Requirements, Partitioning, paging, and segmentation

Size: px
Start display at page:

Download "Requirements, Partitioning, paging, and segmentation"

Transcription

1 Requirements, Partitioning, paging, and segmentation

2 Main Memory: The Big Picture kernel memory proc struct kernel stack/u area Stack kernel stack/u area Stack kernel stack/u area Stack Data Text (shared) Data Text (shared) Data Text (shared) 2

3 Memory Management Main memory holds The kernel Processes that are running, ready, or blocked Memory management Efficient and effective allocation of main memory to processes Performed by the operating system with support from the hardware 3

4 Requirements Relocation Protection Sharing Logical organization Physical organization 4

5 Relocation Why/What: Programmer does not know where the program will be placed in memory when it is executed While the program is executing, it may be swapped to disk and returned to main memory at a different location Consequences/Constraints: Memory references must be translated in the code to actual physical memory address 5

6 Protection Why/What: Protect process from interference by other processes Processes require permission to access memory in another processes address space. Consequences/Constraints: Impossible to check addresses at compile/link time since the program could be relocated Must be checked at run time 6

7 Sharing Allow several processes to access the same data Allow multiple process to share the same program text rather than have their own separate copy 7

8 Logical Organization Programs organized into modules stack, text, uninitialized data, or logical modules such as libraries, objects, etc. Code modules may be compiled independently Different degrees of protection given to modules read-only, execute-only Share modules 8

9 Unix Process Memory Layout Low Address Text Initialized Data Uninitialized Data (BSS) Heap Read from program file by exec Zeroed by exec High Address Stack argv[ ], env[ ] 9

10 Physical Organization Memory organized into two levels: main and secondary memory. Memory available for a program plus its data may be insufficient Overlaying allows various modules to be assigned the same region of memory Main memory relatively fast, expensive and volatile Secondary memory relatively slow, cheaper, larger capacity, and non-volatile 10

11 Hardware Support How to partition memory How to keep track of which partition belongs to which process How to prevent a process from accessing a partition that has not been allocated to it 11

12 Section 7.1 Assumptions Processes are never partially in memory Processes are stored contiguously 12

13 Memory Partitioning Virtual Memory Segmentation and/or Paging Non-Virtual memory approaches Partitioning - Fixed and Dynamic simple Paging simple Segmentation 13

14 Fixed Partitioning Partition available memory into regions with fixed boundaries Equal-size partitions Process size <= partition size can be loaded into available partition If all partitions are full, the operating system can swap a process out of a partition If program size > partition size, then programmer must use overlays 14

15 Fixed Partitioning - Equal Size Main memory use is inefficient Internal Fragmentation - Part of partition unused Operating System 8 M 8 M process 1 Unused 8 M 8 M 3 M 8 M 15

16 Fixed partitioning - unequal sizes Lessens the problem of Internal Fragmentation Operating System 8 M 2 M process 1 6 M 8 M 3 M 8 M 12 M 16

17 Fixed partition: placement algorithm Equal-size partitions because all partitions are of equal size, it does not matter which partition is used Unequal-size partitions can assign each process to the smallest partition within which it will fit queue for each partition processes are assigned in such a way as to minimize wasted memory within a partition 17

18 One Process Queue per partition Operating System New Processes 18

19 One Process Queue for all partitions Operating System New Processes 19

20 Pros and cons of fixed partitioning Pros: Fixed partitioning is simple and very little OS support is required. Cons: Since number of partitions is fixed, it limits the degree of multi-programming It is inefficient with small processes. If the sizes of processes is known beforehand then a reasonable size can be decided on. 20

21 Dynamic Partitioning Partitions are created dynamically Partitions are of variable size and number Partition sizes are determined based on requests Disadvantages: External Fragmentation - small holes in memory between allocated partitions Placement is more complicated - Must use compaction to shift processes so they are contiguous and all free memory is in one block 21

22 Example Dynamic Partitioning 22

23 Dynamic partition: placement alg. Operating system must decide which free block to allocate to a process Best-fit algorithm Chooses block that is closest in size to the request Results in minimally sized fragments requiring compaction Worst performer overall 23

