Matt Ramsay CS 375 EXAM 2 Part 1

Size: px
Start display at page:

Download "Matt Ramsay CS 375 EXAM 2 Part 1"

Transcription

1 Matt Ramsay CS 375 EXAM 2 Part 1 Output: csserver:/home/mr56/cs375/exam2 > parent Multiples of 3 between 3 and add to This total written to /home/mr56/tmp/file8771.out Multiples of 3 between and add to This total written to /home/mr56/tmp/file8772.out Multiples of 3 between and add to This total written to /home/mr56/tmp/file8773.out Multiples of 3 between and add to This total written to /home/mr56/tmp/file8774.out Multiples of 3 between and add to This total written to /home/mr56/tmp/file8775.out First fifth added to Second fifth added to Third fifth added to Fourth fifth added to Last fifth added to Total added to Parent Code: #include <iostream> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <libgen.h> #include <sys/stat.h> #include <sys/types.h>

2 #include <fcntl.h> #include <sys/wait.h> #include <dirent.h> #include <errno.h> #include <pwd.h> #include <grp.h> #include <time.h> using namespace std; int main(int argc, char *argv[]) if(argc!= 3) cout << "You didn't enter enough commmand line arguments, you are a fuck-stick\n"; DIR *dp; // file descriptor struct dirent *de; // another file descriptor struct stat statbuf; // struct for stat command int total = 0; // sum of numbers char inputsum[16] = ' '; // temp sum int blah, beread, fd; // file desciptors and counters int lower = atoi(argv[1]); // lower bound int upper = atoi(argv[2]); // upper bound int division = (upper-lower)/5; // divide by 5 if((upper-lower)%5!= 0) division++; char path[16] = ' '; // strings to save file names char blah1[27] = ' '; char blah2[27] = ' '; char blah3[27] = ' '; char blah4[27] = ' '; char blah5[27] = ' '; char first[5] = ' '; char second[5] = ' '; char third[5] = ' '; char fourth[5] = ' '; char fifth[5] = ' '; char firstb[5] = ' '; char secondb[5] = ' '; char thirdb[5] = ' '; char fourthb[5] = ' '; char fifthb[5] = ' ';

3 char file1[35] = ' '; char file2[35] = ' '; char file3[35] = ' '; char file4[35] = ' '; char file5[35] = ' '; pid_t pid1, pid2, pid3, pid4, pid5; //fork file descriptors sprintf(path, "/home/mr56/tmp/*"); //writing proper names into strings sprintf(first,"%d",lower); sprintf(firstb,"%d",division); sprintf(second,"%d",(division+1)); sprintf(secondb,"%d",(division*2)); sprintf(third,"%d",((division*2)+1)); sprintf(thirdb,"%d",(division*3)); sprintf(fourth,"%d",((division*3)+1)); sprintf(fourthb,"%d",(division*4)); sprintf(fifth,"%d",((division*4)+1)); sprintf(fifthb,"%d",upper); pid1 = fork(); // fork first process if(pid1 == 0) execl("exam2", "exam2", first, firstb, 0); // exec child pid2 = fork(); // fork second process if(pid2 == 0) execl("exam2", "exam2", second, secondb, 0); // exec child pid3 = fork(); // fork third process if(pid3 == 0) execl("exam2", "exam2", third, thirdb, 0); // exec child pid4 = fork(); // fork fourth process if(pid4 == 0) execl("exam2", "exam2", fourth, fourthb, 0); //exec child pid5 = fork(); // fork fifth process if(pid5 == 0)

4 execl("exam2", "exams", fifth, fifthb, 0); // exec child int stat_val; pid_t child_pid; pid1 = wait(&stat_val); // wait for children to finish pid2 = wait(&stat_val); pid3 = wait(&stat_val); pid4 = wait(&stat_val); pid5 = wait(&stat_val); if((dp = opendir("/home/mr56/tmp")) == NULL) //open directory cout << "Error opening /home/mr56/tmp" << endl; de = readdir(dp); // read first two files '.' and '..' de = readdir(dp); // and disregard if((de = readdir(dp))!= NULL) // save files from children to file1 - file 5 sprintf(file1, "%s", de->d_name); if((de = readdir(dp))!= NULL) sprintf(file2, "%s", de->d_name); if((de = readdir(dp))!= NULL) sprintf(file3, "%s", de->d_name); if((de = readdir(dp))!= NULL)

5 sprintf(file4, "%s", de->d_name); if((de = readdir(dp))!= NULL) sprintf(file5, "%s", de->d_name); closedir(dp); close directory sprintf(blah1, "/home/mr56/tmp/%s", file1); fd = open(blah1, O_RDONLY); //open first file beread = read(fd, inputsum, 12); // read partial sum blah = atoi(inputsum); //change to int cout << endl << "First fifth added to " << blah << endl; // add to total //close file //same for next four files sprintf(blah2, "/home/mr56/tmp/%s", file2); fd = open(blah2, O_RDONLY); beread = read(fd, inputsum, 12); blah = atoi(inputsum); cout << "Second fifth added to " << blah << endl; sprintf(blah3, "/home/mr56/tmp/%s", file3); fd = open(blah3, O_RDONLY); beread = read(fd, inputsum, 12); blah = atoi(inputsum); cout << "Third fifth added to " << blah << endl; sprintf(blah4, "/home/mr56/tmp/%s", file4); fd = open(blah4, O_RDONLY); beread = read(fd, inputsum, 12);

