DSP Platforms Lab (AD-SHARC) Session 05

Size: px
Start display at page:

Download "DSP Platforms Lab (AD-SHARC) Session 05"

Transcription

1 University of Miami - Frost School of Music DSP Platforms Lab (AD-SHARC) Session 05 Description This session will be dedicated to give an introduction to the hardware architecture and assembly programming of the SHARC Additional Lab material can be found on in the DSP Platforms section. Introduction: A digital signal processor is a microprocessor with architectural optimizations to speed up processing. One of the main features of a DSP-chip as this one is the implementation of Harvard architecture, which means that the data memory and the program memory have independent buses to fetch multiple data and instructions at the same time. The name SHARC stands for super-harvard architecture, which besides having separated busses for data and program memory has an independent I/O processor with its associated dedicated busses. The SHARC can be used as a floating-point or fixed-point processor. SHARC Hardware Architecture This lab is intended as an introductory overview and it is not a replacement of the actual manuals. For an in-depth understanding of the DSP-chip and its programming capabilities refer to the user s manuals located at the following url: For a quick interactive overview of general SHARC-DSP architecture, download and run the app Navigator 3.1 at: _info/sharcnav.zip Note: Start in the functional block diagram an click on the blocks for an interactive tutorial. It is suggested to read this interactive tutorial before the lab session. The figure below shows a block diagram of the SHARC architecture, a short description of each block is given as follows:

2 The SHARC has three main blocks that communicate through the busses. The Core Processor has two processing elements PEX and PEY, each with its correspondent computational units: Arithmetic Logic Unit (ALU), Multiply Accumulate unit (MAC), Shifter; and a data register. The other blocks are a Program Sequencer, the Timer, the Instruction Cache, and two Data Address Generators. The I/O Processor is an independent input/output-processing unit that manages the offchip data I/O transfers and alleviates the Core processor of this burden. The Memory is organized in four blocks, with up to 3Mbits of internal RAM using SRAM (static RAM: stores information while power is on without the need of refreshing), an up to 4Mbits or ROM (read-only memory).

3 1. Core Processor Note: Complete information in the SHARC programming reference manual 1.1. Processing Elements The processor s processing elements (PEx and PEy) perform numeric processing for processor algorithms. Each processing element contains a data register file and three computation units an arithmetic/logic unit (ALU), a multiplier, and a shifter. Computational instructions for these elements include both fixed-point and floating-point operations. ALU (Arithmetic Logic Unit): The ALU performs arithmetic operations on fixed-point or floating-point data and logical operations on fixed-point data. ALU fixed-point instructions operate on 32-bit fixed-point operands and output 32-bit fixed-point results, and ALU floating-point instructions operate on 32-bit or 40-bit floating-point operands and output 32-bit or 40-bit floatingpoint results. ALU instructions include: Floating-point addition, subtraction, add/subtract, average Fixed-point addition, subtraction, add/subtract, average Floating-point manipulation: binary log, scale, and mantissa Fixed-point add with carry, subtract with borrow, increment, decrement Logical And, Or, Xor, Not Functions: ABS, PASS, MIN, MAX, CLIP, and COMPARE Format conversion Reciprocal and reciprocal square root primitives ALU instructions take one or two inputs: X input and Y input. These inputs (known as operands) can be any data registers in the register file. Most ALU operations return one result; in add/subtract operations, the ALU operation returns two results; in compare operations, the ALU operation returns no result (only flags are updated). ALU results can be returned to any location in the register file. MAC (Multiply Accumulator): The multiplier performs fixed-point or floating-point multiplication and fixed-point multiply/accumulate operations. Multiplier floating-point instructions operate on 32-bit or 40-bit floating-point operands and output 32-bit or 40-bit floating-point results. Multiplier fixed-point instructions operate on 32-bit fixed-point data and produce 80-bit results. Inputs are treated as fractional or integer, unsigned or two s-complement. Multiplier instructions include:

4 Floating-point multiplication Fixed-point multiplication Fixed-point multiply/accumulate with addition, rounding optional Fixed-point multiply/accumulate with subtraction, rounding optional Rounding multiplier result register Saturating multiplier result register Clearing multiplier result register The multiplier takes two inputs: X and Y. These inputs (also known as operands) can be any data registers in the register file. The multiplier can accumulate fixed-point results in the local multiplier result (MRF) registers or write results back to the register file. The results in MRF can also be rounded or saturated in separate operations. Floating-point multiplies yield floating-point results, which the multiplier writes directly to the register file. Barrel Shifter (Shifter) The shifter performs bit-wise operations on 32-bit fixed-point operands. Shifter operations include: Shifts and rotates from off-scale left to off-scale right Bit manipulation operations, including bit set, clear, toggle, and test Bit field manipulation operations, including extract and deposit Fixed-point/floating-point conversion operations, including exponent extract, number of leading 1s or 0s The shifter takes one to three inputs: X, Y, and Z. The inputs (known as operands) can be any register in the register file. Within a shifter instruction, the inputs serve as follows. The X input provides data that is operated on. The Y input specifies shift magnitudes, bit field lengths, or bit positions. The Z input provides data that is operated on and updated. In the following example, Rx is the X input, Ry is the Y input, and Rn is the Z input. The shifter returns one output (Rn) to the register file. Rn = Rn OR LSHIFT Rx BY Ry; Data Register File Each of the processor s processing elements has a data register file, which is a set of data registers that transfers data between the data buses and the computational units. These registers also provide local storage for operands and results. The two register files consist of 16 primary registers and 16 alternate (secondary) registers. The data registers are 40 bits wide. Within these registers, 32-bit data is left justified. If an operation specifies a 32-bit data transfer to these 40-bit registers, the eight