24 Dynamic partition: placement alg. First-fit algorithm Starts scanning from beginning and choose first available block that is large enough. May have many process loaded in the front end of memory Fastest Best 24

25 Dynamic partition: placement alg. Next-fit Scan memory from the location of the last allocation and chooses the next available block that is large enough More often allocate a block of memory at the end of memory where the largest block is found Compaction is required to obtain a large block at the end of memory Compaction is more frequent 25

26 8K alloc 16K block 8K 12K First Fit 12K Last allocated block (14K) 22K 18K Best Fit 6K 2K 8K 6K 8K 6K Allocated block 14K Free block Next Fit 14K 36K Before 20K After 26

27 Buddy System Fixed and dynamic partitioning have their drawbacks Fixed partitioning Limits number of active processes Uses space inefficiently if the sizes of the processes don t match with that of the partitions Dynamic partitioning More complex to maintain Includes overhead of compaction 27

28 Buddy System Entire space available is treated as a single block of size 2 U If a request for a block of size s such that 2 U-1 < s <= 2 U Allocated entire block Otherwise Split block into two equal buddies Continues until smallest block greater than or equal to s becomes available requests rounded to power of two 28

29 Buddy System Advantages: coalesces adjacent buffers Disadvantage: performance (recursive coalescing is expensive) poor api 29

30 Buddy System Allocation Begin with one large block Suppose we want a block of size

31 Buddy System Allocation Begin with one large block Recursively subdivide

32 Buddy System Allocation Begin with one large block Recursively subdivide

33 Buddy System Allocation Begin with one large block Recursively subdivide

34 Buddy System Allocation Begin with one large block Yield 2 blocks size

35 Buddy System Allocation Begin with one large block Yield 2 blocks size 16 One of those blocks can be given to the program

36 Deallocation and Coalescing

37 Deallocation and Coalescing When a block becomes free, it tries to rejoin its buddy A bit in its buddy tells whether the buddy is free If so, they can glue together and make a block twice as big

38 Deallocation and Coalescing

39 Deallocation and Coalescing

40 Deallocation and Coalescing

41 Deallocation and Coalescing Coalescing strategies: Prompt at the point of deallocation (right away) Delayed wait until it s necessary (at allocation) Thorough coalesce the entire heap Demand coalesce only to satisfy an allocation request

42 Relocation Absolute or physical memory addresses are Based on the partitions into which the process is loaded Determined when A process is first loaded A process is reloaded after being swapped out Compaction occurs Not knowable at compile or link time Executable files use logical or relocatable addresses Relative addresses are one example of logical addresses Logical addresses must be translated to physical addresses at run time 42

43 Hardware Support for Relocation Relative address Base Register Process Control Block Adder Program Bounds Register Comparator Absolute address Interrupt to operating system Data Stack Process image in main memory 43

44 Registers Used during Execution Assigned when a process enters the running state Base register starting address for the process Bounds register ending location of the process (where do the values come from?) Translate from relative addresses to physical addresses Base register is added to each relative address to produce absolute address If absolute address exceeds bounds register, an interrupt is generated to the operating system 44

45 Assumptions Sections 7.3 and 7.4 Processes are (still) never partially in memory Processes are not necessarily stored contiguously 45

46 Simple Paging Partition memory into equally sized pieces Pieces of memory are called frames Partition each process into frame-sized pieces Pieces of a process are called pages Pages are loaded in frames when process is loaded Not necessarily contiguous! No external fragmentation Internal fragmentation limited to last page Operating system maintains a page table for each process Contains an entry for each process page specifying the frame into which the page is loaded (when and how is the page table created?) Physical address = frame number * frame size + offset 46

47 A.0 A.1 B.0 B.1 A.0 A.1 C.0 B.0 B.1 A.0 A.1 C.0 A.0 A.1 C.0 A.0 A.1 D.0 D.1 D.2 D Process D Page Table 7 Free Frame List Memory frames

