CIS 2107 Computer Systems and Low-Level Programming Spring 2012 Final

Size: px
Start display at page:

Download "CIS 2107 Computer Systems and Low-Level Programming Spring 2012 Final"

Transcription

1 Spring 2012 Name: Page Points Score Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. Unless you are told otherwise, you may use any functions in the Standard C Library. For each of the questions of this quiz, you can assume the following sizes for C data types: type bytes char 1 short 2 int 4 long 8 float 4 double 8 void* 4 i

2 1. Please place the letter of the best answer for each in the answer line. A L1 B loader C nanoseconds D cylinder E L2 F data G DRAM H BSS I SRAM J compiler K track L EAX M seconds N instruction pointer or program counter O flash P sector Q heap R magnetic disk S assembler T stack U locality V preprocessor W symbol table X CPU Y EBP Z milliseconds (1 point) (a) Translates a high level language program into assembly language. (a) (1 point) (b) Roughly one million times slower, cheaper, and larger than main memory or cache. (1 point) (c) Malloc and free manage this area of memory. (1 point) (d) Translates assembly language into machine code. (1 point) (e) Segment for area of memory allocated by malloc( ). (1 point) (f) Tendency for programs to access multiple objects in a block. (1 point) (g) Translates assembly language programs into machine language. (1 point) (h) Area of memory used for initialized global variables. (b) (c) (d) (e) (f) (g) (h) (1 point) (i) In a collection of disk platters, a set of tracks equidistant from the center of the platter. (i) (1 point) (j) Processor register that contains the address of the next instruction to be executed. (1 point) (k) Contains the return value of functions which return ints. (1 point) (l) The larger but slower cache. Still much faster than main memory. (1 point) (m) Time it takes to read from disk. (1 point) (n) Time to read from on-cpu cache. (j) (k) (l) (m) (n) 1 of 13 exam continues...

3 (2 points) 2. What is in base 2? (2 points) 3. What is 5696C1B 16 + DA in base 16? C 1 B 16 + D A Some tricky declarations. Write a very brief description in English of what is declared. For example, if the question is int func(int A[]), you d write, func is a function which is passed an array of int and returns an int. (1 point) (a) char (*p)[10]; (1 point) (b) int (*p[ ])( ); (1 point) (c) int (*p( ))[ ]; out of a possible 7 2 of 13 exam continues...

4 (6 points) 5. Encoding a floating-point number. (a) What is in fixed-point binary? (b) What is in fixed-point binary? (c) In a 32-bit C float variable, how many bits are used for the sign? (d)... how many for the exponent? (e)... how many for the mantissa? (c) (d) (f) What is the value for bias when exponents are stored using as many bits as you ve put for your answer to part d? (e) (g) How would be stored in a C float variable? out of a possible 6 3 of 13 exam continues...

5 (1 point) (a) x y 6. Some bit operations. If we have char x = 0x5C, y = 0xA9;, what is the result of the following operations? Your answer must be in the form of exactly two hex digits 1. (a) (1 point) (b) x y (b) (1 point) (c) x<<2 (c) (1 point) (d) x (d) (1 point) (e) x&0x0f (e) 1 Ignore the possibility of promotion to 32-bit ints. Behave as though we re living in the land of 8-bit arithmetic. out of a possible 5 4 of 13 question 6 continues...

6 (1 point) (f) x y (f) (1 point) (g) x&&1 (g) (1 point) (h) x-y (h) (1 point) (i)!!x (i) (1 point) (j) x&y (j)

7 (5 points) 7. If I have the following: int main(void) { int a=10; int b=20; int *p=&a; int *q=p; char *cp = (char*)q; (*p)--; q--; cp--; and memory is laid out like this: cp 1000 q 1004 p 1008 b 1012 a 1016 what do you see if you print: (a) a (b) &a (c) b (d) p (e) *p (f) &p (g) q (h) *q (i) cp (j) &cp (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) out of a possible 5 6 of 13 exam continues...