5 LSBs are ignored on register reads, and the LSBs are cleared to zeros on writes. When a program refers to these registers as R0 through R15, the computational units treat the contents of these registers as fixed-point data. To perform floating-point computations, refer to these registers as F0 through F15. For example, the following instructions refer to the same registers, but direct the computational units to perform different operations: F0 = F1 * F2; /* floating-point multiply */ R0 = R1 * R2; /* fixed-point multiply */ The rules for using register names are: R0 through R15 and F0 through F15 refer to PEx registers for data move and computational instructions, whether the processor is in SISD or SIMD mode. R0 through R15 and F0 through F15 refer to both PEx and PEy register for computational instructions in SIMD mode. S0 through S15 refer to PEy registers for data move instructions, when the processor is in SISD or SIMD mode. SISD: Single Instruction Single Data. An operation performed on one processing element is not duplicated on the other processing element. SIMD: Single Instruction Multiple Data. The dual processing elements execute the same instruction, but operate on different data Data Address Generators (DAGS) The processor s data address generators (DAGs) generate addresses for data moves to and from data memory (DM) and program memory (PM). Each DAG has four types of registers. These registers hold the values that the DAG uses for generating addresses. The four types of registers are: Index registers (I0 I7 for DAG1 and I8 I15 for DAG2). An index register holds an address and acts as a pointer to memory. For example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in an instruction as addresses. Modify registers (M0 M7 for DAG1 and M8 M15 for DAG2). A modify register provides the increment or step size by which an index register is pre- or post-modified during a register move. For example, the DM(I0,M1) instruction directs the DAG to output the address in register I0 then modify the contents of I0 using the M1 register. Length and base registers (L0 L7 and B0 B7 for DAG1 and L8 L15 and B8 B15 for DAG2). Length and base registers set the range of addresses and the starting address for a circular buffer.

6 Examples: R0 = dm(i0,m0); /* store in register R0 the value pointed by I0 and increment I0 by the amount stored in m0 afterwards */ dm(i0,m0) = F0; /* store in address pointed by I0 the value stored in register F0 and increment I0 by the amount stored in m0 afterwards */ An important feature of the DAGs is the circular buffer addressing capability. This is defined as addressing a range of addresses, which contain data that the DAG steps through repeatedly, wrapping around to repeat stepping through the range of addresses in a circular pattern. To address a circular buffer, the DAG steps the index pointer (I register) through the buffer, post-modifying and updating the index on each access with a positive or negative modify value (M register or immediate value). If the index pointer falls outside the buffer, the DAG subtracts or adds the buffer length to the index value, wrapping the index pointer back within the start and end boundaries of the buffer. Example of how to set up a circular buffer: 1. Enable circular buffering (BIT SET MODE1 CBUFEN;). This operation is only needed once in a program. 2. Load the buffer s base address into the B register. This operation automatically loads the corresponding I register. The starting address that the DAG wraps around is called the buffer s base address (B register). There are no restrictions on the value of the base address for a circular buffer. 3. Load the buffer s length into the corresponding L register. For example, L0 corresponds to B0. 4. Load the modify value (step size) into an M register in the corresponding DAG. For example, M0 through M7 correspond to B0. Alternatively, the program can use an immediate value for the modifier. THE FOLLOWING SYNTAX SETSUP AND ACCESSES A CIRCULAR BUFFER WITH: LENGTH=11 BASEADDRESS=0X80500 MODIFIER=4 BIT SET MODE1 CBUFEN; /*ENABLES CIRCULAR BUFFER ADDRESSING JUST ONCE IN A PROGRAM*/ B0=0X80500; /*LOADS B0 AND L0 REGISTERS WITH BASE ADDRESS*/ L0=11; /*LOADS L0 REGISTER WITH LENGTH OF BUFFER*/ M1=4; /*LOADS M1 WITH MODIFIER OR STEP SIZE*/ LCNTR=11, DO MY_CIR_BUFFER UNTIL LCE; /*SETS UP A LOOP CONTAINING BUFFER ACCESSES*/ R0=DM(I0,M1); /*AN ACCESS WITHIN THE BUFFER USES POST MODIFY ADDRESSING*/... /*OTHER INSTRUCTIONS IN THE MY_CIR_BUFFERLOOP*/ MY_CIR_BUFFER: NOP; /*END OF MY_CIR_BUFFERLOOP*/

