/7 Lab 3: Pipelined MIPS Assigned: Wed., 2/13; Due: Fri., 3/1 (Midnight) Instructor: Onur Mutlu TAs: Justin Meza, Yoongu Kim, Jason Lin It
More informationA Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.13
A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.1620, 4.13 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU
More informationGrading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.
Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations
More informationRecitation 5: Recitation 5: MIPS Interrupts and Floating Point
Float Operations We will write a full program to read in two floats, perform an add, subtract, multiply, and divide, printing out each result Let s attempt in C (using blocking IO) Float Operations We
More informationReview of the Machine Cycle
MIPS Branch and Jump Instructions Cptr280 Dr Curtis Nelson Review of the Machine Cycle When a program is executing, its instructions are located in main memory. The address of an instruction is the address
More informationChapter 6 :: Topics. Chapter 6 :: Architecture
Chapter 6 :: Architecture Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Chapter 6 :: Topics Introduction Assembly Language Machine Language Programming Addressing Modes
More informationAdministrivia. Midterm Exam  You get to bring. What you don t need to bring. Conflicts? DSP accomodations? Head TA
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 16 Running a Program (Compiling, Assembling, Linking, Loading) Sr Lecturer SOE Dan Garcia Research shows laptops and tablets in class
More informationMark Redekopp, All rights reserved. EE 352 Unit 4. Assembly and the MARS Simulator Control Flow (Branch Instructions)
EE 352 Unit 4 Assembly and the MARS Simulator Control Flow (Branch Instructions) Directives Pseudoinstructions ASSEMBLERS Assembler Syntax In MARS and most assemblers each line of the assembly program
More informationLECTURE 10. Pipelining: Advanced ILP
LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction
More information8*4 + 4 = 36 each int is 4 bytes
CS 61CL (Clancy) Solutions and grading standards for exam 1 Spring 2009 169 students took the exam. The average score was 43.6; the median was 46. Scores ranged from 1 to 59. There were 89 scores between
More informationReview from last time. CS152 Computer Architecture and Engineering Lecture 6. Verilog (finish) Multiply, Divide, Shift
Review from last time CS152 Computer Architecture and Engineering Lecture 6 Verilog (finish) Multiply, Divide, Shift February 11, 2004 John Kubiatowicz (www.cs.berkeley.edu/~kubitron) lecture slides: http://wwwinst.eecs.berkeley.edu/~cs152/
More informationECE Exam I  Solutions February 19 th, :00 pm 4:25pm
ECE 3056 Exam I  Solutions February 19 th, 2015 3:00 pm 4:25pm 1. (35 pts) Consider the following block of SPIM code. The text segment starts at 0x00400000 and the data segment starts at 0x10010000..data
More informationArithmetic for Computers. Hwansoo Han
Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floatingpoint real numbers Representation
More informationFundamentals of Computer Systems
Fundamentals of Computer Systems The MIPS Instruction Set Martha A. Kim Columbia University Fall 2015 1 / 67 Instruction Set Architectures MIPS The GCD Algorithm MIPS Registers Types of Instructions Computational
More informationLab 4 Report. Single Cycle Design BAOTUNG C. TRAN EEL4713C
Lab 4 Report Single Cycle Design BAOTUNG C. TRAN EEL4713C Added Hardware : Andi and Ori : For this instruction, I had to add a zero extender into my design. Which therefore required me to add a mux that
More informationWelcome to CS250 VLSI Systems Design
Image Courtesy: Intel Welcome to CS250 VLSI Systems Design 9/2/10 Yunsup Lee YUNSUP LEE Email: yunsup@cs.berkeley.edu Please add [CS250] in the subject Will try to get back in a day CS250 Newsgroup Post
More informationComputer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:
Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators
More informationCharacter Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21
2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...
More informationA Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.13
A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.1620, 4.13 Announcements! HW2 available later today HW2 due in one week and a half Work alone
More informationA GeneralPurpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction
page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A GeneralPurpose Computer The von Neumann Model Many architectural approaches
More informationConcocting an Instruction Set
Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.12.7 L03 Instruction Set 1 A GeneralPurpose Computer The von
More informationSMIPS Processor Specification
SMIPS Processor Specification CS250 VLSI Systems Design September 25, 2009 SMIPS is the version of the MIPS instruction set architecture (ISA) we ll be using for the processors we implement in 6.884. SMIPS
More informationHarnessing FPGAs for Computer Architecture Education
Harnessing FPGAs for Computer Architecture Education Mark Holland, James Harris, Scott Hauck Department of Electrical Engineering University of Washington, Seattle, WA 98195, USA mholland@ee.washington.edu,
More informationCSc 256 Final Spring 2011
CSc 256 Final Spring 2011 NAME: Problem1: Convertthedecimalfloatingpointnumber 4.3toa32 bitfloat(inbinary)inieee 754standardrepresentation.Showworkforpartialcredit.10points Hint:IEEE754formatfor32 bitfloatsconsistsofs
More informationProblem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences CS61c Summer 2001 Woojin Yu Midterm Exam This is a closedbook exam. No calculators
More informationCS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Are you P2P sharing fans? Two
More informationEE 109 Unit 8 MIPS Instruction Set
1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system
More informationCOMP2611: Computer Organization MIPS function and recursion
COMP2611 Fall2015 COMP2611: Computer Organization MIPS function and recursion Overview 2 You will learn the following in this lab: how to use MIPS functions in a program; the concept of recursion; how
More informationCS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II 20040223 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia In the US, who is
More informationCPU Design for Computer Integrated Experiment
CPU Design for Computer Integrated Experiment Shan Lu, Guangyao Li, Yijianan Wang CEIE, Tongji University, Shanghai, China Abstract  Considering the necessity and difficulty of designing a CPU for students,
More informationCS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 17 Instruction Representation III 20100301! Hello to Sherif Kandel listening from Egypt!!!Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia
More informationMidterm. CS64 Spring Midterm Exam
Midterm LAST NAME FIRST NAME PERM Number Instructions Please turn off all pagers, cell phones and beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every
More informationCS61C Machine Structures. Lecture 10  MIPS Branch Instructions II. 2/8/2006 John Wawrzynek. (www.cs.berkeley.edu/~johnw)
CS61C Machine Structures Lecture 10  MIPS Branch Instructions II 2/8/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) wwwinst.eecs.berkeley.edu/~cs61c/ CS 61C L10 MIPS Branch II (1) Compiling C if into
More informationCS3350B Computer Architecture
CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,
More informationLearning Outcomes. System Calls. System Calls. The System Call Interface: A Brief Overview. System Calls. The Structure of a Computer System
Learning Outcomes System Calls Interface and Implementation A highlevel understanding of System Call interface Mostly from the user s perspective From textbook (section.6) Understanding of how the applicationkernel
More informationMachine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine
Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction
More informationEEM 486: Computer Architecture. Lecture 2. MIPS Instruction Set Architecture
EEM 486: Computer Architecture Lecture 2 MIPS Instruction Set Architecture EEM 486 C functions main() { int i,j,k,m;... i = mult(j,k);... m = mult(i,i);... } What information must compiler/programmer keep
More informationNumber Systems and Computer Arithmetic
Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction Rformat Iformat... integer data number text
More informationAnnouncements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary
Announcements EE108B Lecture MIPS Assembly Language III Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b PA1 available, due on Thursday 2/8 Work on you own (no groups) Homework
More informationConcocting an Instruction Set
Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction
More information