48 Address Translation in Paging To make it efficient, the page (frame) size is a power of 2 Given a (page #, offset), find (frame #, offset) 2 n > number of pages => n bits to hold the page number 2 k > number of frames => k bits to hold the frame number 2 m = number of bytes in a page => m bits to determine the offset within a page Logical address is concatenation nm Physical address is concatenation km where k is the frame corresponding to page n (obtained from the page table) 48

49 Address Translation in Paging Page # (n bits) Offset (m bit) Process Page Table: Frame # (k bits) Physical Address 49

50 Address translation e.g. Main memory Frame # Physical address Value 0 0 E 0 1 F Page # Logical Address Value 0 2 G 0 3 H 0 0 A 0 1 B 0 2 C 0 3 D 1 4 E 1 5 F 1 6 G Page # Frame # Page table 1 4? 1 5? 1 6? 1 7? 2 8 A 2 9 B 2 10 C 2 11 D 3 12? 1 7 H 3 13? 2 8 I 2 9 J 3 14? 3 15? 4 16 M 2 10 K 4 17 N 2 11 L 4 18 O 3 12 M 3 13 N 4 19 P 5 20 I 5 21 J 3 14 O 3 15 P Process 5 22 K 5 23 L 50

51 Segmentation Partition each process logical parts Pieces of a process are called segments For example, text segment, data segment, stack segment Segments are loaded in memory when process is loaded Not necessarily contiguous No internal fragmentation External fragmentation is a concern OS maintains a segment table for each process Contains an entry for each segment specifying the starting and ending addresses (when and how is the segment table created?) Physical address = starting address + offset 51

52 Address translation in segmentation Segment # Offset Process Segment Table: Length Base Address Physical Address 52

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Chapter 7 1 Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 1 Memory

More information

Memory Management. Memory Management Requirements

Memory Management. Memory Management Requirements Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated to ensure a reasonable supply of ready processes to consume available processor time 1 Memory Management

More information

Paging, and segmentation

Paging, and segmentation Paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 Big Picture

More information

Memory Management william stallings, maurizio pizzonia - sistemi operativi

Memory Management william stallings, maurizio pizzonia - sistemi operativi Memory Management 1 summary goals and requirements techniques that do not involve virtual memory 2 memory management tracking used and free memory primitives allocation of a certain amount of memory de-allocation

More information

Lecture 7. Memory Management

Lecture 7. Memory Management Lecture 7 Memory Management 1 Lecture Contents 1. Memory Management Requirements 2. Memory Partitioning 3. Paging 4. Segmentation 2 Memory Memory is an array of words or bytes, each with its own address.

More information

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358 Memory Management Reading: Silberschatz chapter 9 Reading: Stallings chapter 7 1 Outline Background Issues in Memory Management Logical Vs Physical address, MMU Dynamic Loading Memory Partitioning Placement

More information

Chapter 7 Memory Management

Chapter 7 Memory Management Operating Systems: Internals and Design Principles Chapter 7 Memory Management Ninth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that

More information

3. Memory Management

3. Memory Management Principles of Operating Systems CS 446/646 3. Memory Management René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Principles of Operating Systems CS 446/646

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Most demanding di aspect of an operating system Cost has dropped. Consequently size of main memory has expanded enormously. Can we say that we have enough still. Swapping in/out. Memory

More information

CIS Operating Systems Contiguous Memory Allocation. Professor Qiang Zeng Spring 2018

CIS Operating Systems Contiguous Memory Allocation. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Contiguous Memory Allocation Professor Qiang Zeng Spring 2018 Previous class Uniprocessor policies FCFS, Shortest Job First Round Robin Multilevel Feedback Queue Multiprocessor

More information

6. Which of the following operating systems was the predecessor of Microsoft MS-DOS? a. Dynix b. Minix c. CP/M

6. Which of the following operating systems was the predecessor of Microsoft MS-DOS? a. Dynix b. Minix c. CP/M CSCI 4500 / 8506 Sample Questions for Quiz 5 Covers Module 9 1. Why might a system treat memory allocation requests from the operating system itself differently from those generated by an application?