6 blah = atoi(inputsum); cout << "Fourth fifth added to " << blah << endl; sprintf(blah5, "/home/mr56/tmp/%s", file5); fd = open(blah5, O_RDONLY); beread = read(fd, inputsum, 12); blah = atoi(inputsum); cout << "Last fifth added to " << blah << endl; cout << "Total added to " << total << endl << endl; sprintf(path, "/home/mr56/tmp/%s", file1); // delete files made by children sprintf(path, "/home/mr56/tmp/%s", file2); sprintf(path, "/home/mr56/tmp/%s", file3); sprintf(path, "/home/mr56/tmp/%s", file4); sprintf(path, "/home/mr56/tmp/%s", file5); Child Code: #include <iostream> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <libgen.h> #include <sys/stat.h> #include <sys/types.h> #include <fcntl.h> #include <sys/wait.h> using namespace std; int main(int argc, char *argv[]) if(argc!= 3)

7 cout << "You didn't enter enough commmand line arguments, you are a fuck-stick\n"; char filename[35] = ' '; // string for filename char outputsum[20] = ' '; // string for number int fd, written; // file descriptors int sum = 0; // sum int id = getpid(); // id of child int lower = atoi(argv[1]); // lower bound int upper = atoi(argv[2]); // upper bound sprintf(filename,"/home/mr56/tmp/file%d.out",id); // make filename string if(lower < 3) // start at first multiple of three in range lower = 3; if(lower % 3 == 1) lower += 2; else if(lower % 3 == 2) lower += 1; for(int i = lower; i <= upper; i++) // loop for sum sum += i; i += 2; sprintf(outputsum, "%d", sum); //write sum to string fd = open(filename, O_RDWR O_CREAT); // open file and creates if not there chmod(filename, 777); // make file writeable written = write(fd, outputsum, 20); //write total to file //close file chmod(filename, 777); // unnesessary crap // output cout << endl << endl << "Multiples of 3 between " << lower << " and " << upper << " add to " << sum << endl; cout << "This total written to " << filename << endl;

8 Makefile: finish:parent.o exam2.o g++ -o parent parent.cpp g++ -o exam2 exam2.cpp parent.o:parent.cpp g++ -c parent.cpp exam2.o:exam2.cpp g++ -c exam2.cpp

Operating Systems Lab

Operating Systems Lab Operating Systems Lab Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 4010: Operating Systems Lab Eng: Ahmed M. Ayash Lab # 3 Fork() in C and C++ programming

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 16: Process and Signals Cristina Nita-Rotaru Lecture 16/ Fall 2013 1 Processes in UNIX UNIX identifies processes via a unique Process ID Each process also knows its parent

More information

Contents. IPC (Inter-Process Communication) Representation of open files in kernel I/O redirection Anonymous Pipe Named Pipe (FIFO)

Contents. IPC (Inter-Process Communication) Representation of open files in kernel I/O redirection Anonymous Pipe Named Pipe (FIFO) Pipes and FIFOs Prof. Jin-Soo Kim( jinsookim@skku.edu) TA JinHong Kim( jinhong.kim@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Contents IPC (Inter-Process Communication)

More information

CSC 271 Software I: Utilities and Internals

CSC 271 Software I: Utilities and Internals CSC 271 Software I: Utilities and Internals Lecture 13 : An Introduction to File I/O in Linux File Descriptors All system calls for I/O operations refer to open files using a file descriptor (a nonnegative

More information

CSC209H Lecture 6. Dan Zingaro. February 11, 2015

CSC209H Lecture 6. Dan Zingaro. February 11, 2015 CSC209H Lecture 6 Dan Zingaro February 11, 2015 Zombie Children (Kerrisk 26.2) As with every other process, a child process terminates with an exit status This exit status is often of interest to the parent

More information

CS Operating Systems Lab 3: UNIX Processes

CS Operating Systems Lab 3: UNIX Processes CS 346 - Operating Systems Lab 3: UNIX Processes Due: February 15 Purpose: In this lab you will become familiar with UNIX processes. In particular you will examine processes with the ps command and terminate

More information

Introduction. Files. 3. UNIX provides a simple and consistent interface to operating system services and to devices. Directories

Introduction. Files. 3. UNIX provides a simple and consistent interface to operating system services and to devices. Directories Working With Files Introduction Files 1. In UNIX system or UNIX-like system, all input and output are done by reading or writing files, because all peripheral devices, even keyboard and screen are files

More information

Week 2 Intro to the Shell with Fork, Exec, Wait. Sarah Diesburg Operating Systems CS 3430

Week 2 Intro to the Shell with Fork, Exec, Wait. Sarah Diesburg Operating Systems CS 3430 Week 2 Intro to the Shell with Fork, Exec, Wait Sarah Diesburg Operating Systems CS 3430 1 Why is the Shell Important? Shells provide us with a way to interact with the core system Executes programs on

