Memory Allocators. Pradipta De

Size: px
Start display at page:

Download "Memory Allocators. Pradipta De"

Transcription

1 Memory Allocators Pradipta De

2 Today s Topic How does memory allocators work? Challenges and techniques for memory allocation (Physical) Memory allocation techniques in Linux CSE506: Page Frame Management 2

3 Basic facts Physical memory: actual RAM in machine Virtual Memory: address space size, determined by the machine architecture Early days: VM >> PM On 32 bit arch: VM (4GB) < PM in tens of GBs On 64 bit arch: VM >> PM

4 Fragmentation Single process on a system Allocates and deallocates memory in variable chunk sizes Variable sized holes are created in memory region External fragmentation Assume the chunk size (c) is fixed If memory requirement is [c+1], then two chunks are allocated memory wasted [c-1] Internal fragmentation

5 Memory allocators Memory allocator keeps track of used and free memory, and services memory requests Maintains all free blocks in a doubly linked list Types of memory allocators First fit: allocate the first hole that is sufficient Next fit: start search for hole where the last search ended Best fit: allocate the smallest hole Worst fit: allocate the largest hole

6 Buddy System: Example Let us allocate 128 contiguous blocks of memory using Buddy System Initialization Lists of contiguous memory blocks of sizes 4, 8, 16, Search for space First checks for a free block in the 128 list No free block look in 256 list If free block found, then allocate 128 blocks to the request, and put remaining 128 blocks to 128-list If free block NOT found, look in higher block size list, allocating and redistributing the remaining blocks If no block can be allocated an error is reported

7 Buddy System: Technique Allocates memory from fixed-size segment consisting of physically-contiguous pages Memory allocated using power-of-2 allocator Satisfies requests in units sized as power of 2 Request rounded up to next highest power of 2 When smaller allocation needed than what is available, current chunk is split into two buddies of next-lower power of 2 Continue until appropriate sized chunk available

8 Buddy System: Illustration When two 32 KB C L are deallocated, they can be returned to the memory pool as 1one 64 KB B L

9 Buddy System: Problem Let us allocate a request for 175 contiguous memory blocks Picks from a list 256 blocks Unused memory blocks ( ) = 81 Buddy System prevents external fragmentation, but cannot tackle internal fragmentation When allocation requests are for small memory regions, then memory wastage is significant

10 Object Allocators Many data structures in kernel are frequently allocated and deallocated leads to memory fragmentation Solution generate a collection of objects of the correct size and pre-allocate them

11 SLAB Slab is one or more physically contiguous pages Cache consists of one or more slabs Single cache for each unique data structure type Each cache filled with objects instantiations of the data structure When cache created, filled with objects marked as free When structures stored, objects marked as used If slab is full of used objects, next object allocated from empty slab If no empty slabs, new slab allocated Benefits include no (internal) fragmentation, memory requests are serviced quickly

12 SLAB: Illustration

13 SLAB allocator organization Cache_chain: linked list of slab caches (useful for best-fit algo) kmem_cache: defines a pool of objects of a given size Slabs_full: all objects are used Slabs_empty: all objects are free Slabs_partial: consists of free and used items

14 SLAB Allocator example Request to allocate 1.7 KB of memory Look for an free object in slabs_partial If none exist, then assign from slabs_free If no empty slab, then request for cntiguous memory blocks, and assign to slab_empty Service memory request from slab_empty

15 Recap The virtual address space of a process is divided into two parts 0x to PAGE_OFFSET-1 can be addressed in either user or kernel mode PAGE_OFFSET to 0xffffffff (4GB-1) can be addressed only in kernel mode PAGE_OFFSET is typically 0xc (= 3GB)

16 32-bit machines

17 Linux Kernel Memory Allocators Manages the available page frames Typically 4 KB page frames Need to handle requests for contiguous page frames

18 Zoned Page Frame Allocator Due to hardware peculiarities, page frames are not uniformly equivalent Zone_DMA: first 16 MB to direct map devices ( < 16 MB) Zone_Normal: between 16 MB to 896 MB : for kernel usage Zone_HighMem: above 896 MB