More information

Process. Memory Management

Process. Memory Management Process Memory Management One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others Memory Management 1 Process One or more threads of execution Resources required for execution Memory (RAM) Program code ( text ) Data (initialised, uninitialised, stack) Buffers held in the kernel on behalf

More information

12: Memory Management

12: Memory Management 12: Memory Management Mark Handley Address Binding Program goes through multiple steps from compilation to execution. At some stage, addresses in the program must be bound to physical memory addresses:

More information

CIS Operating Systems Memory Management. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Professor Qiang Zeng Fall 2017 Previous class Uniprocessor policies FCFS, Shortest Job First Round Robin Multilevel Feedback Queue Multiprocessor policies

More information

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others

Process. One or more threads of execution Resources required for execution. Memory (RAM) Others Memory Management 1 Learning Outcomes Appreciate the need for memory management in operating systems, understand the limits of fixed memory allocation schemes. Understand fragmentation in dynamic memory

More information

Chapter 9 Real Memory Organization and Management

Chapter 9 Real Memory Organization and Management Chapter 9 Real Memory Organization and Management Outline 9.1 Introduction 9.2 Memory Organization 9.3 Memory Management 9.4 Memory Hierarchy 9.5 Memory Management Strategies 9.6 Contiguous vs. Noncontiguous

More information

Chapter 9 Real Memory Organization and Management

Chapter 9 Real Memory Organization and Management Chapter 9 Real Memory Organization and Management Outline 9.1 Introduction 9.2 Memory Organization 9.3 Memory Management 9.4 Memory Hierarchy 9.5 Memory Management Strategies 9.6 Contiguous vs. Noncontiguous

More information

Process. One or more threads of execution Resources required for execution

Process. One or more threads of execution Resources required for execution Memory Management 1 Learning Outcomes Appreciate the need for memory management in operating systems, understand the limits of fixed memory allocation schemes. Understand fragmentation in dynamic memory

More information

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure.

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure. File Systems I/O Management Hard Drive Management Virtual Memory Swap Memory Management Storage and I/O Introduction CSI3131 Topics Process Management Computing Systems Memory CPU Peripherals Processes

More information

Memory: Overview. CS439: Principles of Computer Systems February 26, 2018

Memory: Overview. CS439: Principles of Computer Systems February 26, 2018 Memory: Overview CS439: Principles of Computer Systems February 26, 2018 Where We Are In the Course Just finished: Processes & Threads CPU Scheduling Synchronization Next: Memory Management Virtual Memory

More information

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit Memory Management All data in memory before and after processing All instructions in memory in order to execute Memory management determines what is to be in memory Memory management activities Keeping

More information

CSCI 4500 / 8506 Sample Questions for Quiz 5

CSCI 4500 / 8506 Sample Questions for Quiz 5 CSCI 4500 / 8506 Sample Questions for Quiz 5 1. Why might a system treat memory allocation requests from the operating system itself differently from those generated by an application? a. The OS typically

More information

Preview. Memory Management

Preview. Memory Management Preview Memory Management With Mono-Process With Multi-Processes Multi-process with Fixed Partitions Modeling Multiprogramming Swapping Memory Management with Bitmaps Memory Management with Free-List Virtual

More information

Operating Systems: Internals and Design Principles. Chapter 7 Memory Management Seventh Edition William Stallings

Operating Systems: Internals and Design Principles. Chapter 7 Memory Management Seventh Edition William Stallings Operating Systems: Internals and Design Principles Chapter 7 Memory Management Seventh Edition William Stallings Memory Management Requirements Memory management is intended to satisfy the following requirements:

More information

COMPUTER SCIENCE 4500 OPERATING SYSTEMS

COMPUTER SCIENCE 4500 OPERATING SYSTEMS Last update: 3/28/2017 COMPUTER SCIENCE 4500 OPERATING SYSTEMS 2017 Stanley Wileman Module 9: Memory Management Part 1 In This Module 2! Memory management functions! Types of memory and typical uses! Simple

More information

UNIT III MEMORY MANAGEMENT

UNIT III MEMORY MANAGEMENT UNIT III MEMORY MANAGEMENT TOPICS TO BE COVERED 3.1 Memory management 3.2 Contiguous allocation i Partitioned memory allocation ii Fixed & variable partitioning iii Swapping iv Relocation v Protection

