MATH 25 CLASS 5 NOTES, SEP

Size: px
Start display at page:

Download "MATH 25 CLASS 5 NOTES, SEP"

Transcription

1 MATH 25 CLASS 5 NOTES, SEP Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid s Lemm (importnt!) 1. A brief diversion: reltively prime numbers Before continuing with the study of liner equtions, we mke brief detour to tlk bout some useful properties of reltively prime numbers nd number relted to gcds. Recll tht two integers, b re reltively prime if gcd(, b) = 1. At this point, we know enough to prove some very importnt fcts bout reltively prime numbers: Proposition 1. Let, b be two reltively prime numbers, nd let c be some integer. If bc, then c. Proof. We know tht bc. Becuse, b re reltively prime, we know tht x+by = 1 hs (infinitely) mny integer solutions. Select one of them. Multiply this eqution by c: cx + bcy = c. Notice tht cx, nd since bc by ssumption, bcy. Therefore, c. This simple result is of fundmentl importnce. Notice tht we used our knowledge bout when x + by = d hs solutions in n essentil wy to prove this proposition. Another importnt observtion is tht the bove proposition requires tht, b be reltively prime in order to be true. Cn you think of n exmple where, b re not reltively prime, nd where bc but c? Finlly, one specil cse of the bove proposition deserves mention. Suppose = p is prime number ( number divisible only by 1 nd itself). Then the bove proposition cn be rewritten in the following wy: Lemm 1 (Euclid s Lemm). Let p be prime, nd let, b be two integers. If p b, then p or p b. Proof. If p, there is nothing to prove, so suppose p. Then gcd(, p) = 1, since the only divisors of p re 1 nd p, while p does not divide. An ppliction of the previous proposition shows tht p b. 1

2 2 MATH 25 CLASS 5 NOTES, SEP Exmple. This exmple shows tht the originl proposition (nd Euclid s Lemm) cn be flse when their ssumptions re not true. For instnce, if = 4, b = 6, so tht gcd(, b) = 2, then we cn choose c = 2. Then bc = 12, so bc, but c. This exmple lso works to show why p must be prime in Euclid s Lemm; notice tht = 4 is not prime, yet b, c. The previous proposition nd lemm re one of the most importnt pplictions of our knowledge of when x + by = d hs integer solutions. It is well worth lerning their sttements nd proofs thoroughly. Here re severl other useful propositions: Proposition 2 (Corollry 1.11 of the text). If, b re reltively prime integers, nd c, b c, then b c. Proof. Since gcd(, b) = 1, there exist integers x, y such tht x + by = 1. Multiply this eqution by c : cx + bcy = c. Since b c, (b) cx, nd since c, (b) bcy. Therefore (b) c. Proposition 3. [Exercise 1.8 of the text] Let, b be two integers. If c is divisor of, b, then c gcd(, b). Proof. We know tht there is pir of integers x, y such tht x + by = gcd(, b). Since c, b, this implies tht c gcd(, b). Proposition 4 (Corollry 1.10 of the text). Let, b be two integers, nd let m be positive integer. Then gcd(m, mb) = m gcd(, b). Proof. Clerly m gcd(, b) gcd(m, mb), becuse m gcd(, b) divides both m nd mb. For the reverse inequlity, gin there re two integers x, y such tht x + by = gcd(, b). Multiplying this eqution by m, we get mx+mby = m gcd(, b). However, this is only possible if gcd(m, mb) m gcd(, b), which in prticulr implies tht gcd(m, mb) m gcd(, b), s desired. Proposition 5 (Corollry 1.10 of the text). Let, b be two integers, nd let d, b. Then gcd( d, b gcd(, b) ) =. In prticulr, d d gcd(, b) nd b re reltively gcd(, b) prime. Proof. Agin, there exist integers x, y which stisfy x + by = gcd(, b). Divide this eqution by d: d x + b gcd(, b) y =. d d Since /d, b/d re integers, this sys tht gcd(/d, b/d) gcd(, b)/d. On the other hnd since gcd(, b), b, gcd(, b)/d /d, b/d. So gcd(, b)/d gcd(/d, b/d), nd therefore we hve equlity. As you cn see, we re getting lot of milege out of the fct tht x + by = d hs integer solutions x, y if nd only if gcd(, b) d. Let s conclude this section with n exmple illustrting these propositions. Exmples.