7 1.3. Program Sequencer The program sequencer controls program flow by constantly providing the address of the next instruction to be fetched for execution. Program flow in the processor is mostly linear, with the processor executing instructions sequentially. This linear flow varies occasionally when the program branches due to nonsequential program structures, such as those described below. Nonsequential structures direct the processor to execute an instruction that is not at the next sequential address following the current instruction. To achieve a high execution rate while maintaining a simple programming model, the processor employs a five stage pipeline to process instructions - fetch1, fetch2, decode, address and execute. The non-sequencial structures include: Loops. One sequence of instructions executes multiple times with zero overhead. Subroutines. A traditional CALL structure where the processor temporarily breaks sequential flow to execute instructions from another part of program memory. Jumps. Program flow is permanently transferred to another part of program memory. Interrupts. A runtime event (generally not an instruction) triggers the program sequencer to branch to interrupt-handling subroutines. Idle. An instruction that causes the core to stop executing further instructions and hold its current state until an interrupt occurs. Then, after the processor services the interrupt, the sequencer resumes normal program execution.

8 1.4 Timer The core s programmable interval timer provides periodic interrupt generation. When enabled, the timer decrements a 32-bit count register every cycle. When this count registers reaches zero, the ADSP-2136x processors generate an interrupt and assert their timer expired output. The count register is automatically reloaded from a 32-bit period register and the countdown resumes immediately. In addition to the internal core timer, the ADSP-2136x processor contains three identical 32-bit timers that can be used to interface with external devices Instruction Cache The program sequencer includes a 32-word instruction cache that effectively provides three-bus operation for fetching an instruction and two data values. The cache is selective; only instructions whose fetches conflict with data accesses using the PM bus are cached. This caching allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing Interrupts The ADSP-2136x processors have three external hardware interrupts. The processor also provides three general-purpose interrupts, and a special interrupt for reset. The processor has internally-generated interrupts for the timer, DMA controller operations, circular buffer overflow, stack overflows, arithmetic exceptions, and user-defined software interrupts. For the general-purpose interrupts and the internal timer interrupt, the processor automatically stacks the arithmetic status (ASTATx) register and mode (MODE1) registers in parallel with the interrupt servicing, allowing 15 nesting levels of very fast service for these interrupts. 2. The I/O Processor In applications that use extensive off-chip data I/O, programs may find it beneficial to use a processor resource other than the processor core to perform data transfers. The ADSP- 2136x processor contains an I/O processor (IOP) that supports a variety of DMA (direct memory access) operations. Each DMA operation transfers an entire block of data. These operations include the transfer types listed below: Internal memory external memory devices Internal memory serial port I/O

9 Internal memory SPI I/O Internal memory Digital Applications Interface (DAI) Internal memory Internal memory * For a detailed explanation refer to the hardware reference Manual 3. Memory The ADSP-2136x processors contain four blocks of single-ported internal memory. In most programs this memory is available for single cycle, simultaneous, independent accesses by the core processor and I/O processor. The single-ported memory, in combination with three separate on-chip buses, allows two data transfers from the core and one transfer from the I/O processor in a single cycle, provided the access is from three different blocks of the memory. Using the I/O bus, the I/O processor provides data transfers between internal memory and the processor s communication ports. The processor memory is organized as four blocks block 0, block 1, block 2 and block 3, containing up to 3M bits of internal RAM and 4M bits of internal ROM. The memory on the ADSP processor has the following additional features. Each block can be configured for different combinations of code and data storage. Each block consists of four columns and each column is 16 bits wide. Each block maps to separate regions in memory address space and can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. Each block also has its own two-deep self clearing shadow write buffers with automatic hit detection and data forwarding logic for read access. The processor features a 16-bit floating-point storage format that effectively doubles the amount of data that may be stored on-chip. A single instruction converts the format from 32-bit floating-point to 16-bit floating-point. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus, for transfers, the second block stores instructions and data using the PM bus and a third and fourth block stores data using the I/O bus. Using the DM and PM buses in this way assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache. * For a detailed explanation refer to the programming reference Manual

10 SHARC Assembly Language Programming In this section a simple example is provided to show how an FIR filter structure may be implemented.