19 Linux Object Allocators Linux slabs are initialized when the kernel boots Allocates slabs for different frequently used data types: process descriptor, inodes, Kmalloc function uses slab allocator If kmalloc called with unknown slab size, function to create new slab size

20 Check: cat /proc/slabinfo

21 SLUB and SLOB Linux default memory allocator is SLUB SLUB: The unqueued slab allocator v6 Better performance and scalability by reorganizing data structures (reduced housekeeping overhead) SLOB: Simple list of Blocks On low memory (embedded) devices Create simplified slob cache (low, medium, high) Abandon cache/slob/object hierarchy Not specific to data structures

22 Putting It Together Summary of memory allocation techniques Hierarchy of calls: Kernel code object allocator page allocator physical page frame Page allocator Buddy System Object allocator (all provides same API) SLAB allocator: traditional allocator SLOB allocator: for embedded system SLUB allocator: default, for large system CSE506: Page Frame Management 22

Operating Systems. 11. Memory Management Part 3 Kernel Memory Allocation. Paul Krzyzanowski Rutgers University Spring 2015

Operating Systems. 11. Memory Management Part 3 Kernel Memory Allocation. Paul Krzyzanowski Rutgers University Spring 2015 Operating Systems 11. Memory Management Part 3 Kernel Memory Allocation Paul Krzyzanowski Rutgers University Spring 2015 1 Kernel memory The kernel also needs memory User code calls malloc kernel functions

More information

Kernel Memory Management

Kernel Memory Management How does the kernel allocate and manage its own memory? Department of Computer Science UofC CPSC 457 October 24, 2014 Agenda Midterm Answers (5 minutes) Discussion of brk() system call. (20 minutes) (25

More information

The Art and Science of Memory Allocation

The Art and Science of Memory Allocation Logical Diagram The Art and Science of Memory Allocation Don Porter CSE 506 Binary Formats RCU Memory Management Memory Allocators CPU Scheduler User System Calls Kernel Today s Lecture File System Networking

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

Last class: Today: Deadlocks. Memory Management

Last class: Today: Deadlocks. Memory Management Last class: Deadlocks Today: Memory Management CPU il1 L2 Memory Bus (e.g. PC133) Main Memory dl1 On-chip I/O Bus (e.g. PCI) Disk Ctrller Net. Int. Ctrller Network Binding of Programs to Addresses Address

More information

RAM, Design Space, Examples. January Winter Term 2008/09 Gerd Liefländer Universität Karlsruhe (TH), System Architecture Group

RAM, Design Space, Examples. January Winter Term 2008/09 Gerd Liefländer Universität Karlsruhe (TH), System Architecture Group System Architecture 16 Memory Management RAM, Design Space, Examples January 12 2009 Winter Term 2008/09 Gerd Liefländer 2009 Universität Karlsruhe (TH), System Architecture Group 1 Recommended Reading

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Paged MMU: Two main Issues Translation speed can be slow TLB Table size is big Multi-level page table

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems Memory Management Review We ve seen how paging works on x86 Maps virtual addresses to physical pages These are the low-level hardware tools This lecture: build up to higher-level

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Demand paging Concepts to Learn 2 Abstraction Virtual Memory (VM) 4GB linear address space for each process

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems Memory Management Review We ve seen how paging works on x86 Maps virtual addresses to physical pages These are the low-level hardware tools This lecture: build up to higher-level

More information

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory Memory Management Today Basic memory management Swapping Kernel memory allocation Next Time Virtual memory Midterm results Average 68.9705882 Median 70.5 Std dev 13.9576965 12 10 8 6 4 2 0 [0,10) [10,20)

More information

Memory Addressing. Pradipta De

Memory Addressing. Pradipta De Memory Addressing Pradipta De pradipta.de@sunykorea.ac.kr Today s Topic Allow processes (and kernel) to reliably access physical memory How to create illusions of large RAM Ensure memory protection Do

More information

Operating Systems and Computer Networks. Memory Management. Dr.-Ing. Pascal A. Klein