More information

Preview. Process Control. What is process? Process identifier The fork() System Call File Sharing Race Condition. COSC350 System Software, Fall

Preview. Process Control. What is process? Process identifier The fork() System Call File Sharing Race Condition. COSC350 System Software, Fall Preview Process Control What is process? Process identifier The fork() System Call File Sharing Race Condition COSC350 System Software, Fall 2015 1 Von Neumann Computer Architecture: An integrated set

More information

UNIX System Calls. Sys Calls versus Library Func

UNIX System Calls. Sys Calls versus Library Func UNIX System Calls Entry points to the kernel Provide services to the processes One feature that cannot be changed Definitions are in C For most system calls a function with the same name exists in the

More information

Process Creation in UNIX

Process Creation in UNIX Process Creation in UNIX int fork() create a child process identical to parent Child process has a copy of the address space of the parent process On success: Both parent and child continue execution at

More information

CSC 1600 Unix Processes. Goals of This Lecture

CSC 1600 Unix Processes. Goals of This Lecture CSC 1600 Unix Processes q Processes Goals of This Lecture q Process vs. program q Context switching q Creating a new process q fork: process creates a new child process q wait: parent waits for child process

More information

Figure 1 Ring Structures

Figure 1 Ring Structures CS 460 Lab 10 The Token Ring I Tong Lai Yu ( The materials here are adopted from Practical Unix Programming: A Guide to Concurrency, Communication and Multithreading by Kay Robbins and Steven Robbins.

More information

everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int

everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int everything is a file main.c a.out /dev/sda1 /dev/tty2 /proc/cpuinfo file descriptor int #include #include #include int open(const char *path, int flags); flagso_rdonly

More information

SOFTWARE ARCHITECTURE 3. SHELL

SOFTWARE ARCHITECTURE 3. SHELL 1 SOFTWARE ARCHITECTURE 3. SHELL Tatsuya Hagino hagino@sfc.keio.ac.jp slides URL https://vu5.sfc.keio.ac.jp/sa/login.php 2 Software Layer Application Shell Library MIddleware Shell Operating System Hardware

More information

A: We see the ps auxw execute and print on screen. The program holds the command in buffer then it is printed on screen.

A: We see the ps auxw execute and print on screen. The program holds the command in buffer then it is printed on screen. Brian Duenas CSE 460 Lab 4 20 points Total 2. Process Pipes Q: What do you see when you execute "pipe1"? Why? We see the ps auxw execute and print on screen. The program holds the command in buffer then

More information

Operating Systems. Lecture 06. System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line

Operating Systems. Lecture 06. System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line Operating Systems Lecture 06 System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line March 04, 2013 exec() Typically the exec system call is

More information

프로세스간통신 (Interprocess communication) i 숙명여대창병모

프로세스간통신 (Interprocess communication) i 숙명여대창병모 프로세스간통신 (Interprocess communication) i 숙명여대창병모 Contents 1. Pipes 2. FIFOs 숙대창병모 2 파이프 (Pipe) IPC using Pipes IPC using regular files unrelated processes can share fixed size life-time lack of synchronization

More information

Lab 5: Inter-Process Communication

Lab 5: Inter-Process Communication 1. Objective Lab 5: Inter-Process Communication Study the inter-process communication 2. Syllabus Understanding the concepts and principle of inter-process communication Implementing the inter-process

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 15: Unix interface: low-level interface Cristina Nita-Rotaru Lecture 15/Fall 2013 1 Streams Recap Higher-level interface, layered on top of the primitive file descriptor

More information

What is a Process. Preview. What is a Process. What is a Process. Process Instruction Cycle. Process Instruction Cycle 3/14/2018.

What is a Process. Preview. What is a Process. What is a Process. Process Instruction Cycle. Process Instruction Cycle 3/14/2018. Preview Process Control What is process? Process identifier A key concept in OS is the process Process a program in execution Once a process is created, OS not only reserve space (in Memory) for the process

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction System Programming http://www.cs.ccu.edu.tw/~pahsiung/courses/sp 熊博安國立中正大學資訊工程學系 pahsiung@cs.ccu.edu.tw Class: EA-104 (05)2720411 ext. 33119 Office: EA-512 Textbook: Advanced Programming

More information

System Programming. Introduction to Unix

System Programming. Introduction to Unix Content : by Dr. B. Boufama School of Computer Science University of Windsor Instructor: Dr. A. Habed adlane@cs.uwindsor.ca http://cs.uwindsor.ca/ adlane/60-256 Content Content 1 Introduction 2 3 Introduction

More information

Operating System Labs. Yuanbin Wu

Operating System Labs. Yuanbin Wu Operating System Labs Yuanbin Wu CS@ECNU Operating System Labs Project 3 Oral test Handin your slides Time Project 4 Due: 6 Dec Code Experiment report Operating System Labs Overview of file system File

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Information Sciences and Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Information Sciences and Engineering INTERNAL ASSESSMENT TEST 2 Solutions 1. Explain the working of the waitpid() API with the help of a program. The program needs to take 2 command line arguments: the first argument should be used as the