11 The code above is for instructional purposes and resources initialization steps have been omitted for simplicity. As shown at the top of the main program, there are three variables that need to be defined before jumping into the main section of code. These are the number of points in the filter kernel, NR_COEF; a circular buffer that holds the past samples from the input signal, dline[ ]; and a circular buffer that holds the filter kernel, coef[ ]. We also need to give the program two other pieces of information: the sampling rate of the codec, and the name of the file containing the filter kernel, so that it can be read into coef[ ]. All these steps are easy; nothing more than a single line of code each. We don't show them in this example because they are contained in the sections of code that we are ignoring for simplicity. The main section of the program performs two functions. In lines 6 to 13, the dataaddress-generators (DAGs) are configured to manage the circular buffers: dline[ ], and coef[ ]. Three parameters are needed for each buffer: the starting location of the buffer in memory (b0 and b8), the length of the buffer (l0 and l8), and the step size of the data being stored in the buffer (m0 and m8). These parameters that control the circular buffers are stored in hardware registers in the DAGs, allowing them to access and manage the data very efficiently. The second action of the main program is an idle loop, implemented in lines 15 to 19. This does nothing but wait for an interrupt indicating that an input sample has been acquired. All of the processing in this program occurs on a sample-by-sample basis. Each time a sample is read from the input, a sample in the output signal is calculated and routed to the codec. Most time-domain algorithms, such as FIR and IIR filters, fall into this category. The alternative is frame-by-frame processing, which is required for frequency-domain techniques. In the frame-by-frame method, a group of samples is read from the input, calculations are conducted, and a group of samples is written to the output. The subroutine that services the sample-ready interrupt is broken into three sections. The first section (lines 27 to 33) fetches the sample from the codec as a fixed point number, and converts it to floating point. In SHARC assembly language, a data register holding a fixed point number is referred to by "r" (such as r0, r8, r15, etc.), and by "f" if it is holding a floating point number (i.e., f0, f8, or f15.). For instance, in line 32, the fixed point number in data register 0 (i.e., r0) is converted into a floating point number and overwrites data register 0 (i.e., f0). This conversion is done according to a scaling specified by the fixed point number in data register 1 (i.e. r1). In the third section (lines 47 to 53), the opposite steps take place; the floating point number for the output sample is converted to fixed point and sent to the codec. The FIR filter that converts the input samples into the output samples is contained in lines 35 to 45. All the calculations are carried out in floating point, avoiding the need to worry about scaling and overflow. This section of code is optimized to take advantage of the SHARC DSP's ability to execute multiple instructions each clock cycle.

12 After we have the assembly program written and the filter kernel designed, we are ready to create a program that can be executed on the SHARC DSP. This is done by running the compiler, the assembler, and then the linker; three programs provided with the EZ-KIT Lite. The compiler converts a C program into the SHARC's assembly language. If you directly write the program in assembly, such as in this example, you bypass this step. The assembler and linker convert the program and external files (such as the architecture file, codec initialization routines, filter kernel, etc.) into the final executable file. All this takes about 30 seconds, with the final result being a SHARC program residing on the harddisk of your PC. The EZ-KIT Lite host is then used to run the program on the EZ-KIT Lite. Exercise: The files below may be used to use VisualDSP++ to compile Assembly language codes. The outline and scope of the exercise is left to the course instructor to define. Download from the URL below the examples for Single Channel block FIR and Single Channel single sample FIR. de.html Also open the code example for Talkthru Analog In-Out (ASM), that is normally located in the path below. C:\Program Files\Analog Devices\VisualDSP 5.0\213xx\Examples\ADSP EZ-KIT Lite\Talkthru Analog In-Out (ASM) You can also look in the URL below for some audio effects example for the SHARC. Note: Even though these examples are meant for a different family of SHARC processors, they can be implemented in the with a few modifications. emos.html

,1752'8&7,21. Figure 1-0. Table 1-0. Listing 1-0.

,1752'8&7,21. Figure 1-0. Table 1-0. Listing 1-0. ,1752'8&7,21 Figure 1-0. Table 1-0. Listing 1-0. The ADSP-21065L SHARC is a high-performance, 32-bit digital signal processor for communications, digital audio, and industrial instrumentation applications.

More information

This section discusses resources available from Analog Devices to help you develop applications using ADSP Family digital signal processors.

This section discusses resources available from Analog Devices to help you develop applications using ADSP Family digital signal processors. Introduction This applications handbook is intended to help you get a quick start in developing DSP applications with ADSP-2000 Family digital signal processors. This chapter includes a summary of available

More information

G GLOSSARY. Terms. Figure G-0. Table G-0. Listing G-0.

G GLOSSARY. Terms. Figure G-0. Table G-0. Listing G-0. G GLOSSARY Figure G-0. Table G-0. Listing G-0. Terms Autobuffering Unit (ABU). (See I/O processor and DMA) Arithmetic Logic Unit (ALU). This part of a processing element performs arithmetic and logic operations

More information

Lode DSP Core. Features. Overview

Lode DSP Core. Features. Overview Features Two multiplier accumulator units Single cycle 16 x 16-bit signed and unsigned multiply - accumulate 40-bit arithmetic logical unit (ALU) Four 40-bit accumulators (32-bit + 8 guard bits) Pre-shifter,

More information

4 DATA ADDRESS GENERATORS

4 DATA ADDRESS GENERATORS 4 DATA ADDRESS GENERATORS Figure 4-0. Table 4-0. Listing 4-0. Overview The DSP s Data Address Generators (DAGs) generate addresses for data moves to and from Data Memory (DM) and Program Memory (PM). By

More information

3 PROGRAM SEQUENCER. Overview. Figure 3-0. Table 3-0. Listing 3-0.

3 PROGRAM SEQUENCER. Overview. Figure 3-0. Table 3-0. Listing 3-0. 3 PROGRAM SEQUENCER Figure 3-0. Table 3-0. Listing 3-0. Overview The DSP s program sequencer implements program flow which constantly provides the address of the next instruction to be executed by other

More information

WS_CCESSH-OUT-v1.00.doc Page 1 of 8

WS_CCESSH-OUT-v1.00.doc Page 1 of 8 Course Name: Course Code: Course Description: System Development with CrossCore Embedded Studio (CCES) and the ADI SHARC Processor WS_CCESSH This is a practical and interactive course that is designed

More information

LOW-COST SIMD. Considerations For Selecting a DSP Processor Why Buy The ADSP-21161?