8 (10 points) 8. Use the following code to answer the questions. Data sizes are specified on the cover of the exam. 1 struct Stuff { 2 int x; 3 int *p; 4 int A[10]; 5 }; 6 7 int main(void) 8 { 9 struct Stuff s; 10 int A[10]; 11 int x, y; 12 char str[24]; x=10; 15 y=20; 16 A[0]=30; 17 strcpy(str, "almost quitting time"); 18 s.x=40; 19 s.p=&y; 20 s.a[0]=50; func01(a); 23 func02(str); 24 func03(str); 25 func04(s); return 0; 28 } void func01(int arr[]) { 31 arr[0]=3333; 32 } void func02(char *s) { 35 strcpy(s, "yeah, summer vacation"); 36 } void func03(char *s) { 39 s = malloc(40); 40 strcpy(s, "how many more pages is this thing?"); 41 } void func04(struct Stuff s) { 44 s.x=4444; 45 *(s.p)=2222; 46 s.a[0]=5555; 47 s.p=malloc(sizeof(int)); 48 *(s.p)=2020; 49 } (a) How many bytes are passed to the function func01( )? (b) How many bytes are passed to the function func02( )? (c) How many bytes are passed to the function func04( )? What is the value of each of the following after func04( ) has been called? (d) x (e) y (f) A[0] (g) s.x (h) s.a[0] (i) *(s.p) (j) str (What s the string?) (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) out of a possible 10 7 of 13 exam continues...

9 (4 points) 9. For each of the following, suppose that %eax contains the value x, %ecx contains y. What s stored in %edx after the each operation? expression leal (%eax,%ecx, 4), %edx result leal 0xB(,%eax,8), %edx leal 5(%eax,%eax,8), %edx leal 0xE(%eax), %edx 10. Given the C function: int func(int x, int y) { int t;... } return x+y-t; Immediately before func( ) is called, i.e., immediately before the instruction call func, %ebp contains the value and %esp contains the value Before func( ) exits (more precisely, just before the leave and return instuctions are executed), what is: (1 point) (a) stored in %ebp? (1 point) (b) stored in %esp? (1 point) (c) the location of x? (1 point) (d) the location of y? (1 point) (e) the most likely location of t? (1 point) (f) the location of the return value? (1 point) (g) the location of the return address? (a) (b) (c) (d) (e) (f) (g) out of a possible 11 8 of 13 exam continues...

10 (5 points) 11. Write a function which is passed an unsigned int x, and an int n. The function returns the nth least significant nibble of x. For example, if x is 0x , and n is 2, the function returns 5. (5 points) 12. Write the function called slice(int A[ ], int s, int e) which returns a new array consisting of all of the elements of A[ ] from A[s] to A[e] inclusive. It is up to the caller to free the memory allocated by slice. If e<s, the function returns NULL. out of a possible 10 9 of 13 exam continues...

11 (9 points) 13. Write a C function equivalent to the following assembly (no credit for an answer containing inline assembly). 1.section.text 2.globl mystery 3.type 4 mystery: 5 pushl %ebp 6 movl %esp, %ebp 7 xorl %eax, %eax 8 xorl %ecx, %ecx 9 movl 8(%ebp), %edx 10 begin: 11 cmpl 12(%ebp), %ecx 12 jge done 13 addl (%edx, %ecx, 4), %eax 14 incl %ecx 15 jmp begin 16 done: 17 movl %ebp, %esp 18 popl %ebp 19 ret out of a possible 9 10 of 13 exam continues...

12 (8 points) 14. Implement the function void reverse(int A[ ], int len), which reverses the order of A[ ], an array of len items. Do not use the [ ] operator. No credit will be given for solutions which use the [ ] operator, or which declare len or more elements of temporary storage. void reverse(int A[ ], int len) { out of a possible 8 11 of 13 exam continues...