More information

Memory management. Knut Omang Ifi/Oracle 10 Oct, 2012

Memory management. Knut Omang Ifi/Oracle 10 Oct, 2012 Memory management Knut Omang Ifi/Oracle 1 Oct, 212 (with slides from V. Goebel, C. Griwodz (Ifi/UiO), P. Halvorsen (Ifi/UiO), K. Li (Princeton), A. Tanenbaum (VU Amsterdam), and M. van Steen (VU Amsterdam))

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

General Objective:To understand the basic memory management of operating system. Specific Objectives: At the end of the unit you should be able to:

General Objective:To understand the basic memory management of operating system. Specific Objectives: At the end of the unit you should be able to: F2007/Unit6/1 UNIT 6 OBJECTIVES General Objective:To understand the basic memory management of operating system Specific Objectives: At the end of the unit you should be able to: define the memory management

More information

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance Administrivia Project discussion? Last time Wrapped up deadlock Today: Start memory management SUNY-BINGHAMTON CS35 SPRING 8 LEC. #13 1 Handling Deadlock Deadlock Prevention Techniques Prevent hold and

More information

ECE 598 Advanced Operating Systems Lecture 10

ECE 598 Advanced Operating Systems Lecture 10 ECE 598 Advanced Operating Systems Lecture 10 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 17 February 2015 Announcements Homework #1 and #2 grades, HW#3 Coming soon 1 Various

More information

MEMORY MANAGEMENT/1 CS 409, FALL 2013

MEMORY MANAGEMENT/1 CS 409, FALL 2013 MEMORY MANAGEMENT Requirements: Relocation (to different memory areas) Protection (run time, usually implemented together with relocation) Sharing (and also protection) Logical organization Physical organization

More information

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1 Main Memory Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 Main Memory Background Swapping Contiguous allocation Paging Segmentation Segmentation with paging

More information

Main Memory (Part I)

Main Memory (Part I) Main Memory (Part I) Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/5 1 / 47 Motivation and Background Amir

More information

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France

Operating Systems Memory Management. Mathieu Delalandre University of Tours, Tours city, France Operating Systems Memory Management Mathieu Delalandre University of Tours, Tours city, France mathieu.delalandre@univ-tours.fr 1 Operating Systems Memory Management 1. Introduction 2. Contiguous memory

More information

Memory Management Basics

Memory Management Basics Memory Management Basics 1 Basic Memory Management Concepts Address spaces! Physical address space The address space supported by the hardware Ø Starting at address 0, going to address MAX sys! MAX sys!!

More information

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition Chapter 8: Memory Management 8.1 Silberschatz, Galvin and Gagne 2009 Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are

More information

CS420: Operating Systems

CS420: Operating Systems Main Memory James Moscola Department of Engineering & Computer Science York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Program must

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Background. Contiguous Memory Allocation

Background. Contiguous Memory Allocation Operating System Lecture 8 2017.5.9 Chapter 8 (Main Memory) Background Swapping Contiguous Memory Allocation Segmentation - Paging Memory Management Selection of a memory-management method for a specific

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Part II: Memory Management. Chapter 7: Physical Memory Chapter 8: Virtual Memory Chapter 9: Sharing Data and Code in Main Memory

Part II: Memory Management. Chapter 7: Physical Memory Chapter 8: Virtual Memory Chapter 9: Sharing Data and Code in Main Memory Part II: Memory Management Chapter 7: Physical Memory Chapter 8: Virtual Memory Chapter 9: Sharing Data and Code in Main Memory 1 7. Physical Memory 7.1 Preparing a Program for Execution Program Transformations

More information

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1

Operating systems. Part 1. Module 11 Main memory introduction. Tami Sorgente 1 Operating systems Module 11 Main memory introduction Part 1 Tami Sorgente 1 MODULE 11 MAIN MEMORY INTRODUCTION Background Swapping Contiguous Memory Allocation Noncontiguous Memory Allocation o Segmentation

More information

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not an option

More information

Chapter 8: Memory Management. Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging

Chapter 8: Memory Management. Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 1 Background Memory management is crucial in better utilizing one of the most important