LOW-COST SIMD. Considerations For Selecting a DSP Processor Why Buy The ADSP-21161? LOW-COST SIMD Considerations For Selecting a DSP Processor Why Buy The ADSP-21161? The Analog Devices ADSP-21161 SIMD SHARC vs. Texas Instruments TMS320C6711 and TMS320C6712 Author : K. Srinivas Introduction

More information

Instruction Set Reference

Instruction Set Reference .1 QUICK LIST OF INSTRUCTIONS This chapter is a complete reference for the instruction set of the ADSP-2100 family. The instruction set is organized by instruction group and, within each group, by individual

More information

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC) Course Name: Course Number: Course Description: Goals/Objectives: Pre-requisites: Target Audience: Target Duration: System Development and Programming with the ADSP-TS101 (TigerSHARC) This is a practical

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN-FRBA 2011 www.electron.frba.utn.edu.ar/dplab Architecture Introduction to the Blackfin Processor Introduction to MSA Micro Signal Architecture (MSA) core was jointly

More information

Introduction ADSP-2100 FAMILY OF PROCESSORS

Introduction ADSP-2100 FAMILY OF PROCESSORS Introduction 1 1.1 OVERVIEW This book presents a compilation of routines for a variety of common digital signal processing applications based on the ADSP-2100 DSP microprocessor family. These routines

More information

ADSP-2100A DSP microprocessor with off-chip Harvard architecture. ADSP-2101 DSP microcomputer with on-chip program and data memory

ADSP-2100A DSP microprocessor with off-chip Harvard architecture. ADSP-2101 DSP microcomputer with on-chip program and data memory Introduction. OVERVIEW This book is the second volume of digital signal processing applications based on the ADSP-00 DSP microprocessor family. It contains a compilation of routines for a variety of common

More information

Procesory Sygnałowe w aplikacjach przemysłowych

Procesory Sygnałowe w aplikacjach przemysłowych Procesory Sygnałowe w aplikacjach przemysłowych Tryb SIMD, przerwania, konfiguracja nóżek układu IET Katedra Elektroniki Kraków 2015 dr inż. Roman Rumian Alternate (Secondary) DAG Registers To facilitate

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

DSP VLSI Design. Instruction Set. Byungin Moon. Yonsei University

DSP VLSI Design. Instruction Set. Byungin Moon. Yonsei University Byungin Moon Yonsei University Outline Instruction types Arithmetic and multiplication Logic operations Shifting and rotating Comparison Instruction flow control (looping, branch, call, and return) Conditional

More information

Digital Signal Processor Core Technology

Digital Signal Processor Core Technology The World Leader in High Performance Signal Processing Solutions Digital Signal Processor Core Technology Abhijit Giri Satya Simha November 4th 2009 Outline Introduction to SHARC DSP ADSP21469 ADSP2146x

More information

Better sharc data such as vliw format, number of kind of functional units

Better sharc data such as vliw format, number of kind of functional units Better sharc data such as vliw format, number of kind of functional units Pictures of pipe would help Build up zero overhead loop example better FIR inner loop in coldfire Mine more material from bsdi.com

More information

ADSP-218x. DSP Hardware Reference. First Edition, February Part Number

ADSP-218x. DSP Hardware Reference. First Edition, February Part Number ADSP-218x DSP Hardware Reference First Edition, February 2001 Part Number 82-002010-01 Analog Devices, Inc. Digital Signal Processor Division One Technology Way Norwood, Mass. 02062-9106 a Copyright Information

More information

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision. a SHARC Processor ADSP-21366 ABOUT ADSP-21366 SILICON ANOMALIES These anomalies represent the currently known differences between revisions of the SHARC ADSP-21366 product(s) and the functionality specified

More information

SECTION 5 PROGRAM CONTROL UNIT

SECTION 5 PROGRAM CONTROL UNIT SECTION 5 PROGRAM CONTROL UNIT MOTOROLA PROGRAM CONTROL UNIT 5-1 SECTION CONTENTS SECTION 5.1 PROGRAM CONTROL UNIT... 3 SECTION 5.2 OVERVIEW... 3 SECTION 5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE...

More information

SMS045 - DSP Systems in Practice. Lab 2 - ADSP-2181 EZ-KIT Lite and VisualDSP++ Due date: Tuesday Nov 18, 2003

SMS045 - DSP Systems in Practice. Lab 2 - ADSP-2181 EZ-KIT Lite and VisualDSP++ Due date: Tuesday Nov 18, 2003 SMS045 - DSP Systems in Practice Lab 2 - ADSP-2181 EZ-KIT Lite and VisualDSP++ Due date: Tuesday Nov 18, 2003 Lab Purpose This lab will introduce the ADSP-2181 EZ-KIT Lite development board for the Analog

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0.