3 MATH 25 CLASS 5 NOTES, SEP We sw tht gcd(994, 399) = 7. Therefore, the only common divisors of 994, 399 re 1, 7 (Proposition 3). As 994 = 7 142, 399 = 7 57, we lso see tht gcd(142, 57) = 1. (Proposition 5) Proposition 2 cn be flse if gcd(, b) 1. For instnce, if = 6, b = 9, nd c = 18, then c, b c, but b = 54 c. 2. Lest common multiples Recll tht multiple of n integer is ny number of the form n, where n Z. Given two numbers, b, we cll the smllest positive integer which is both multiple of, b the lest common multiple of, b. This number is often written lcm(, b), or sometimes [, b], lthough gin the ltter nottion cn be mbiguous, since it lso mens the closed intervl from to b. There is the obvious generliztion of this definition to list of more thn two numbers. Exmple. Let = 8, b = 12. Then the lest common multiple of, b is 24, since 24 is the smllest number tht is multiple of both, b. How re the lcm nd gcd of two nonzero numbers, b relted? Notice tht gcd(8, 12) = 4, for exmple. A bit of experimenttion will probbly led you to the clim tht gcd(, b)lcm(, b) = b. Let s prove this: Proof. We cn ssume tht, b re positive, since gcd, lcm re unchnged if we chnge the signs of, b. First notice tht becuse gcd(, b), b, we know tht / gcd(, b) is n integer, nd similrly, b/ gcd(, b) is n integer. Therefore, gcd(, b) b = b gcd(, b) = b gcd(, b) shows tht b/(gcd(, b)) is common multiple of, b. Therefore, lcm(, b) b/(gcd(, b)). Now we wnt to show tht the opposite inequlity is true. Suppose tht c is the lest common multiple of, b. Then we cn write c = n = bm for some integers n, m. In prticulr, this mens tht n bm, m n. First notice tht gcd(n, m) = 1. This must be true becuse if gcd(n, m) > 1, then we cn divide both n, m by their gcds to obtin new integers n, m, with (n, m ) = 1, nd n = bm is still common multiple of, b which is smller thn c, contrdicting the fct tht c is the lest common multiple of, b. Since gcd(n, m) = 1, we cn pply the first proposition we lerned to see tht n b, m. Let 1 = /m, b 1 = b/n. However, we know tht n = bm, so this tells us tht 1 = b 1. Cll this number d. Notice tht d is common divisor of, b. Therefore, d gcd(, b). But this implies tht b d b gcd(, b). Since b/d = c, this shows tht c b/(gcd(, b)) s desired. Putting the two inequlities we ve proved together, we hve c = b/(gcd(, b)), s desired. Exmple. Going bck to = 994, b = 399, since gcd(994, 399) = 7, lcm(994, 399) = /7 =

4 4 MATH 25 CLASS 5 NOTES, SEP We conclude with proposition which is the mirror imge of Proposition 3. Proposition 6 (Exercise 1.14 of the text). Let c be common multiple of, b. Then c is multiple of lcm(, b). Proof. Write l = lcm(, b). Since c l, Eucliden division of c by l gives n eqution c = lq + r, where 0 r < l. But since, b c, l, this mens, b r, which shows tht r is common multiple of, b. Since l is the lest common multiple, we must hve r = 0, which mens tht c is multiple of l = lcm(, b), s desired. The converse to the bove proposition is obviously true tht is, ny multiple of lcm(, b) is itself common multiple of nd b. Let s conclude by going bck to fmilir exmple. Exmple. We clculted tht lcm(994, 399) = Therefore ny common multiple of 994 nd 399 is multiple of Finding ll solutions to x + by = c The Eucliden lgorithm gives us wy to find pir of integer solutions x, y to x + by = c, s long s gcd(, b) c. However, it would be idel to know how to find ll the solutions to this eqution, insted of just one. The following proposition tells us just how to do this: Proposition 7 (Theorem 1.13 of the text). Let, b be nonzero integers, nd c n integer which is multiple of gcd(, b) = d. Let x 0, y 0 be one pir of integer solutions to x + by = c. Then the set of ll integer solutions x, y to the eqution x + by = c hs the form (1) x = x 0 + b d n, y = y 0 d n, where n is ny integer. (In prticulr when n = 0 we get the initil pir x 0, y 0.) Proof. We will begin by checking tht every pir of integers x, y stisfying Eqution 1 stisfies x + by = c. Plug in the two equtions from Eqution 1 into x + by = c: (x 0 + bd ) n + b (y 0 ) d n = x 0 + b d n + by 0 b d n = x 0 + by 0 = c. In the lst equlity, we used the fct tht x 0, y 0 ws solution to x + by = c. We now wnt to prove the converse sttement, tht ny solution x, y is of the form given by Eqution 1. So suppose x, y re integers such tht x + by = c. Since x 0 + by 0 = c s well, we hve x 0 + by 0 = x + by, or (x 0 x) = b(y y 0 ). Both sides re divisible by d = gcd(, b), so divide both sides of this eqution by d: d (x 0 x) = b d (y y 0).