Operating Systems and Computer Networks. Memory Management. Dr.-Ing. Pascal A. Klein Operating Systems and Computer Networks Memory Management pascal.klein@uni-due.de Alexander Maxeiner, M.Sc. Faculty of Engineering Agenda 1 Swapping 2 Segmentation Algorithms 3 Memory Allocation 4 Virtual

More information

Virtual Memory Outline

Virtual Memory Outline Virtual Memory Outline Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples

More information

Events, Memory Management

Events, Memory Management Events, Memory Management Events, Memory Management 1. Call back, message pumps 2. Call backs vs messages 3. Memory management Callback Program registers and event handler program that is called whenever

More information

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not an option

More information

The Art and Science of Memory Alloca4on

The Art and Science of Memory Alloca4on The Art and Science of Memory Alloca4on Don Porter 1 Binary Formats RCU Logical Diagram Memory Allocators Threads User System Calls Kernel Today s Lecture File System Networking Sync Memory Management

More information

Memory Management william stallings, maurizio pizzonia - sistemi operativi

Memory Management william stallings, maurizio pizzonia - sistemi operativi Memory Management 1 summary goals and requirements techniques that do not involve virtual memory 2 memory management tracking used and free memory primitives allocation of a certain amount of memory de-allocation

More information

8: Memory Management

8: Memory Management CSC400 - Operating Systems 8: Memory Management J. Sumey Physical Memory as important as the CPU, a computer's physical memory is another important resource that must be carefully & efficiently managed

More information

OPERATING SYSTEM. Chapter 9: Virtual Memory

OPERATING SYSTEM. Chapter 9: Virtual Memory OPERATING SYSTEM Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory

More information

Preview. Memory Management

Preview. Memory Management Preview Memory Management With Mono-Process With Multi-Processes Multi-process with Fixed Partitions Modeling Multiprogramming Swapping Memory Management with Bitmaps Memory Management with Free-List Virtual

More information

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others Memory Management 1 Learning Outcomes Appreciate the need for memory management in operating systems, understand the limits of fixed memory allocation schemes. Understand fragmentation in dynamic memory

More information

Memory Management III Memory Alloca0on

Memory Management III Memory Alloca0on Memory Management III Memory Alloca0on COMS W4118 Prof. Kaustubh R. Joshi krj@cs.columbia.edu hgp://www.cs.columbia.edu/~krj/os References: Opera0ng Systems Concepts (9e), Linux Kernel Development, previous

More information

ECE 598 Advanced Operating Systems Lecture 10

ECE 598 Advanced Operating Systems Lecture 10 ECE 598 Advanced Operating Systems Lecture 10 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 17 February 2015 Announcements Homework #1 and #2 grades, HW#3 Coming soon 1 Various

More information

Chapter 10: Case Studies. So what happens in a real operating system?

Chapter 10: Case Studies. So what happens in a real operating system? Chapter 10: Case Studies So what happens in a real operating system? Operating systems in the real world Studied mechanisms used by operating systems Processes & scheduling Memory management File systems

More information

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm First-In-First-Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a time per process) 15 page faults Can vary by reference string:

More information

UNIT III MEMORY MANAGEMENT

UNIT III MEMORY MANAGEMENT UNIT III MEMORY MANAGEMENT TOPICS TO BE COVERED 3.1 Memory management 3.2 Contiguous allocation i Partitioned memory allocation ii Fixed & variable partitioning iii Swapping iv Relocation v Protection

More information

In multiprogramming systems, processes share a common store. Processes need space for:

In multiprogramming systems, processes share a common store. Processes need space for: Memory Management In multiprogramming systems, processes share a common store. Processes need space for: code (instructions) static data (compiler initialized variables, strings, etc.) global data (global

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Chapter 7 1 Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 1 Memory

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory

More information

Outlook. File-System Interface Allocation-Methods Free Space Management

Outlook. File-System Interface Allocation-Methods Free Space Management File System Outlook File-System Interface Allocation-Methods Free Space Management 2 File System Interface File Concept File system is the most visible part of an OS Files storing related data Directory