More information

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 SECTION 3. POSIX I/O Functions CSE 333 SECTION 3 POSIX I/O Functions Administrivia Questions (?) HW1 Due Tonight Exercise 7 due Monday (out later today) POSIX Portable Operating System Interface Family of standards specified by the

More information

CS 33. Architecture and the OS. CS33 Intro to Computer Systems XIX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Architecture and the OS. CS33 Intro to Computer Systems XIX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Architecture and the OS CS33 Intro to Computer Systems XIX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. The Operating System My Program Mary s Program Bob s Program OS CS33 Intro to

More information

Unix Basics Compiling and Using. CMPT 300 Operating Systems I Summer Segment 2: Unix Basics. Melissa O Neill

Unix Basics Compiling and Using. CMPT 300 Operating Systems I Summer Segment 2: Unix Basics. Melissa O Neill CMPT 300 Operating Systems I Summer 1999 Segment 2: Unix Basics Melissa O Neill Unix Basics Compiling and Using You had to learn how to do the basics on a Unix system, including: Look up a manual page

More information

518 Lecture Notes Week 3

518 Lecture Notes Week 3 518 Lecture Notes Week 3 (Sept. 15, 2014) 1/8 518 Lecture Notes Week 3 1 Topics Process management Process creation with fork() Overlaying an existing process with exec Notes on Lab 3 2 Process management

More information

Pipes. Pipes Implement a FIFO. Pipes (cont d) SWE 545. Pipes. A FIFO (First In, First Out) buffer is like a. Pipes are uni-directional

Pipes. Pipes Implement a FIFO. Pipes (cont d) SWE 545. Pipes. A FIFO (First In, First Out) buffer is like a. Pipes are uni-directional Pipes SWE 545 Pipes Pipes are a way to allow processes to communicate with each other Pipes implement one form of IPC (Interprocess Communication) This allows synchronization of process execution There

More information

Parents and Children

Parents and Children 1 Process Identifiers Every process apart from the PID also has a PUID and a PGID. There are two types of PUID and PGID: real and effective. The real PUID is always equal to the user running the process

More information

UNIX System Programming. Overview. 1. A UNIX System. 2. Processes (review) 2.1. Context. Pipes/FIFOs

UNIX System Programming. Overview. 1. A UNIX System. 2. Processes (review) 2.1. Context. Pipes/FIFOs UNIX System Programming Pipes/FIFOs Overview 1. A UNIX System (review) 2. Processes (review) Objectives Look at UNIX support for interprocess communication (IPC) on a single machine Review processes pipes,

More information

CS 33. Architecture and the OS. CS33 Intro to Computer Systems XIX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

CS 33. Architecture and the OS. CS33 Intro to Computer Systems XIX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. CS 33 Architecture and the OS CS33 Intro to Computer Systems XIX 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. The Operating System My Program Mary s Program Bob s Program OS CS33 Intro to

More information

CITS2002 Systems Programming. Creating a new process using fork() 1 next CITS2002 CITS2002 schedule

CITS2002 Systems Programming. Creating a new process using fork() 1 next CITS2002 CITS2002 schedule 1 next CITS2002 CITS2002 schedule Creating a new process using fork() fork() is very unusual because it returns different values in the (existing) parent process, and the (new) child process: the value

More information

vector<process*> Delete(vector<process*> DeleteQ, int ID); vector<process*> DeleteW(vector<process*> DeleteWQ, int IDW);

vector<process*> Delete(vector<process*> DeleteQ, int ID); vector<process*> DeleteW(vector<process*> DeleteWQ, int IDW); Matt Ramsay & Robert Brown CS 470 Process Management Project 2/15/02 File: main.cpp Uncommented Code: /*********************************** ** Matthew Ramsay Robert Brown ** ** CS470 Dr. Deborah Hwang **

More information

Computer Systems Assignment 2: Fork and Threads Package

Computer Systems Assignment 2: Fork and Threads Package Autumn Term 2018 Distributed Computing Computer Systems Assignment 2: Fork and Threads Package Assigned on: October 5, 2018 Due by: October 12, 2018 1 Understanding fork() and exec() Creating new processes

More information

Concurrency. Stefan D. Bruda. Winter 2018

Concurrency. Stefan D. Bruda. Winter 2018 Concurrency Stefan D. Bruda Winter 2018 DOING MORE THINGS SIMULTANEOUSLY Concurrency can be achieved by multiprocessing and time-sharing Best definition for concurrency: apparently simultaneous execution

More information

Lecture 21 Systems Programming in C

Lecture 21 Systems Programming in C Lecture 21 Systems Programming in C A C program can invoke UNIX system calls directly. A system call can be defined as a request to the operating system to do something on behalf of the program. During

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst Clicker Question #1 For a sequential workload, the limiting factor for a disk system is likely: (A) The speed of

More information

MMAP AND PIPE. UNIX Programming 2015 Fall by Euiseong Seo

MMAP AND PIPE. UNIX Programming 2015 Fall by Euiseong Seo MMAP AND PIPE UNIX Programming 2015 Fall by Euiseong Seo Memory Mapping mmap(2) system call allows mapping of a file into process address space Instead of using read() and write(), just write to memory