5 MATH 25 CLASS 5 NOTES, SEP Recll tht /d, b/d re reltively prime. Since /d, b/d re reltively prime nd (b/d) (/d)(x x 0 ), we must hve (b/d) (x x 0 ). In other words, there is n integer n such tht b d n = x x 0, or x = x 0 + b d n. Plugging in this expression for x into the previous eqution, we obtin Solving for y, we get b d d n = b d (y y 0). y = y 0 d n. Exmples. Going to our fvorite exmple of = 994, b = 399, we found the solution x = 2, y = 5 to 994x + 399y = 7. Since gcd(, b) = d = 7, nd /d = 142, b/d = 57, the previous proposition tells us tht every solution to 994x + 399y = 7 is given by x = n, y = 5 142n, where n Z. Notice tht this proposition works on the eqution x + by = c even when c is lrger thn gcd(, b). For exmple, consider the eqution 4x + 6y = 4. It is obvious tht x = 1, y = 0 gives n integer solution. We hve = 4, b = 6, gcd(, b) = d = 2, so /d = 2, b/d = 3. Then the previous proposition tells us tht every pir of integer solutions hs the form x = 1 + 3n, y = 2n. In generl, it is esy to check your nswer by plugging in your expressions for x, y into the eqution x + by = c nd checking tht you get true eqution. In prticulr, ny ns which pper should end up cnceling out.

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Subtracting Fractions

Subtracting Fractions Lerning Enhncement Tem Model Answers: Adding nd Subtrcting Frctions Adding nd Subtrcting Frctions study guide. When the frctions both hve the sme denomintor (bottom) you cn do them using just simple dding

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

Theory of Computation CSE 105

Theory of Computation CSE 105 $ $ $ Theory of Computtion CSE 105 Regulr Lnguges Study Guide nd Homework I Homework I: Solutions to the following problems should be turned in clss on July 1, 1999. Instructions: Write your nswers clerly

More information

Digital Design. Chapter 6: Optimizations and Tradeoffs

Digital Design. Chapter 6: Optimizations and Tradeoffs Digitl Design Chpter 6: Optimiztions nd Trdeoffs Slides to ccompny the tetbook Digitl Design, with RTL Design, VHDL, nd Verilog, 2nd Edition, by Frnk Vhid, John Wiley nd Sons Publishers, 2. http://www.ddvhid.com

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

x )Scales are the reciprocal of each other. e

x )Scales are the reciprocal of each other. e 9. Reciprocls A Complete Slide Rule Mnul - eville W Young Chpter 9 Further Applictions of the LL scles The LL (e x ) scles nd the corresponding LL 0 (e -x or Exmple : 0.244 4.. Set the hir line over 4.

More information

Companion Mathematica Notebook for "What is The 'Equal Weight View'?"

Companion Mathematica Notebook for What is The 'Equal Weight View'? Compnion Mthemtic Notebook for "Wht is The 'Equl Weight View'?" Dvid Jehle & Brnden Fitelson July 9 The methods used in this notebook re specil cses of more generl decision procedure

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Rational Numbers---Adding Fractions With Like Denominators.