C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0. C NUMERIC FORMATS Figure C-. Table C-. Listing C-. Overview The DSP supports the 32-bit single-precision floating-point data format defined in the IEEE Standard 754/854. In addition, the DSP supports an

More information

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009

VIII. DSP Processors. Digital Signal Processing 8 December 24, 2009 Digital Signal Processing 8 December 24, 2009 VIII. DSP Processors 2007 Syllabus: Introduction to programmable DSPs: Multiplier and Multiplier-Accumulator (MAC), Modified bus structures and memory access

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

Course Description: This course includes concepts of instruction set architecture,

Course Description: This course includes concepts of instruction set architecture, Computer Architecture Course Title: Computer Architecture Full Marks: 60+ 20+20 Course No: CSC208 Pass Marks: 24+8+8 Nature of the Course: Theory + Lab Credit Hrs: 3 Course Description: This course includes

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

DSP VLSI Design. Addressing. Byungin Moon. Yonsei University

DSP VLSI Design. Addressing. Byungin Moon. Yonsei University Byungin Moon Yonsei University Outline Definition of addressing modes Implied addressing Immediate addressing Memory-direct addressing Register-direct addressing Register-indirect addressing with pre-

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

Chapter 7 Central Processor Unit (S08CPUV2)

Chapter 7 Central Processor Unit (S08CPUV2) Chapter 7 Central Processor Unit (S08CPUV2) 7.1 Introduction This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more

More information

Implementation of DSP Algorithms

Implementation of DSP Algorithms Implementation of DSP Algorithms Main frame computers Dedicated (application specific) architectures Programmable digital signal processors voice band data modem speech codec 1 PDSP and General-Purpose

More information

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter IT 3123 Hardware and Software Concepts Notice: This session is being recorded. CPU and Memory June 11 Copyright 2005 by Bob Brown Latches Can store one bit of data Can be ganged together to store more

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Graduate Institute of Electronics Engineering, NTU 9/16/2004

Graduate Institute of Electronics Engineering, NTU 9/16/2004 / 9/16/2004 ACCESS IC LAB Overview of DSP Processor Current Status of NTU DSP Laboratory (E1-304) Course outline of Programmable DSP Lab Lab handout and final project DSP processor is a specially designed

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

General Purpose Signal Processors

General Purpose Signal Processors General Purpose Signal Processors First announced in 1978 (AMD) for peripheral computation such as in printers, matured in early 80 s (TMS320 series). General purpose vs. dedicated architectures: Pros:

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

PROGRAM CONTROL UNIT (PCU)

PROGRAM CONTROL UNIT (PCU) nc. SECTION 5 PROGRAM CONTROL UNIT (PCU) MOTOROLA PROGRAM CONTROL UNIT (PCU) 5-1 nc. SECTION CONTENTS 5.1 INTRODUCTION........................................ 5-3 5.2 PROGRAM COUNTER (PC)...............................

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

INSTRUCTION SET AND EXECUTION

INSTRUCTION SET AND EXECUTION SECTION 6 INSTRUCTION SET AND EXECUTION Fetch F1 F2 F3 F3e F4 F5 F6 Decode D1 D2 D3 D3e D4 D5 Execute E1 E2 E3 E3e E4 Instruction Cycle: 1 2 3 4 5 6 7 MOTOROLA INSTRUCTION SET AND EXECUTION 6-1 SECTION

More information

An introduction to DSP s. Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures

An introduction to DSP s. Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures An introduction to DSP s Examples of DSP applications Why a DSP? Characteristics of a DSP Architectures DSP example: mobile phone DSP example: mobile phone with video camera DSP: applications Why a DSP?

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Micro Architecture Nawin Somyat Department of Electrical and Computer Engineering Thammasat University 28 August 2018 Outline Course Contents 1 Introduction 2 Simple

More information

5 MEMORY. Figure 5-0. Table 5-0. Listing 5-0.

5 MEMORY. Figure 5-0. Table 5-0. Listing 5-0. 5 MEMORY Figure 5-0 Table 5-0 Listing 5-0 The processor s dual-ported SRAM provides 544K bits of on-chip storage for program instructions and data The processor s internal bus architecture provides a total

More information

ARM ARCHITECTURE. Contents at a glance:

ARM ARCHITECTURE. Contents at a glance: UNIT-III ARM ARCHITECTURE Contents at a glance: RISC Design Philosophy ARM Design Philosophy Registers Current Program Status Register(CPSR) Instruction Pipeline Interrupts and Vector Table Architecture

More information

Programming Model 12.1 OVERVIEW 12 1

Programming Model 12.1 OVERVIEW 12 1 Programming Model 12 12.1 OVERVIEW From a programming standpoint, the ADSP-21xx processors consist of three computational units, two data address generators, and a program sequencer, plus on-chip peripherals

More information

ADDRESS GENERATION UNIT (AGU)

ADDRESS GENERATION UNIT (AGU) nc. SECTION 4 ADDRESS GENERATION UNIT (AGU) MOTOROLA ADDRESS GENERATION UNIT (AGU) 4-1 nc. SECTION CONTENTS 4.1 INTRODUCTION........................................ 4-3 4.2 ADDRESS REGISTER FILE (Rn)............................