13 (10 points) 15. A common way of storing a spreadsheet is comma-separated text. For example, the following line in a spreadsheet: apple banana cherry some fruit beginning with d could be stored as apple, banana, cherry, some fruit beginning with d. Write the function char **split(char *s) which is passed s, which is a string of comma-separated values, and returns an array of string containing the values in the line terminated by a NULL pointer. Using our current example, we d return: w[0] w[1] w[2] w[3] w[4] apple banana cherry some fruit beginning with d NULL split( ) should return NULL on failure. Hint: if there are n commas in s, there will be n + 1 words. You may use any function in the Standard C Library. out of a possible of 13 question 15 continues...

14 (extra space) 13 of 13 end of exam

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Fall 2011 Name: Page Points Score 1 5 2 10 3 10 4 7 5 8 6 15 7 4 8 7 9 16 10 18 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of

More information

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Solutions

CIS 2107 Computer Systems and Low-Level Programming Fall 2011 Midterm Solutions Fall 2011 Name: Page Points Score 1 7 2 10 3 8 4 13 6 17 7 4 8 16 9 15 10 10 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of the

More information

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016 CS 31: Intro to Systems Functions and the Stack Martin Gagne Swarthmore College February 23, 2016 Reminders Late policy: you do not have to send me an email to inform me of a late submission before the

More information

CIS 2107 Computer Systems and Low-Level Programming Fall 2010 Midterm

CIS 2107 Computer Systems and Low-Level Programming Fall 2010 Midterm Fall 2010 Name: Page Points Score 1 8 2 9 3 11 4 10 5 11 6 1 7 9 8 21 9 10 10 10 Total: 100 Instructions The exam is closed book, closed notes. You may not use a calculator, cell phone, etc. For each of

More information

1 /* file cpuid2.s */ 4.asciz "The processor Vendor ID is %s \n" 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start.

1 /* file cpuid2.s */ 4.asciz The processor Vendor ID is %s \n 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start. 1 /* file cpuid2.s */ 2.section.data 3 output: 4.asciz "The processor Vendor ID is %s \n" 5.section.bss 6.lcomm buffer, 12 7.section.text 8.globl _start 9 _start: 10 movl $0, %eax 11 cpuid 12 movl $buffer,

More information

Process Layout and Function Calls

Process Layout and Function Calls Process Layout and Function Calls CS 6 Spring 07 / 8 Process Layout in Memory Stack grows towards decreasing addresses. is initialized at run-time. Heap grow towards increasing addresses. is initialized

More information

Process Layout, Function Calls, and the Heap

Process Layout, Function Calls, and the Heap Process Layout, Function Calls, and the Heap CS 6 Spring 20 Prof. Vern Paxson TAs: Devdatta Akhawe, Mobin Javed, Matthias Vallentin January 9, 20 / 5 2 / 5 Outline Process Layout Function Calls The Heap

More information

CS 3843 Final Exam Fall 2012

CS 3843 Final Exam Fall 2012 CS 3843 Final Exam Fall 2012 Name (Last), (First) ID Please indicate your session: Morning Afternoon You may use a calculator and two sheets of notes on this exam, but no other materials and no computer.

More information

CS , Fall 2001 Exam 1

CS , Fall 2001 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2001 Exam 1 October 9, 2001 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers.

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers. 15-213 Introduction to Computer Systems Exam 1 February 22, 2005 Name: Andrew User ID: Recitation Section: This is an open-book exam. Notes are permitted, but not computers. Write your answer legibly in

More information

CS , Fall 2004 Exam 1

CS , Fall 2004 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2004 Exam 1 Tuesday October 12, 2004 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front.

More information

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1 Homework In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, 361-367 Practice Exam 1 1 In-line Assembly Code The gcc compiler allows you to put assembly instructions in-line

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only Instructions: The following questions use the AT&T (GNU) syntax for x86-32 assembly code, as in the course notes. Submit your answers to these questions to the Curator as OQ05 by the posted due date and

More information

You may work with a partner on this quiz; both of you must submit your answers.