More information

Status of the Linux Slab Allocators

Status of the Linux Slab Allocators Status of the Linux Slab Allocators David Rientjes rientjes@google.com SCALE 9X February 26, 2011 Los Angeles, California 1 of 13 Status of the Linux Slab Allocators As of 2.6.37.1, the latest stable release

More information

Memory Management. COMP755 Advanced Operating Systems

Memory Management. COMP755 Advanced Operating Systems Memory Management COMP755 Advanced Operating Systems Purpose of Memory Manager Find a place in RAM for programs and data. OS Memory Manager allocates RAM to programs and OS tasks and data. User level memory

More information

Process. Memory Management

Process. Memory Management Process Memory Management One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others Memory Management 1 Process One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University.

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University. Operating Systems Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring 2014 Paul Krzyzanowski Rutgers University Spring 2015 March 27, 2015 2015 Paul Krzyzanowski 1 Exam 2 2012 Question 2a One of

More information

Operating System Concepts

Operating System Concepts Chapter 9: Virtual-Memory Management 9.1 Silberschatz, Galvin and Gagne 2005 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

Operating Systems Design Exam 2 Review: Spring 2012

Operating Systems Design Exam 2 Review: Spring 2012 Operating Systems Design Exam 2 Review: Spring 2012 Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 Under what conditions will you reach a point of diminishing returns where adding more memory may improve

More information

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management To do q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition,

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition, Chapter 9: Virtual-Memory Management, Silberschatz, Galvin and Gagne 2009 Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Chapter 9: Virtual Memory Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Main Memory: The Big Picture kernel memory proc struct kernel stack/u area Stack kernel stack/u area Stack kernel stack/u area Stack Data Text (shared)

More information

File System Internals. Jo, Heeseung

File System Internals. Jo, Heeseung File System Internals Jo, Heeseung Today's Topics File system implementation File descriptor table, File table Virtual file system File system design issues Directory implementation: filename -> metadata

More information

Process. One or more threads of execution Resources required for execution

Process. One or more threads of execution Resources required for execution Memory Management 1 Learning Outcomes Appreciate the need for memory management in operating systems, understand the limits of fixed memory allocation schemes. Understand fragmentation in dynamic memory

More information

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit Memory Management All data in memory before and after processing All instructions in memory in order to execute Memory management determines what is to be in memory Memory management activities Keeping

More information

Lecture 7. Memory Management

Lecture 7. Memory Management Lecture 7 Memory Management 1 Lecture Contents 1. Memory Management Requirements 2. Memory Partitioning 3. Paging 4. Segmentation 2 Memory Memory is an array of words or bytes, each with its own address.

More information

Virtual Memory Management

Virtual Memory Management Virtual Memory Management CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating

More information

Chapter 10: Virtual Memory

Chapter 10: Virtual Memory Chapter 10: Virtual Memory Chapter 10: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Operating System Concepts 9 th Edition

Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

CS 550 Operating Systems Spring Memory Management: Paging

CS 550 Operating Systems Spring Memory Management: Paging CS 550 Operating Systems Spring 2018 Memory Management: Paging 1 Recap: Memory Management Ideally programmers want memory that is large fast non volatile Memory hierarchy small amount of fast, expensive

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer:

Main Memory CHAPTER. Exercises. 7.9 Explain the difference between internal and external fragmentation. Answer: 7 CHAPTER Main Memory Exercises 7.9 Explain the difference between internal and external fragmentation. a. Internal fragmentation is the area in a region or a page that is not used by the job occupying

More information

Memory Management. Before We Begin. Process s Memory Address Space. Process Memory. CSE 120: Principles of Operating Systems.