More information

VLSI Signal Processing

VLSI Signal Processing VLSI Signal Processing Programmable DSP Architectures Chih-Wei Liu VLSI Signal Processing Lab Department of Electronics Engineering National Chiao Tung University Outline DSP Arithmetic Stream Interface

More information

TSEA 26 exam page 1 of Examination. Design of Embedded DSP Processors, TSEA26 Date 8-12, G34, G32, FOI hus G

TSEA 26 exam page 1 of Examination. Design of Embedded DSP Processors, TSEA26 Date 8-12, G34, G32, FOI hus G TSEA 26 exam page 1 of 10 20171019 Examination Design of Embedded DSP Processors, TSEA26 Date 8-12, 2017-10-19 Room G34, G32, FOI hus G Time 08-12AM Course code TSEA26 Exam code TEN1 Design of Embedded

More information

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data

Chapter 3. Z80 Instructions & Assembly Language. Von Neumann Architecture. Memory. instructions. program. data Von Neumann Architecture The von Neumann architecture is a computer design model that uses a processing unit and a separate storage to hold both instructions and data To run a machine, program and data

More information

SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES

SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES SECTION 5 ADDRESS GENERATION UNIT AND ADDRESSING MODES This section contains three major subsections. The first subsection describes the hardware architecture of the address generation unit (AGU); the

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Co-processor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016

Co-processor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016 8087 Math Processor Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu February 9, 2016 Introduction Need of Math Processor: In application where fast calculation is required Also where there

More information

5 MEMORY. Overview. Figure 5-0. Table 5-0. Listing 5-0.

5 MEMORY. Overview. Figure 5-0. Table 5-0. Listing 5-0. 5 MEMORY Figure 5-0. Table 5-0. Listing 5-0. Overview The ADSP-2191 contains a large internal memory and provides access to external memory through the DSP s external port. This chapter describes the internal

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The Motorola DSP56300 family of digital signal processors uses a programmable, 24-bit, fixed-point core. This core is a high-performance, single-clock-cycle-per-instruction engine

More information

CS401 - Computer Architecture and Assembly Language Programming Glossary By

CS401 - Computer Architecture and Assembly Language Programming Glossary By CS401 - Computer Architecture and Assembly Language Programming Glossary By absolute address : A virtual (not physical) address within the process address space that is computed as an absolute number.

More information

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store.

The von Neumann Architecture. IT 3123 Hardware and Software Concepts. The Instruction Cycle. Registers. LMC Executes a Store. IT 3123 Hardware and Software Concepts February 11 and Memory II Copyright 2005 by Bob Brown The von Neumann Architecture 00 01 02 03 PC IR Control Unit Command Memory ALU 96 97 98 99 Notice: This session

More information

INTRODUCTION TO DIGITAL SIGNAL PROCESSOR

INTRODUCTION TO DIGITAL SIGNAL PROCESSOR INTRODUCTION TO DIGITAL SIGNAL PROCESSOR By, Snehal Gor snehalg@embed.isquareit.ac.in 1 PURPOSE Purpose is deliberately thought-through goal-directedness. - http://en.wikipedia.org/wiki/purpose This document

More information

Question Bank Part-A UNIT I- THE 8086 MICROPROCESSOR 1. What is microprocessor? A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary information

More information

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4

15CS44: MICROPROCESSORS AND MICROCONTROLLERS. QUESTION BANK with SOLUTIONS MODULE-4 15CS44: MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK with SOLUTIONS MODULE-4 1) Differentiate CISC and RISC architectures. 2) Explain the important design rules of RISC philosophy. The RISC philosophy

More information

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures Storage I/O Summary Storage devices Storage I/O Performance Measures» Throughput» Response time I/O Benchmarks» Scaling to track technological change» Throughput with restricted response time is normal

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Introduction to Computer Science. Homework 1

Introduction to Computer Science. Homework 1 Introduction to Computer Science Homework. In each circuit below, the rectangles represent the same type of gate. Based on the input and output information given, identify whether the gate involved is

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

EE-123. An Overview of the ADSP-219x Pipeline Last modified 10/13/00

EE-123. An Overview of the ADSP-219x Pipeline Last modified 10/13/00 a Engineer To Engineer Note EE-123 Technical Notes on using Analog Devices DSP components and development tools Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com,

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

Fixed-Point Math and Other Optimizations

Fixed-Point Math and Other Optimizations Fixed-Point Math and Other Optimizations Embedded Systems 8-1 Fixed Point Math Why and How Floating point is too slow and integers truncate the data Floating point subroutines: slower than native, overhead

More information

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision. a SHARC Processor ABOUT SILICON ANOMALIES These anomalies represent the currently known differences between revisions of the SHARC product(s) and the functionality specified in the data sheet(s) and the