You may work with a partner on this quiz; both of you must submit your answers. Instructions: Choose the best answer for each of the following questions. It is possible that several answers are partially correct, but one answer is best. It is also possible that several answers are

More information

CS , Fall 2002 Exam 1

CS , Fall 2002 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2002 Exam 1 October 8, 2002 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front. Write

More information

CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009

CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009 CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009 Name Score out of 70 UMBC Username Notes: a. Please write clearly. Unreadable answers receive no credit. b. For TRUE/FALSE questions, write the

More information

Introduction to Computer Systems. Exam 1. February 22, Model Solution fp

Introduction to Computer Systems. Exam 1. February 22, Model Solution fp 15-213 Introduction to Computer Systems Exam 1 February 22, 2005 Name: Andrew User ID: Recitation Section: Model Solution fp This is an open-book exam. Notes are permitted, but not computers. Write your

More information

Section 4: Threads and Context Switching

Section 4: Threads and Context Switching CS162 September 19-20, 2017 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Join................................................ 3 3.2

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2 CS162 September 15, 2016 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Join................................................ 3 3.2 Stack

More information

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature CSE2421 FINAL EXAM SPRING 2013 Name KEY Instructions: This is a closed-book, closed-notes, closed-neighbor exam. Only a writing utensil is needed for this exam. No calculators allowed. If you need to go

More information

Assembly I: Basic Operations. Jo, Heeseung

Assembly I: Basic Operations. Jo, Heeseung Assembly I: Basic Operations Jo, Heeseung Moving Data (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

CPEG421/621 Tutorial

CPEG421/621 Tutorial CPEG421/621 Tutorial Compiler data representation system call interface calling convention Assembler object file format object code model Linker program initialization exception handling relocation model

More information

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung ASSEMBLY I: BASIC OPERATIONS Jo, Heeseung MOVING DATA (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Datorarkitektur, 2009 Tentamen

Datorarkitektur, 2009 Tentamen Namn: Personnummer: Datorarkitektur, 2009 Tentamen 2009-03-13 Instructions: Make sure that your exam is not missing any sheets, then write your full name on the front. Write your answers in the space provided

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View! Processor

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View Processor

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Final Exam. Fall Semester 2015 KAIST EE209 Programming Structures for Electrical Engineering. Name: Student ID:

Final Exam. Fall Semester 2015 KAIST EE209 Programming Structures for Electrical Engineering. Name: Student ID: Fall Semester 2015 KAIST EE209 Programming Structures for Electrical Engineering Final Exam Name: This exam is closed book and notes Read the questions carefully and focus your answers on what has been

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

CPS104 Recitation: Assembly Programming

CPS104 Recitation: Assembly Programming CPS104 Recitation: Assembly Programming Alexandru Duțu 1 Facts OS kernel and embedded software engineers use assembly for some parts of their code some OSes had their entire GUIs written in assembly in

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

Assembly I: Basic Operations. Computer Systems Laboratory Sungkyunkwan University

Assembly I: Basic Operations. Computer Systems Laboratory Sungkyunkwan University Assembly I: Basic Operations Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moving Data (1) Moving data: movl source, dest Move 4-byte ( long )

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

Midterm Exam CSC February 2009

Midterm Exam CSC February 2009 Midterm Exam CSC 252 26 February 2009 Directions; PLEASE READ This exam has 7 questions, all of which have subparts. Each question indicates its point value. The total is 90 points. Questions 3(d) and

More information

CS 201 Winter 2014 (Karavanic) Final Exam

CS 201 Winter 2014 (Karavanic) Final Exam CS 201 Winter 2014 (Karavanic) Final Exam Your Name: (1 point) Instructions: - Be sure to write your name on the first sheet. - All answers, and all work submitted in support of answers, should be written

More information

CS61, Fall 2012 Midterm Review Section

CS61, Fall 2012 Midterm Review Section CS61, Fall 2012 Midterm Review Section (10/16/2012) Q1: Hexadecimal and Binary Notation - Solve the following equations and put your answers in hex, decimal and binary. Hexadecimal Decimal Binary 15 +

More information

EECS 213 Fall 2007 Midterm Exam

EECS 213 Fall 2007 Midterm Exam Full Name: EECS 213 Fall 2007 Midterm Exam Instructions: Make sure that your exam is not missing any sheets, then write your full name on the front. Write your answers in the space provided below the problem.