Memory Management. Before We Begin. Process s Memory Address Space. Process Memory. CSE 120: Principles of Operating Systems. SE 12: Principles of Operating Systems Lecture 7 Memory Management February 1, 26 Prof. Joe Pasquale Department of omputer Science and Engineering University of alifornia, San Diego Before We Begin Read

More information

CIS Operating Systems Contiguous Memory Allocation. Professor Qiang Zeng Spring 2018

CIS Operating Systems Contiguous Memory Allocation. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Contiguous Memory Allocation Professor Qiang Zeng Spring 2018 Previous class Uniprocessor policies FCFS, Shortest Job First Round Robin Multilevel Feedback Queue Multiprocessor

More information

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France Operating Systems Memory Management Mathieu Delalandre University of Tours, Tours city, France mathieu.delalandre@univ-tours.fr 1 Operating Systems Memory Management 1. Introduction 2. Contiguous memory

More information

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems File system internals Tanenbaum, Chapter 4 COMP3231 Operating Systems Architecture of the OS storage stack Application File system: Hides physical location of data on the disk Exposes: directory hierarchy,

More information

Locality and The Fast File System. Dongkun Shin, SKKU

Locality and The Fast File System. Dongkun Shin, SKKU Locality and The Fast File System 1 First File System old UNIX file system by Ken Thompson simple supported files and the directory hierarchy Kirk McKusick The problem: performance was terrible. Performance

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

VII. Memory Management

VII. Memory Management VII. Memory Management 1 Intended Schedule Date Lecture Hand out Submission 0 20.04. Introduction to Operating Systems Course registration 1 27.04. Systems Programming using C (File Subsystem) 1. Assignment

More information

Memory Management. Memory Management Requirements

Memory Management. Memory Management Requirements Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated to ensure a reasonable supply of ready processes to consume available processor time 1 Memory Management

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation CS61, Lecture 10 Prof. Stephen Chong October 4, 2011 Announcements 1/2 Assignment 4: Malloc Will be released today May work in groups of one or two Please go to website and enter

More information

Background. Contiguous Memory Allocation

Background. Contiguous Memory Allocation Operating System Lecture 8 2017.5.9 Chapter 8 (Main Memory) Background Swapping Contiguous Memory Allocation Segmentation - Paging Memory Management Selection of a memory-management method for a specific

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [MEMORY MANAGEMENT] Shrideep Pallickara Computer Science Colorado State University MS-DOS.COM? How does performing fast

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #6: Memory Management CS 61C L06 Memory Management (1) 2006-07-05 Andy Carle Memory Management (1/2) Variable declaration allocates

More information

Operating Systems (2INC0) 2017/18

Operating Systems (2INC0) 2017/18 Operating Systems (2INC0) 2017/18 Memory Management (09) Dr. Courtesy of Dr. I. Radovanovic, Dr. R. Mak (figures from Bic & Shaw) System Architecture and Networking Group Agenda Reminder: OS & resources

More information

A.Joyce-AP/CSE- MAHALAKSHMI ENGINEERING COLLEGE Page 1

A.Joyce-AP/CSE- MAHALAKSHMI ENGINEERING COLLEGE Page 1 Sub Code:CS2257 Dept: CSE Sub Name: Operating Systems Sem/Year:IV/II UNIT III: Storage Management PART A (2 Marks ) 1. What do u mean by swapping technique? (AUC JUNE2009) A process needs to be in memory

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1 Operating systems Module 11 Main memory introduction Part 1 Tami Sorgente 1 MODULE 11 MAIN MEMORY INTRODUCTION Background Swapping Contiguous Memory Allocation Noncontiguous Memory Allocation o Segmentation

More information

MEMORY MANAGEMENT. Jo, Heeseung

MEMORY MANAGEMENT. Jo, Heeseung MEMORY MANAGEMENT Jo, Heeseung TODAY'S TOPICS Why is memory management difficult? Old memory management techniques: Fixed partitions Variable partitions Swapping Introduction to virtual memory 2 MEMORY

More information

CSE 4/521 Introduction to Operating Systems. Lecture 27 (Final Exam Review) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 27 (Final Exam Review) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 27 (Final Exam Review) Summer 2018 Overview Objective: Revise topics and questions for the final-exam. 1. Main Memory 2. Virtual Memory 3. Mass Storage