More information

Computer Organization and Technology Processor and System Structures

Computer Organization and Technology Processor and System Structures Computer Organization and Technology Processor and System Structures Assoc. Prof. Dr. Wattanapong Kurdthongmee Division of Computer Engineering, School of Engineering and Resources, Walailak University

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

ARM processor organization

ARM processor organization ARM processor organization P. Bakowski bako@ieee.org ARM register bank The register bank,, which stores the processor state. r00 r01 r14 r15 P. Bakowski 2 ARM register bank It has two read ports and one

More information

An introduction to Digital Signal Processors (DSP) Using the C55xx family

An introduction to Digital Signal Processors (DSP) Using the C55xx family An introduction to Digital Signal Processors (DSP) Using the C55xx family Group status (~2 minutes each) 5 groups stand up What processor(s) you are using Wireless? If so, what technologies/chips are you

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING UTN - FRBA 2011 www.electron.frba.utn.edu.ar/dplab Introduction Why Digital? A brief comparison with analog. Advantages Flexibility. Easily modifiable and upgradeable.

More information

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1

Computer organization by G. Naveen kumar, Asst Prof, C.S.E Department 1 Pipelining and Vector Processing Parallel Processing: The term parallel processing indicates that the system is able to perform several operations in a single time. Now we will elaborate the scenario,

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

Exercise 3-1. The Program Controller EXERCISE OBJECTIVES

Exercise 3-1. The Program Controller EXERCISE OBJECTIVES Exercise 3-1 The Program Controller EXERCISE OBJECTIVES Upon completion of this exercise, you will be familiar with the function of the hardware and software features that digital signal processors have

More information

Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

More information

Digital Signal Processors

Digital Signal Processors CHAPTER 28 Digital Signal Processors Digital Signal Processing is carried out by mathematical operations. In comparison, word processing and similar programs merely rearrange stored data. This means that

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING CHAPTER 2 8051 ASSEMBLY LANGUAGE PROGRAMMING Registers Register are used to store information temporarily: A byte of data to be processed An address pointing to the data to be fetched The vast majority

More information

Mike Smith, Quirks and SHARCs. When equals 2, but 2 * 2 is not always 4. Page 1 of 15 Developed 2004/01/26.

Mike Smith, Quirks and SHARCs. When equals 2, but 2 * 2 is not always 4. Page 1 of 15 Developed 2004/01/26. Page 1 of 15 Developed 2004/01/26 Quirks and SHARCs When 1 plus 1 equals 2, But 2 times 2 does not always equal 4 Mike Smith, Electrical and Computer Engineering, University of Calgary, Calgary, Alberta,

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-134 Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp Copyright 2001, Analog Devices, Inc. All rights

More information

4 MAC INSTRUCTIONS. Figure 4-0. Table 4-0. Listing 4-0.

4 MAC INSTRUCTIONS. Figure 4-0. Table 4-0. Listing 4-0. 4 MAC INSTRUCTIONS Figure 4-0. Table 4-0. Listing 4-0. The instruction set provides MAC instructions for performing high-speed multiplication and multiply with cumulative add/subtract operations. MAC instructions

More information

EMBEDDED SYSTEM DESIGN (10EC74)

EMBEDDED SYSTEM DESIGN (10EC74) UNIT 2 The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A First Look, Embedded Systems-An Instruction Set View, Embedded

More information

This section covers the MIPS instruction set.

This section covers the MIPS instruction set. This section covers the MIPS instruction set. 1 + I am going to break down the instructions into two types. + a machine instruction which is directly defined in the MIPS architecture and has a one to one

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

SHARC Embedded Processor ADSP-21261

SHARC Embedded Processor ADSP-21261 a SUMMARY High performance 32-bit/40-bit floating-point processor Code compatibility at assembly level, uses the same instruction set as other SHARC DSPs Single-instruction multiple-data (SIMD) computational

More information

1. What is Microprocessor? Give the power supply & clock frequency of 8085?

1. What is Microprocessor? Give the power supply & clock frequency of 8085? 1. What is Microprocessor? Give the power supply & clock frequency of 8085? A microprocessor is a multipurpose, programmable logic device that reads binary instructions from a storage device called memory

More information

The SHARC in the C. Mike Smith

The SHARC in the C. Mike Smith M. Smith -- The SHARC in the C Page 1 of 9 The SHARC in the C Mike Smith Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada T2N 1N4 Contact Person: M. Smith Phone:

More information

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR.

COA. Prepared By: Dhaval R. Patel Page 1. Q.1 Define MBR. Q.1 Define MBR. MBR( Memory buffer register) A Memory Buffer Register (MBR) is the register in a computers processor that stores the data being transferred to and from the devices It allowing the processor

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Digital IP Cell 8-bit Microcontroller PE80

Digital IP Cell 8-bit Microcontroller PE80 1. Description The is a Z80 compliant processor soft-macro - IP block that can be implemented in digital or mixed signal ASIC designs. The Z80 and its derivatives and clones make up one of the most commonly

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information