More information

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Implementing Threads Operating Systems In Depth II 1 Copyright 2018 Thomas W Doeppner All rights reserved The Unix Address Space stack dynamic bss data text Operating Systems In Depth II 2 Copyright 2018

More information

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View Computer Architecture I Instruction Set Architecture Assembly Language View Processor state Registers, memory, Instructions addl, movl, andl, How instructions are encoded as bytes Layer of Abstraction

More information

Second Part of the Course

Second Part of the Course CSC 2400: Computer Systems Towards the Hardware 1 Second Part of the Course Toward the hardware High-level language (C) assembly language machine language (IA-32) 2 High-Level Language g Make programming

More information

Final exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Dec 20, Student's name: Student ID:

Final exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Dec 20, Student's name: Student ID: Fall term 2012 KAIST EE209 Programming Structures for EE Final exam Thursday Dec 20, 2012 Student's name: Student ID: The exam is closed book and notes. Read the questions carefully and focus your answers

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

Instruction Set Architecture

Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CISC 360 Instruction Set Architecture

CISC 360 Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CSE351 Autumn 2014 Midterm Exam (29 October 2014)

CSE351 Autumn 2014 Midterm Exam (29 October 2014) CSE351 Autumn 2014 Midterm Exam (29 October 2014) (Version A) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming I: Introduction Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

Machine Programming 4: Structured Data

Machine Programming 4: Structured Data Machine Programming 4: Structured Data CS61, Lecture 6 Prof. Stephen Chong September 20, 2011 Announcements Assignment 2 (Binary bomb) due Thursday We are trying out Piazza to allow class-wide questions

More information

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm

More information

System Programming and Computer Architecture (Fall 2009)

System Programming and Computer Architecture (Fall 2009) System Programming and Computer Architecture (Fall 2009) Recitation 2 October 8 th, 2009 Zaheer Chothia Email: zchothia@student.ethz.ch Web: http://n.ethz.ch/~zchothia/ Topics for Today Classroom Exercise

More information

15-213/18-243, Fall 2010 Exam 1 - Version A

15-213/18-243, Fall 2010 Exam 1 - Version A Andrew login ID: Full Name: Section: 15-213/18-243, Fall 2010 Exam 1 - Version A Tuesday, September 28, 2010 Instructions: Make sure that your exam is not missing any sheets, then write your Andrew login

More information

UW CSE 351, Winter 2013 Midterm Exam

UW CSE 351, Winter 2013 Midterm Exam Full Name: Student ID: UW CSE 351, Winter 2013 Midterm Exam February 15, 2013 Instructions: Make sure that your exam is not missing any of the 9 pages, then write your full name and UW student ID on the

More information

CSE351 Autumn 2014 Midterm Exam (29 October 2014)

CSE351 Autumn 2014 Midterm Exam (29 October 2014) CSE351 Autumn 2014 Midterm Exam (29 October 2014) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove

More information

15-213/18-213, Fall 2011 Exam 1

15-213/18-213, Fall 2011 Exam 1 Andrew ID (print clearly!): Full Name: 15-213/18-213, Fall 2011 Exam 1 Tuesday, October 18, 2011 Instructions: Make sure that your exam is not missing any sheets, then write your Andrew ID and full name

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Assembly Programming Storage - Assembly Programming: Recap - project2 - Structure/ Array Representation - Structure Alignment Rutgers University Liu

More information

Introduction Selected details Live demos. HrwCC. A self-compiling C-compiler. Stefan Huber Christian Rathgeb Stefan Walkner

Introduction Selected details Live demos. HrwCC. A self-compiling C-compiler. Stefan Huber Christian Rathgeb Stefan Walkner HrwCC A self-compiling C-compiler. Stefan Huber Christian Rathgeb Stefan Walkner Universität Salzburg VP Compiler Construction June 26, 2007 Overview 1 Introduction Basic properties Features 2 Selected