More information

Operating Systems. Memory Management. Lecture 9 Michael O Boyle

Operating Systems. Memory Management. Lecture 9 Michael O Boyle Operating Systems Memory Management Lecture 9 Michael O Boyle 1 Memory Management Background Logical/Virtual Address Space vs Physical Address Space Swapping Contiguous Memory Allocation Segmentation Goals

More information

Operating Systems and Computer Networks. Memory Management. Dr.-Ing. Pascal A. Klein

Operating Systems and Computer Networks. Memory Management. Dr.-Ing. Pascal A. Klein Operating Systems and Computer Networks Memory Management pascal.klein@uni-due.de Alexander Maxeiner, M.Sc. Faculty of Engineering Agenda 1 Swapping 2 Segmentation Algorithms 3 Memory Allocation 4 Virtual

More information

CSE325 Principles of Operating Systems. Memory. David P. Duggan. March 6, 2010

CSE325 Principles of Operating Systems. Memory. David P. Duggan. March 6, 2010 CSE325 Principles of Operating Systems Memory David P. Duggan dduggan@sandia.gov March 6, 2010 Where is Memory? Characteristics? Issues/challenges? 3/6/12 CSE325 - Main Memory 2 Outline Memory management

More information

Operating Systems (2INC0) 2017/18

Operating Systems (2INC0) 2017/18 Operating Systems (2INC0) 2017/18 Memory Management (09) Dr. Courtesy of Dr. I. Radovanovic, Dr. R. Mak (figures from Bic & Shaw) System Architecture and Networking Group Agenda Reminder: OS & resources

More information

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization Requirements Relocation Memory management ability to change process image position Protection ability to avoid unwanted memory accesses Sharing ability to share memory portions among processes Logical

More information

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science Memory Management CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture are based on those from Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Last Class: Deadlocks. Where we are in the course

Last Class: Deadlocks. Where we are in the course Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

Module 8: Memory Management

Module 8: Memory Management Module 8: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.1 Background Program must be brought into memory

More information

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory Module 9: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is super big to hold a program

More information

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management To do q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not

More information

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it to be run Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester Mono-programming

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L17 Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Was Great Dijkstra a magician?

More information

The Memory Management Unit. Operating Systems. Autumn CS4023

The Memory Management Unit. Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline The Memory Management Unit 1 The Memory Management Unit Logical vs. Physical Address Space The concept of a logical address space that is bound to a separate

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Silberschatz, Galvin and Gagne 2005 Background Program/Code

More information

Memory and multiprogramming

Memory and multiprogramming Memory and multiprogramming COMP342 27 Week 5 Dr Len Hamey Reading TW: Tanenbaum and Woodhull, Operating Systems, Third Edition, chapter 4. References (computer architecture): HP: Hennessy and Patterson

More information

Chapter 9 Memory Management

Chapter 9 Memory Management Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Memory Management. CSE 2431: Introduction to Operating Systems Reading: , [OSC]

Memory Management. CSE 2431: Introduction to Operating Systems Reading: , [OSC] Memory Management CSE 2431: Introduction to Operating Systems Reading: 8.1 8.3, [OSC] 1 Outline Basic Memory Management Swapping Variable Partitions Memory Management Problems 2 Basic Memory Management

More information

Basic Memory Management

Basic Memory Management Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester 10/15/14 CSC 2/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

8: Memory Management

8: Memory Management CSC400 - Operating Systems 8: Memory Management J. Sumey Physical Memory as important as the CPU, a computer's physical memory is another important resource that must be carefully & efficiently managed

More information

Chapter 9: Memory Management. Background

Chapter 9: Memory Management. Background 1 Chapter 9: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory and placed within a process for

More information

CIS Operating Systems Non-contiguous Memory Allocation. Professor Qiang Zeng Spring 2018

CIS Operating Systems Non-contiguous Memory Allocation. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Non-contiguous Memory Allocation Professor Qiang Zeng Spring 2018 Big picture Fixed partitions Dynamic partitions Buddy system Contiguous allocation: Each process occupies

More information

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) !