More information

Maria Hybinette, UGA. ! One easy way to communicate is to use files. ! File descriptors. 3 Maria Hybinette, UGA. ! Simple example: who sort

Maria Hybinette, UGA. ! One easy way to communicate is to use files. ! File descriptors. 3 Maria Hybinette, UGA. ! Simple example: who sort Two Communicating Processes Hello Gunnar CSCI 6730/ 4730 Operating Systems Process Chat Maria A Hi Nice to Hear from you Process Chat Gunnar B Dup & Concept that we want to implement 2 On the path to communication

More information

Pipes and FIFOs. Woo-Yeong Jeong Computer Systems Laboratory Sungkyunkwan University

Pipes and FIFOs. Woo-Yeong Jeong Computer Systems Laboratory Sungkyunkwan University Pipes and FIFOs Woo-Yeong Jeong (wooyeong@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Open Files in Kernel How the Unix kernel represents open files? Two descriptors

More information

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 SECTION 3. POSIX I/O Functions CSE 333 SECTION 3 POSIX I/O Functions Administrivia Questions (?) HW1 Due Tonight HW2 Due Thursday, July 19 th Midterm on Monday, July 23 th 10:50-11:50 in TBD (And regular exercises in between) POSIX

More information

Recitation 8: Tshlab + VM

Recitation 8: Tshlab + VM Recitation 8: Tshlab + VM Instructor: TAs 1 Outline Labs Signals IO Virtual Memory 2 TshLab and MallocLab TshLab due Tuesday MallocLab is released immediately after Start early Do the checkpoint first,

More information

File Descriptors and Piping

File Descriptors and Piping File Descriptors and Piping CSC209: Software Tools and Systems Programming Furkan Alaca & Paul Vrbik University of Toronto Mississauga https://mcs.utm.utoronto.ca/~209/ Week 8 Today s topics File Descriptors

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto For more information please consult Advanced Programming in the UNIX Environment, 3rd Edition, W. Richard Stevens and

More information

Gabrielle Evaristo CSE 460. Lab Shared Memory

Gabrielle Evaristo CSE 460. Lab Shared Memory Gabrielle Evaristo CSE 460 Lab 7 1. Shared Memory Use man to study each of the shared memory functions and write a brief description on the usage of each of them. o shmget (shared memory get): Allocated

More information

CS Operating system Summer Midterm I -- July 11, 2017 You have 115 min (10:00am-11:55pm). Good Luck!

CS Operating system Summer Midterm I -- July 11, 2017 You have 115 min (10:00am-11:55pm). Good Luck! Name / ID (please PRINT) Seq#: Seat #: CS 3733.001 -- Operating system Summer 2017 -- Midterm I -- July 11, 2017 You have 115 min (10:00am-11:55pm). Good Luck! This is a closed book/note examination. But

More information

System Calls and I/O Appendix. Copyright : University of Illinois CS 241 Staff 1

System Calls and I/O Appendix. Copyright : University of Illinois CS 241 Staff 1 System Calls and I/O Appendix Copyright : University of Illinois CS 241 Staff 1 More System Calls Directory and File System Management s = mkdir(name, mode) Create a new directory s = rmdir(name) s = link(name,

More information

Process Turnaround Time Total Wait Time P 1 12 ms 0 ms P 2 21 ms 12 ms P 3 23 ms 18 ms P 4 20 ms 17 ms

Process Turnaround Time Total Wait Time P 1 12 ms 0 ms P 2 21 ms 12 ms P 3 23 ms 18 ms P 4 20 ms 17 ms Name: SOLUTIONS Score: / 100 CSCI-4210/6140 Operating Systems Midterm Exam Thursday 10/9 1-PAGE (2-SIDED) CRIB SHEET ALLOWED; NO CALCULATOR ANSWER ALL QUESTIONS; USE EXTRA PAPER AS NECESSARY 1. [25 POINTS]

More information

PLEASE HAND IN UNIVERSITY OF TORONTO Faculty of Arts and Science

PLEASE HAND IN UNIVERSITY OF TORONTO Faculty of Arts and Science PLEASE HAND IN UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER EXAMINATIONS 2006 CSC 209H1 F St. George Campus Duration 3 hours PLEASE HAND IN Student Number: Examination aids: One 8.5 x 11

More information

System Programming. Process Control II

System Programming. Process Control II Content : by Dr. B. Boufama School of Computer Science University of Windsor Instructor: Dr. A. Habed adlane@cs.uwindsor.ca http://cs.uwindsor.ca/ adlane/60-256 Content Content 1 Terminating a process

More information

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall Programming Assignment 1 (updated 9/16/2017)

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall Programming Assignment 1 (updated 9/16/2017) UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall 2017 Programming Assignment 1 (updated 9/16/2017) Introduction The purpose of this programming assignment is to give you

More information

Operating System Labs. Yuanbin Wu

Operating System Labs. Yuanbin Wu Operating System Labs Yuanbin Wu CS@ECNU Operating System Labs Project 4 (multi-thread & lock): Due: 10 Dec Code & experiment report 18 Dec. Oral test of project 4, 9:30am Lectures: Q&A Project 5: Due:

More information

Reading Assignment 4. n Chapter 4 Threads, due 2/7. 1/31/13 CSE325 - Processes 1

Reading Assignment 4. n Chapter 4 Threads, due 2/7. 1/31/13 CSE325 - Processes 1 Reading Assignment 4 Chapter 4 Threads, due 2/7 1/31/13 CSE325 - Processes 1 What s Next? 1. Process Concept 2. Process Manager Responsibilities 3. Operations on Processes 4. Process Scheduling 5. Cooperating

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 17: Processes, Pipes, and Signals Cristina Nita-Rotaru Lecture 17/ Fall 2013 1 Processes in UNIX UNIX identifies processes via a unique Process ID Each process also knows

More information

File: /home/young/mywork/7.cordic_accuracy/if.ghdl/ghdlif.print Page 1 of 15

File: /home/young/mywork/7.cordic_accuracy/if.ghdl/ghdlif.print Page 1 of 15 File: /home/young/mywork/7.cordic_accuracy/if.ghdl/ghdlif.print Page 1 of 15 makefile INCD = /home/young/mywork/inc LIBD = /home/young/mywork/lib SRC = cordic_beh.vhdl \ cordic_vtb.vhdl \ sendrecv.c \

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Inter-process Communication (IPC) Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Recall Process vs. Thread A process is

More information

CS 3013 Operating Systems WPI, A Term Assigned: Friday, August 31, 2007 Due: Monday, September 17, 2007

CS 3013 Operating Systems WPI, A Term Assigned: Friday, August 31, 2007 Due: Monday, September 17, 2007 CS 3013 Operating Systems WPI, A Term 2007 Craig E. Wills Project 2 (30 pts) Assigned: Friday, August 31, 2007 Due: Monday, September 17, 2007 Introduction This assignment is intended to help you learn

More information

CSci 4061 Introduction to Operating Systems. Processes in C/Unix

CSci 4061 Introduction to Operating Systems. Processes in C/Unix CSci 4061 Introduction to Operating Systems Processes in C/Unix Process as Abstraction Talked about C programs a bit Program is a static entity Process is an abstraction of a running program provided by

More information

File: /home/young/mywork/7.cordic_accuracy/ghdl/print.file Page 1 of 13

File: /home/young/mywork/7.cordic_accuracy/ghdl/print.file Page 1 of 13 File: /home/young/mywork/7.cordic_accuracy/ghdl/print.file Page 1 of 13 makefile sendrecv.o: sendrecv.c gcc -c -Wall sendrecv.c cordic_vtb: sendrecv.o cordic_vtb.vhdl cp /home/young/mywork/5.cordic_vhdl/a.beh/cordic_pkg.vhdl.

More information

Operating Systems. Lecture 05

Operating Systems. Lecture 05 Operating Systems Lecture 05 http://web.uettaxila.edu.pk/cms/sp2013/seosbs/ February 25, 2013 Process Scheduling, System Calls Execution (Fork,Wait,Exit,Exec), Inter- Process Communication Schedulers Long

More information

System- Level I/O. Andrew Case. Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron

System- Level I/O. Andrew Case. Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron System- Level I/O Andrew Case Slides adapted from Jinyang Li, Randy Bryant and Dave O Hallaron 1 Unix I/O and Files UNIX abstracts many things into files (just a series of bytes) All I/O devices are represented

More information

Operating Systems. Engr. Abdul-Rahman Mahmood MS, PMP, MCP, QMR(ISO9001:2000) alphapeeler.sf.net/pubkeys/pkey.htm

Operating Systems. Engr. Abdul-Rahman Mahmood MS, PMP, MCP, QMR(ISO9001:2000) alphapeeler.sf.net/pubkeys/pkey.htm Operating Systems Engr. Abdul-Rahman Mahmood MS, PMP, MCP, QMR(ISO9001:2000) armahmood786@yahoo.com alphasecure@gmail.com alphapeeler.sf.net/pubkeys/pkey.htm http://alphapeeler.sourceforge.net pk.linkedin.com/in/armahmood

More information

OPERATING SYSTEMS: Lesson 2: Operating System Services

OPERATING SYSTEMS: Lesson 2: Operating System Services OPERATING SYSTEMS: Lesson 2: Operating System Services Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Goals To understand what an operating

More information

Preview. Interprocess Communication with Pipe. Pipe from the Parent to the child Pipe from the child to the parent FIFO popen() with r Popen() with w

Preview. Interprocess Communication with Pipe. Pipe from the Parent to the child Pipe from the child to the parent FIFO popen() with r Popen() with w Preview Interprocess Communication with Pipe Pipe from the Parent to the child Pipe from the child to the parent FIFO popen() with r Popen() with w COCS 350 System Software, Fall 2015 1 Interprocess Communication

More information

CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Exam 1 Questions (document version 1.1)

CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Exam 1 Questions (document version 1.1) CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Exam 1 Questions (document version 1.1) Overview Exam 1 will be in class on Thursday, February 22, 2018 from 10:00-11:45AM (please

More information

Computer Science & Engineering Department I. I. T. Kharagpur

Computer Science & Engineering Department I. I. T. Kharagpur Computer Science & Engineering Department I. I. T. Kharagpur Operating System: CS33007 3rd Year CSE: 5th Semester (Autumn 2006-2007) Lecture III (Linux System Calls II) Goutam Biswas Date: 1st-7th August,