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

CSE351 Spring 2018, Midterm Exam April 27, 2018

CSE351 Spring 2018, Midterm Exam April 27, 2018 CSE351 Spring 2018, Midterm Exam April 27, 2018 Please do not turn the page until 11:30. Last Name: First Name: Student ID Number: Name of person to your left: Name of person to your right: Signature indicating:

More information

COMP 210 Example Question Exam 2 (Solutions at the bottom)

COMP 210 Example Question Exam 2 (Solutions at the bottom) _ Problem 1. COMP 210 Example Question Exam 2 (Solutions at the bottom) This question will test your ability to reconstruct C code from the assembled output. On the opposing page, there is asm code for

More information

15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011

15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011 Andrew login ID: Full Name: Section: 15-213/18-243, Summer 2011 Exam 1 Tuesday, June 28, 2011 Instructions: Make sure that your exam is not missing any sheets, then write your Andrew login ID, full name,

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College February 9, 2016 Reading Quiz Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between

More information

CS 31: Intro to Systems Arrays, Structs, Strings, and Pointers. Kevin Webb Swarthmore College March 1, 2016

CS 31: Intro to Systems Arrays, Structs, Strings, and Pointers. Kevin Webb Swarthmore College March 1, 2016 CS 31: Intro to Systems Arrays, Structs, Strings, and Pointers Kevin Webb Swarthmore College March 1, 2016 Overview Accessing things via an offset Arrays, Structs, Unions How complex structures are stored

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

Representation of Information

Representation of Information Representation of Information CS61, Lecture 2 Prof. Stephen Chong September 6, 2011 Announcements Assignment 1 released Posted on http://cs61.seas.harvard.edu/ Due one week from today, Tuesday 13 Sept

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING PREVIEW SLIDES 16, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING PREVIEW SLIDES 16, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING PREVIEW SLIDES 16, SPRING 2013 CONST POINTERS CONST POINTERS 4 ways to declare pointers in combination with const:!! int *ptr! const int *ptr!

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures ISAs Brief history of processors and architectures C, assembly, machine code Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface contain?

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects

More information

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012)

CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) CSE351 Autumn 2012 Midterm Exam (5 Nov 2012) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures! ISAs! Brief history of processors and architectures! C, assembly, machine code! Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface

More information

x86 assembly CS449 Fall 2017

x86 assembly CS449 Fall 2017 x86 assembly CS449 Fall 2017 x86 is a CISC CISC (Complex Instruction Set Computer) e.g. x86 Hundreds of (complex) instructions Only a handful of registers RISC (Reduced Instruction Set Computer) e.g. MIPS

More information

15-213/18-243, Spring 2011 Exam 1

15-213/18-243, Spring 2011 Exam 1 Andrew login ID: Full Name: Section: 15-213/18-243, Spring 2011 Exam 1 Thursday, March 3, 2011 (v1) Instructions: Make sure that your exam is not missing any sheets, then write your Andrew login ID, full

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

Assembly level Programming. 198:211 Computer Architecture. (recall) Von Neumann Architecture. Simplified hardware view. Lecture 10 Fall 2012

Assembly level Programming. 198:211 Computer Architecture. (recall) Von Neumann Architecture. Simplified hardware view. Lecture 10 Fall 2012 19:211 Computer Architecture Lecture 10 Fall 20 Topics:Chapter 3 Assembly Language 3.2 Register Transfer 3. ALU 3.5 Assembly level Programming We are now familiar with high level programming languages

More information

Arrays. Young W. Lim Mon. Young W. Lim Arrays Mon 1 / 17

Arrays. Young W. Lim Mon. Young W. Lim Arrays Mon 1 / 17 Arrays Young W. Lim 2017-02-06 Mon Young W. Lim Arrays 2017-02-06 Mon 1 / 17 Outline 1 Introduction References Array Background Young W. Lim Arrays 2017-02-06 Mon 2 / 17 Based on "Self-service Linux: Mastering

More information

CMSC 313 Lecture 12 [draft] How C functions pass parameters

CMSC 313 Lecture 12 [draft] How C functions pass parameters CMSC 313 Lecture 12 [draft] How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP removes an