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) ! Memory Questions? CSCI [4 6]730 Operating Systems Main Memory! What is main memory?! How does multiple processes share memory space?» Key is how do they refer to memory addresses?! What is static and dynamic

More information

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory Memory Management Today Basic memory management Swapping Kernel memory allocation Next Time Virtual memory Midterm results Average 68.9705882 Median 70.5 Std dev 13.9576965 12 10 8 6 4 2 0 [0,10) [10,20)

More information

In multiprogramming systems, processes share a common store. Processes need space for:

In multiprogramming systems, processes share a common store. Processes need space for: Memory Management In multiprogramming systems, processes share a common store. Processes need space for: code (instructions) static data (compiler initialized variables, strings, etc.) global data (global

More information

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management Part Four - Memory Management 8.1 Background Chapter 8: Memory-Management Management Strategies Program must be brought into memory and placed within a process for it to be run Input queue collection of

More information

Operating Systems Unit 6. Memory Management

Operating Systems Unit 6. Memory Management Unit 6 Memory Management Structure 6.1 Introduction Objectives 6.2 Logical versus Physical Address Space 6.3 Swapping 6.4 Contiguous Allocation Single partition Allocation Multiple Partition Allocation

More information

Module 8: Memory Management

Module 8: Memory Management Module 8: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Operating System Concepts 8.1 Silberschatz and Galvin

More information

Part Three - Memory Management. Chapter 8: Memory-Management Strategies

Part Three - Memory Management. Chapter 8: Memory-Management Strategies Part Three - Memory Management Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies 8.1 Background 8.2 Swapping 8.3 Contiguous Memory Allocation 8.4 Segmentation 8.5 Paging 8.6

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Gordon College Stephen Brinton Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 1 Background Program must be brought into memory

More information

Logical versus Physical Address Space

Logical versus Physical Address Space CHAPTER 8: MEMORY MANAGEMENT Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Operating System Concepts, Addison-Wesley 1994

More information

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD

OPERATING SYSTEMS. After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD OPERATING SYSTEMS #8 After A.S.Tanenbaum, Modern Operating Systems 3rd edition Uses content with permission from Assoc. Prof. Florin Fortis, PhD MEMORY MANAGEMENT MEMORY MANAGEMENT The memory is one of

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9: Memory Management Background Swapping Contiguous Memory Allocation Segmentation

More information

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University CSC 4103 - Operating Systems Spring 2007 Lecture - XII Main Memory - II Tevfik Koşar Louisiana State University March 8 th, 2007 1 Roadmap Dynamic Loading & Linking Contiguous Memory Allocation Fragmentation

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

MEMORY MANAGEMENT: Real Storage. Unit IV

MEMORY MANAGEMENT: Real Storage. Unit IV MEMORY MANAGEMENT: Real Storage Unit IV OUTLINE Storage Organization Storage Management Storage Hierarchy Storage Management Strategies Storage Placement Strategies Segmentation Paging & Demand Paging

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Chapter 8: Memory- Management Strategies

Chapter 8: Memory- Management Strategies Chapter 8: Memory Management Strategies Chapter 8: Memory- Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 8: Memory Management Background" Swapping " Contiguous Memory Allocation" Paging" Structure

More information

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program!

Classifying Information Stored in Memory! Memory Management in a Uniprogrammed System! Segments of a Process! Processing a User Program! Memory Management in a Uniprogrammed System! A! gets a fixed segment of (usually highest )"! One process executes at a time in a single segment"! Process is always loaded at "! Compiler and linker generate

More information

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts Memory management Last modified: 26.04.2016 1 Contents Background Logical and physical address spaces; address binding Overlaying, swapping Contiguous Memory Allocation Segmentation Paging Structure of

More information

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Basic Hardware Address Binding Logical VS Physical Address Space Dynamic Loading Dynamic Linking and Shared

More information

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium Main Memory Outlook Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2 Backgound Background So far we considered how to share

More information

CS6401- Operating System UNIT-III STORAGE MANAGEMENT

CS6401- Operating System UNIT-III STORAGE MANAGEMENT UNIT-III STORAGE MANAGEMENT Memory Management: Background In general, to rum a program, it must be brought into memory. Input queue collection of processes on the disk that are waiting to be brought into

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information