More information

ECE322 Systems Programming Project 2: Networking with Matrix Multiplication in C Grant Kimes 12/16/15

ECE322 Systems Programming Project 2: Networking with Matrix Multiplication in C Grant Kimes 12/16/15 ECE322 Systems Programming Project 2: Networking with Matrix Multiplication in C Grant Kimes 12/16/15 This project take two inputted matrices of a given size to multiply. The client sends the data to a

More information

System Programming. Process Control III

System Programming. Process Control III Content : by Dr. B. Boufama School of Computer Science University of Windsor Instructor: Dr. A. Habed adlane@cs.uwindsor.ca http://cs.uwindsor.ca/ adlane/60-256 Content Content 1 Differentiating a process:

More information

SE350: Operating Systems

SE350: Operating Systems SE350: Operating Systems Tutorial: The Programming Interface Main Points Creating and managing processes fork, exec, wait Example: implementing a shell Shell A shell is a job control system Allows programmer

More information

Chapter 3 Processes we will completely ignore threads today

Chapter 3 Processes we will completely ignore threads today Chapter 3 Processes we will completely ignore threads today Images from Silberschatz Pacific University 1 Process Define: Memory Regions: Loaded from executable file: ELF: Executable and Linkable Format

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto For more information please consult Advanced Programming in the UNIX Environment, 3rd Edition, W. Richard Stevens and

More information

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Name: ID#: Section #: Day & Time: Instructor: Answer all questions as indicated. Closed book/closed

More information

Multi-Process Programming in C

Multi-Process Programming in C Multi-Process Programming in C (2016/2017) Giuseppe Massari giuseppe.massari@polimi.it Outline 2/43 Multi-process programming Fork processes Inter-process synchronization Executing other programs Inter-Process

More information

Unix Processes 1 / 31

Unix Processes 1 / 31 Unix Processes 1/31 A Unix Process Instance of a program in execution. OS loads the executable in main-memory (core) and starts execution by accessing the first command. Each process has a unique identifier,

More information

Contents. PA1 review and introduction to PA2. IPC (Inter-Process Communication) Exercise. I/O redirection Pipes FIFOs

Contents. PA1 review and introduction to PA2. IPC (Inter-Process Communication) Exercise. I/O redirection Pipes FIFOs Pipes and FIFOs Prof. Jin-Soo Kim( jinsookim@skku.edu) TA Dong-Yun Lee(dylee@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Contents PA1 review and introduction to

More information

Final Precept: Ish. Slides Originally Prepared by: Wonho Kim

Final Precept: Ish. Slides Originally Prepared by: Wonho Kim Final Precept: Ish Slides Originally Prepared by: Wonho Kim Agenda Last time exec(), fork() wait() Today zombie, orphan process built-in commands in ish I/O redirection Unix signal Process Hierarchy Every

More information

Prepared by Prof. Hui Jiang Process. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

Prepared by Prof. Hui Jiang Process. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University EECS3221.3 Operating System Fundamentals No.2 Process Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University How OS manages CPU usage? How CPU is used? Users use CPU to run

More information

Chapter 10. The UNIX System Interface

Chapter 10. The UNIX System Interface 프로그래밍 1 1 Chapter 10. The UNIX System Interface June, 2016 Dept. of software Dankook University http://embedded.dankook.ac.kr/~baeksj 파일의개념 (1/5) 2 파일의정의 사용자가이용할수있는데이터의실체레코드들의집합이라고정의 파일의필요성 데이터의효율적인저장및검색을위해파일단위구분

More information

Process a program in execution; process execution must progress in sequential fashion. Operating Systems

Process a program in execution; process execution must progress in sequential fashion. Operating Systems Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks 1 Textbook uses the terms job and process almost interchangeably Process

More information

Process. Prepared by Prof. Hui Jiang Dept. of EECS, York Univ. 1. Process in Memory (I) PROCESS. Process. How OS manages CPU usage? No.

Process. Prepared by Prof. Hui Jiang Dept. of EECS, York Univ. 1. Process in Memory (I) PROCESS. Process. How OS manages CPU usage? No. EECS3221.3 Operating System Fundamentals No.2 Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University How OS manages CPU usage? How CPU is used? Users use CPU to run programs

More information

Unix-Linux 2. Unix is supposed to leave room in the process table for a superuser process that could be used to kill errant processes.