Rational Numbers---Adding Fractions With Like Denominators. Rtionl Numbers---Adding Frctions With Like Denomintors. A. In Words: To dd frctions with like denomintors, dd the numertors nd write the sum over the sme denomintor. B. In Symbols: For frctions c nd b

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

Chapter Spline Method of Interpolation More Examples Electrical Engineering

Chapter Spline Method of Interpolation More Examples Electrical Engineering Chpter. Spline Method of Interpoltion More Exmples Electricl Engineering Exmple Thermistors re used to mesure the temperture of bodies. Thermistors re bsed on mterils chnge in resistnce with temperture.

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association 9. CISC - Curriculum & Instruction Steering Committee The Winning EQUATION A HIGH QUALITY MATHEMATICS PROFESSIONAL DEVELOPMENT PROGRAM FOR TEACHERS IN GRADES THROUGH ALGEBRA II STRAND: NUMBER SENSE: Rtionl

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22)

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22) Homework Context Free Lnguges III Prse Trees nd Homework #5 (due 10/22) From textbook 6.4,b 6.5b 6.9b,c 6.13 6.22 Pln for tody Context Free Lnguges Next clss of lnguges in our quest! Lnguges Recll. Wht

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

A Fixed Point Approach of Quadratic Functional Equations

A Fixed Point Approach of Quadratic Functional Equations Int. Journl of Mth. Anlysis, Vol. 7, 03, no. 30, 47-477 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ijm.03.86 A Fixed Point Approch of Qudrtic Functionl Equtions Mudh Almhlebi Deprtment of Mthemtics,

More information

Tilings of Sphere by Congruent Pentagons I

Tilings of Sphere by Congruent Pentagons I rxiv:1310.19v5 [mth.mg] 8 Mr 018 Tilings of Sphere by Congruent Pentgons I K Yue Cheuk, Ho Mn Cheung, Min Yn Hong Kong University of Science nd Technology Mrch 9, 018 Abstrct We develop some bsic tools

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

CHAPTER 5 Spline Approximation of Functions and Data

CHAPTER 5 Spline Approximation of Functions and Data CHAPTER 5 Spline Approximtion of Functions nd Dt This chpter introduces number of methods for obtining spline pproximtions to given functions, or more precisely, to dt obtined by smpling function. In Section

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

Basic Geometry and Topology

Basic Geometry and Topology Bsic Geometry nd Topology Stephn Stolz Septemer 7, 2015 Contents 1 Pointset Topology 1 1.1 Metric spces................................... 1 1.2 Topologicl spces................................ 5 1.3 Constructions

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

Lecture 12 : Topological Spaces

Lecture 12 : Topological Spaces Leture 12 : Topologil Spes 1 Topologil Spes Topology generlizes notion of distne nd loseness et. Definition 1.1. A topology on set X is olletion T of susets of X hving the following properties. 1. nd X

More information

Research Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES

Research Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES Volume 2, 1977 Pges 349 353 http://topology.uburn.edu/tp/ Reserch Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES by J. A. Guthrie, H. E. Stone, nd M. L. Wge Topology Proceedings Web: http://topology.uburn.edu/tp/

More information

arxiv: v1 [math.co] 18 Sep 2015

arxiv: v1 [math.co] 18 Sep 2015 Improvements on the density o miml -plnr grphs rxiv:509.05548v [mth.co] 8 Sep 05 János Brát MTA-ELTE Geometric nd Algeric Comintorics Reserch Group rt@cs.elte.hu nd Géz Tóth Alréd Rényi Institute o Mthemtics,

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

CHAPTER 8 Quasi-interpolation methods

CHAPTER 8 Quasi-interpolation methods CHAPTER 8 Qusi-interpoltion methods In Chpter 5 we considered number of methods for computing spline pproximtions. The strting point for the pproximtion methods is dt set tht is usully discrete nd in the

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study:

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study: Brringer Fll Mth Cmp November, 06 Introduction In recent yers, mthemtics eductors hve begun to relize tht understnding frctions nd frctionl rithmetic is the gtewy to dvnced high school mthemtics Yet, US

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

PATTERN AVOIDANCE IN BINARY TREES

PATTERN AVOIDANCE IN BINARY TREES PATTERN AVOIDANCE IN BINARY TREES ERIC S. ROWLAND Abstrct. This pper considers the enumertion of trees voiding contiguous pttern. We provide n lgorithm for computing the generting function tht counts n-lef