More information

Low-Level Essentials for Understanding Security Problems Aurélien Francillon

Low-Level Essentials for Understanding Security Problems Aurélien Francillon Low-Level Essentials for Understanding Security Problems Aurélien Francillon francill@eurecom.fr Computer Architecture The modern computer architecture is based on Von Neumann Two main parts: CPU (Central

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher

Reverse Engineering II: Basics. Gergely Erdélyi Senior Antivirus Researcher Reverse Engineering II: Basics Gergely Erdélyi Senior Antivirus Researcher Agenda Very basics Intel x86 crash course Basics of C Binary Numbers Binary Numbers 1 Binary Numbers 1 0 1 1 Binary Numbers 1

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Machine Language, Assemblers and Linkers"

Machine Language, Assemblers and Linkers Machine Language, Assemblers and Linkers 1 Goals for this Lecture Help you to learn about: IA-32 machine language The assembly and linking processes 2 1 Why Learn Machine Language Last stop on the language

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College September 25, 2018 Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between programmer

More information

CS241 Computer Organization Spring Loops & Arrays

CS241 Computer Organization Spring Loops & Arrays CS241 Computer Organization Spring 2015 Loops & Arrays 2-26 2015 Outline! Loops C loops: while, for, do-while Translation to jump to middle! Arrays Read: CS:APP2 Chapter 3, sections 3.6 3.7 IA32 Overview

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element Bottom Increasing

More information

231 Spring Final Exam Name:

231 Spring Final Exam Name: 231 Spring 2010 -- Final Exam Name: No calculators. Matching. Indicate the letter of the best description. (1 pt. each) 1. address 2. object code 3. condition code 4. byte 5. ASCII 6. local variable 7..global

More information

W4118: PC Hardware and x86. Junfeng Yang

W4118: PC Hardware and x86. Junfeng Yang W4118: PC Hardware and x86 Junfeng Yang A PC How to make it do something useful? 2 Outline PC organization x86 instruction set gcc calling conventions PC emulation 3 PC board 4 PC organization One or more

More information

Important From Last Time

Important From Last Time Important From Last Time Embedded C Pros and cons Macros and how to avoid them Intrinsics Interrupt syntax Inline assembly Today Advanced C What C programs mean How to create C programs that mean nothing

More information

CS , Spring 2004 Exam 1

CS , Spring 2004 Exam 1 Andrew login ID: Full Name: CS 15-213, Spring 2004 Exam 1 February 26, 2004 Instructions: Make sure that your exam is not missing any sheets (there should be 15), then write your full name and Andrew login

More information

Computer Systems CEN591(502) Fall 2011

Computer Systems CEN591(502) Fall 2011 Computer Systems CEN591(502) Fall 2011 Sandeep K. S. Gupta Arizona State University 9 th lecture Machine-Level Programming (4) (Slides adapted from CSAPP) Announcements Potentially Makeup Classes on Sat

More information

Important From Last Time

Important From Last Time Important From Last Time Embedded C Ø Pros and cons Macros and how to avoid them Intrinsics Interrupt syntax Inline assembly Today Advanced C What C programs mean How to create C programs that mean nothing

More information

CS241 Computer Organization Spring Introduction to Assembly

CS241 Computer Organization Spring Introduction to Assembly CS241 Computer Organization Spring 2015 Introduction to Assembly 2-05 2015 Outline! Rounding floats: round-to-even! Introduction to Assembly (IA32) move instruction (mov) memory address computation arithmetic

More information

Assembly Language: IA-32 Instructions

Assembly Language: IA-32 Instructions Assembly Language: IA-32 Instructions 1 Goals of this Lecture Help you learn how to: Manipulate data of various sizes Leverage more sophisticated addressing modes Use condition codes and jumps to change

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions CS220 Logic Design Outline Calling Conventions Multi-module Programs 1 Calling and Returning We have already seen how the call instruction is used to execute a subprogram. call pushes the address of the

More information