Unix-Linux 2. Unix is supposed to leave room in the process table for a superuser process that could be used to kill errant processes. Unix-Linux 2 fork( ) system call is successful parent suspended child created fork( ) returns child pid to parent fork( ) returns zero value to child; zero is the pid of the swapper/scheduler process both

More information

OPERATING SYSTEMS: Lesson 12: Directories

OPERATING SYSTEMS: Lesson 12: Directories OPERATING SYSTEMS: Lesson 12: Directories Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Goals To know the concepts of file and directory

More information

File and Directories. Advanced Programming in the UNIX Environment

File and Directories. Advanced Programming in the UNIX Environment File and Directories Advanced Programming in the UNIX Environment stat Function #include int stat(const char *restrict pathname, struct stat *restrict buf ); int fstat(int fd, struct stat

More information

Homework 4 Answers. Due Date: Monday, May 27, 2002, at 11:59PM Points: 100. /* * macros */ #define SZBUFFER 1024 /* max length of input buffer */

Homework 4 Answers. Due Date: Monday, May 27, 2002, at 11:59PM Points: 100. /* * macros */ #define SZBUFFER 1024 /* max length of input buffer */ Homework 4 Answers Due Date: Monday, May 27, 2002, at 11:59PM Points: 100 UNIX System 1. (10 points) How do I delete the file i? Answer: Either rm./-i or rm -- -i will work. 2. (15 points) Please list

More information

CS 355 Operating Systems. Keeping Track of Processes. When are processes created? Process States 1/26/18. Processes, Unix Processes and System Calls

CS 355 Operating Systems. Keeping Track of Processes. When are processes created? Process States 1/26/18. Processes, Unix Processes and System Calls CS 355 Operating Systems Processes, Unix Processes and System Calls Process User types command like run foo at keyboard I/O device driver for keyboard and screen Command is parsed by command shell Executable

More information

Files and File System

Files and File System Operating System IIIT Kalyani 1 Files and File System Operating System IIIT Kalyani 2 File Primarily a file is a named collection of data stored in a non-volatile storage media such as a hard disk. In

More information

Compile and execute fifo1.cpp listed above. Try the Balady's anomaly examples discussed in class. Did you observe the Belady's anomaly?

Compile and execute fifo1.cpp listed above. Try the Balady's anomaly examples discussed in class. Did you observe the Belady's anomaly? Tyler Gaynair Lab9 Score out of 20 Compile and execute fifo1.cpp listed above. Try the Balady's anomaly examples discussed in class. Did you observe the Belady's anomaly? Fifo.cpp code // fifo1.cpp: First

More information

Interprocess Communication E. Im

Interprocess Communication E. Im Interprocess Communication 2008 E. Im 1 Pipes (FIFO) Pipes are a way to allow processes to communicate with each other There are two kinds of pipes Unnamed pipes Named pipes Pipes are uni-directional They

More information

Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel

Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel 1 File System Why files? 1. Storing a large amount of data 2. Long-term data retention 3. Access to the various processes in parallel 2 Basic Terms File Structures Field basic unit of data. Contains single

More information

Process management 1

Process management 1 Process management 1 The kernel The core set of service that the OS provides 2 User Mode & kernel mode User mode apps delegate to system APIs in order to access hardware User space Kernel space User Utilities

More information

Homework 5. Due Date: Friday, June 7, 2002, at 11:59PM; no late assignments accepted Points: 100

Homework 5. Due Date: Friday, June 7, 2002, at 11:59PM; no late assignments accepted Points: 100 Homework 5 Due Date: Friday, June 7, 2002, at 11:59PM; no late assignments accepted Points: 100 UNIX System 1. (10 points) I want to make the file libprog.a in my home directory available to everyone so

More information

Shared Memory Memory mapped files

Shared Memory Memory mapped files Shared Memory Memory mapped files 1 Shared Memory Introduction Creating a Shared Memory Segment Shared Memory Control Shared Memory Operations Using a File as Shared Memory 2 Introduction Shared memory

More information

CSC209F Midterm (L0101) Fall 1999 University of Toronto Department of Computer Science

CSC209F Midterm (L0101) Fall 1999 University of Toronto Department of Computer Science CSC209F Midterm (L0101) Fall 1999 University of Toronto Department of Computer Science Date: October 26, 1999 Time: 1:10 pm Duration: 50 minutes Notes: 1. This is a closed book test, no aids are allowed.

More information

POSIX Semaphores. Operations on semaphores (taken from the Linux man page)

POSIX Semaphores. Operations on semaphores (taken from the Linux man page) POSIX Semaphores A variable of type sem_t Example Declaration of a semaphore sem_t sem; Operations on semaphores (taken from the Linux man page) int sem_init(sem_t *sem, int pshared, unsigned int value);

More information

CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Midterm Exam Questions (document version 1.1)

CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Midterm Exam Questions (document version 1.1) CSCI 4210 Operating Systems CSCI 6140 Computer Operating Systems Sample Midterm Exam Questions (document version 1.1) Overview The midterm exam will be in class on Monday, March 28, 2016 from 10:00-11:45AM

More information

Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar

Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Processes in Unix, Linux, and Windows Unix pre-empted

More information

Do not turn the page until 5:00.

Do not turn the page until 5:00. University of Washington Computer Science & Engineering Spring 2018 Instructor: Justin Hsia 2018-05-04 Last Name: First Name: Student ID Number: Name of person to your Left Right All work is my own. I

More information

Windows architecture. user. mode. Env. subsystems. Executive. Device drivers Kernel. kernel. mode HAL. Hardware. Process B. Process C.

Windows architecture. user. mode. Env. subsystems. Executive. Device drivers Kernel. kernel. mode HAL. Hardware. Process B. Process C. Structure Unix architecture users Functions of the System tools (shell, editors, compilers, ) standard library System call Standard library (printf, fork, ) OS kernel: processes, memory management, file

More information