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

Typing with Weird Keyboards Notes

Typing with Weird Keyboards Notes Typing with Weird Keyords Notes Ykov Berchenko-Kogn August 25, 2012 Astrct Consider lnguge with n lphet consisting of just four letters,,,, nd. There is spelling rule tht sys tht whenever you see n next

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

Yoplait with Areas and Volumes

Yoplait with Areas and Volumes Yoplit with Ares nd Volumes Yoplit yogurt comes in two differently shped continers. One is truncted cone nd the other is n ellipticl cylinder (see photos below). In this exercise, you will determine the

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-186 Technicl Notes on using Anlog Devices' DSP components nd development tools Contct our technicl support by phone: (800) ANALOG-D or e-mil: dsp.support@nlog.com Or visit

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

1 Quad-Edge Construction Operators

1 Quad-Edge Construction Operators CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Bnch J. Mth. Anl. 4 (2010), no. 1, 170 184 Bnch Journl of Mthemticl Anlysis ISSN: 1735-8787 (electronic) www.emis.de/journls/bjma/ GENERALIZATIONS OF OSTROWSKI INEQUALITY VIA BIPARAMETRIC EULER HARMONIC

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization An Efficient Divide nd Conquer Algorithm for Exct Hzrd Free Logic Minimiztion J.W.J.M. Rutten, M.R.C.M. Berkelr, C.A.J. vn Eijk, M.A.J. Kolsteren Eindhoven University of Technology Informtion nd Communiction

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Notes for Graph Theory

Notes for Graph Theory Notes for Grph Theory These re notes I wrote up for my grph theory clss in 06. They contin most of the topics typiclly found in grph theory course. There re proofs of lot of the results, ut not of everything.

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Available at ISSN: Vol. 4, Issue 2 (December 2009) pp (Previously Vol. 4, No.

Available at   ISSN: Vol. 4, Issue 2 (December 2009) pp (Previously Vol. 4, No. Avilble t http://pvmu.edu.edu/pges/398.sp ISSN: 93-9466 Vol. 4, Issue December 009 pp. 434 444 Previously Vol. 4, No. Applictions nd Applied Mthemtics: An Interntionl Journl AAM On -ry Subdivision for

More information

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an Scnner Termintion A scnner reds input chrcters nd prtitions them into tokens. Wht hppens when the end of the input file is reched? It my be useful to crete n Eof pseudo-chrcter when this occurs. In Jv,

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

arxiv:cs.cg/ v1 18 Oct 2005

arxiv:cs.cg/ v1 18 Oct 2005 A Pir of Trees without Simultneous Geometric Embedding in the Plne rxiv:cs.cg/0510053 v1 18 Oct 2005 Mrtin Kutz Mx-Plnck-Institut für Informtik, Srbrücken, Germny mkutz@mpi-inf.mpg.de October 19, 2005

More information

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors.

Very sad code. Abstraction, List, & Cons. CS61A Lecture 7. Happier Code. Goals. Constructors. Constructors 6/29/2011. Selectors. 6/9/ Abstrction, List, & Cons CS6A Lecture 7-6-9 Colleen Lewis Very sd code (define (totl hnd) (if (empty? hnd) (+ (butlst (lst hnd)) (totl (butlst hnd))))) STk> (totl (h c d)) 7 STk> (totl (h ks d)) ;;;EEEK!

More information

CMSC 331 First Midterm Exam

CMSC 331 First Midterm Exam 0 00/ 1 20/ 2 05/ 3 15/ 4 15/ 5 15/ 6 20/ 7 30/ 8 30/ 150/ 331 First Midterm Exm 7 October 2003 CMC 331 First Midterm Exm Nme: mple Answers tudent ID#: You will hve seventy-five (75) minutes to complete

More information

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam.

Spring 2018 Midterm Exam 1 March 1, You may not use any books, notes, or electronic devices during this exam. 15-112 Spring 2018 Midterm Exm 1 Mrch 1, 2018 Nme: Andrew ID: Recittion Section: You my not use ny books, notes, or electronic devices during this exm. You my not sk questions bout the exm except for lnguge

More information