More information

Memory Management. Jo, Heeseung

Memory Management. Jo, Heeseung Memory Management Jo, Heeseung Today's Topics Why is memory management difficult? Old memory management techniques: Fixed partitions Variable partitions Swapping Introduction to virtual memory 2 Memory

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems File system internals Tanenbaum, Chapter 4 COMP3231 Operating Systems Summary of the FS abstraction User's view Hierarchical structure Arbitrarily-sized files Symbolic file names Contiguous address space

More information

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358 Memory Management Reading: Silberschatz chapter 9 Reading: Stallings chapter 7 1 Outline Background Issues in Memory Management Logical Vs Physical address, MMU Dynamic Loading Memory Partitioning Placement

More information

ECE 598 Advanced Operating Systems Lecture 12

ECE 598 Advanced Operating Systems Lecture 12 ECE 598 Advanced Operating Systems Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 March 2018 Announcements Next homework will be due after break. Midterm next Thursday

More information

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) !

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) ! Memory Questions? CSCI [4 6]730 Operating Systems Main Memory! What is main memory?! How does multiple processes share memory space?» Key is how do they refer to memory addresses?! What is static and dynamic

More information

File System Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

File System Implementation. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University File System Implementation Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Implementing a File System On-disk structures How does file system represent

More information

File Systems: Fundamentals

File Systems: Fundamentals File Systems: Fundamentals 1 Files! What is a file? Ø A named collection of related information recorded on secondary storage (e.g., disks)! File attributes Ø Name, type, location, size, protection, creator,

More information

File Systems: Fundamentals

File Systems: Fundamentals 1 Files Fundamental Ontology of File Systems File Systems: Fundamentals What is a file? Ø A named collection of related information recorded on secondary storage (e.g., disks) File attributes Ø Name, type,

More information

C06: Memory Management

C06: Memory Management CISC 7310X C06: Memory Management Hui Chen Department of Computer & Information Science CUNY Brooklyn College 3/8/2018 CUNY Brooklyn College 1 Outline Recap & issues Project 1 feedback Memory management:

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 7 More Memory Management CS 61C L07 More Memory Management (1) 2004-09-15 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Star Wars

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Engine Support System. asyrani.com

Engine Support System. asyrani.com Engine Support System asyrani.com A game engine is a complex piece of software consisting of many interacting subsystems. When the engine first starts up, each subsystem must be configured and initialized

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได Chapter 9: Virtual Memory Chapter 3: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 8 Virtual Memory

Chapter 8 Virtual Memory Chapter 8 Virtual Memory Contents Hardware and control structures Operating system software Unix and Solaris memory management Linux memory management Windows 2000 memory management Characteristics of

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory 1 Learning Outcomes An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. 2 Memory Management Unit (or TLB) The position and function

More information

Where is the memory going? Memory waste under Linux

Where is the memory going? Memory waste under Linux Where is the memory going? Memory waste under Linux Andi Kleen, SUSE Labs August 15, 2006 Abstract The original Linux 1.0 kernel ran fine on a PC with 4MB memory. Of that the kernel used a small fraction.

More information

Memory Management. Goals of Memory Management. Mechanism. Policies

Memory Management. Goals of Memory Management. Mechanism. Policies Memory Management Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Memory Management Goals of Memory Management Convenient abstraction for programming

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory Learning Outcomes An understanding of page-based virtual memory in depth. Including the R000 s support for virtual memory. Memory Management Unit (or TLB) The position and function of the

More information

An Evaluation of the Linux Virtual Memory Manager to Determine Suitability for Runtime Variation of Memory

An Evaluation of the Linux Virtual Memory Manager to Determine Suitability for Runtime Variation of Memory An Evaluation of the Linux Virtual Memory Manager to Determine Suitability for Runtime Variation of Memory by Vijay Kumar Muthukumaraswamy Sivakumar Thesis submitted to the faculty of the Virginia Polytechnic

More information

CSE 4/521 Introduction to Operating Systems. Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 23 File System Implementation II (Allocation Methods, Free-Space Management) Summer 2018 Overview Objective: To discuss how the disk is managed for a

More information