MINIX 3. Memory Management DATA STRUCTURES

Size: px
Start display at page:

Download "MINIX 3. Memory Management DATA STRUCTURES"

Transcription

1 MINIX 3 Memory Management In MINIX 3 memory is managed through multiple partitions technique. The Process Manager (PM) is the server process deals with memory management. PM uses two important data structures: Process Table Hole Table Process Table holds necessary information for PM to manage user processes in memory. DATA STRUCTURES /servers/pm/mproc.h EXTERN struct mproc { struct mem_map mp_seg[nr_local_segs]; /* points to text, data, stack */ char mp_exitstatus; /* storage for status when process exits */ char mp_sigstatus; /* storage for signal # for killed procs */ pid_t mp_pid; /* process id */ pid_t mp_procgrp; /* pid of process group (used for signals) */ pid_t mp_wpid; /* pid this process is waiting for */ int mp_parent; /* index of parent process */ unsigned mp_flags; /* flag bits */ char mp_name[proc_name_len]; /* process name */ mproc[nr_procs]; The most important field is mp_seg array, which maintains information of the three segments associated to a process: 1. Text 2. Data 3. Stack 1

2 Each segment is structured with the follow layout: /include/minix/type.h struct mem_map { vir_clicks mem_vir; /* virtual address */ phys_clicks mem_phys; /* physical address */ vir_clicks mem_len; /* length */ ; Each field is measured in clicks rather than in byte for a simple reason. Each click is 1024 bytes Therefore is possible to refer to 2 2 = 2 address fields, 4 terabytes (4096 gigabyte), rather 32 than the standard 2. Another data structure is the Hole Table. /include/minix/sys_config.h #define _NR_PROCS 64 /include/minix/config.h #define NR_PROCS _NR_PROCS /servers/pm/alloc.c #define NR_HOLES (2*NR_PROCS) /* max # entries in hole table*/ PRIVATE struct hole { struct hole *h_next; /* pointer to next entry on the list */ phys_clicks h_base; /* where does the hole begin? */ phys_clicks h_len; /* how big is the hole? */ hole[nr_holes]; This table records holes created when a new process is allocated in memory. To the Hole Table are associated two linked list: 1. free holes list headed by hole_head; 2. a list of free slots in the Hole Table. This list is headed by free_slots. Initially the former list has one entry for each chunk of physical memory, while the second list links together the remaining table slots. As memory becomes more fragmented in the course of time, new table slots are needed to represent those areas. These slots are taken from the list headed by free_slots. 2

3 The free holes list is ordered with the first-fit algorithm. In this way the list is kept sorted in order of increasing memory address. PROCESS IMAGE MEMORY LAYOUT The default of MINIX 3 is to compile programs to use separate I and D space. This choice is advantageous because a text segment can be shared between two or more processes. For each process is reserved a fixed amount of memory for the combined text, data and stack segments. The amount used for a child process created by Fork is the same as the parent had. If the child does an Exec later, the new size is taken from the header of the file Exec'ed. Memory layout consists of the text segment followed by data segment. Between data and stack segment there s an unused memory, called gap. The data segment grows upward and the stack grows downward, so each can take memory from the gap. If they meet, the process must be killed. 3

4 HOLE TABLE INITIALIZATION Hole Table is initialized by mem_init(). This procedure is called at the end of the PM s initialization procedure, pm_init(). /servers/pm/alloc.c PUBLIC void mem_init(chunks, free) List of free memory chunks struct memory *chunks; phys_clicks *free; { Output parameter, free memory size in clicks int i; register struct hole *hp; /* Put all holes on the free list. */ for (hp = &hole[0]; hp < &hole[nr_holes]; hp++) hp->h_next = hp + 1; hole[nr_holes-1].h_next = NIL_HOLE; hole_head = NIL_HOLE; free_slots = &hole[0]; /* Use the chunks of physical memory to allocate holes. */ *free = 0; for (i=nr_mems-1; i>=0; i--) { if (chunks[i].size > 0) { free_mem(chunks[i].base, chunks[i].size); *free += chunks[i].size; 4

5 HOLES INSERTION IN THE FREE HOLES LIST PUBLIC void free_mem(base, clicks) phys_clicks base; /* base address of block to free */ phys_clicks clicks; /* number of clicks to free */ { register struct hole *hp, *new_ptr, *prev_ptr; if (clicks == 0) return; if ( (new_ptr = free_slots) == NIL_HOLE) panic( FILE,"hole table full", NO_NUM); new_ptr->h_base = base; new_ptr->h_len = clicks; free_slots = new_ptr->h_next; hp = hole_head; if (hp == NIL_HOLE base <= hp->h_base) { /* Block to be freed goes on front of the hole list. */ new_ptr->h_next = hp; hole_head = new_ptr; merge(new_ptr); return; prev_ptr = NIL_HOLE; while (hp!= NIL_HOLE && base > hp->h_base) { prev_ptr = hp; hp = hp->h_next; Is there a free slot? Checks if the hole is: The first to allocate; The previous to the first hole now accessible. Then insert hole to the head of the list. Decides the insertion position new_ptr->h_next = prev_ptr->h_next; prev_ptr->h_next = new_ptr; merge(prev_ptr); Insertion 5

6 HOLES FUSION /servers/pm/alloc.c PRIVATE void merge(hp) register struct hole *hp; /* ptr to hole to merge with its successors */ { register struct hole *next_ptr; if ( (next_ptr = hp->h_next) == NIL_HOLE) return; if (hp->h_base + hp->h_len == next_ptr->h_base) { else { hp->h_len += next_ptr->h_len; del_slot(hp, next_ptr); hp = next_ptr; if ( (next_ptr = hp->h_next) == NIL_HOLE) return; if (hp->h_base + hp->h_len == next_ptr->h_base) { hp->h_len += next_ptr->h_len; del_slot(hp, next_ptr); Fusion is impossible if the hole is the last in the list. Merge if the two holes are contiguous Free slot of the absorbed hole. Link new hole with the successive of the absorbed hole. 6

7 MEMORY ALLOCATION Memory is allocated only with a Fork or Exec. When a process is allocated in memory remain in that position for all its execution. It can t be change because of absence of swap procedures. The procedure for the allocation memory is: /servers/pm/alloc.c PUBLIC phys_clicks alloc_mem(clicks) phys_clicks clicks; /* amount of memory requested */ { register struct hole *hp, *prev_ptr; phys_clicks old_base; do { prev_ptr = NIL_HOLE; hp = hole_head; while (hp!= NIL_HOLE && hp->h_base < swap_base) { while (swap_out()); return(no_mem); if (hp->h_len >= clicks) { prev_ptr = hp; /* We found a hole that is big enough. Use it. */ old_base = hp->h_base; /* remember where it started */ hp->h_base += clicks; /* bite a piece off */ hp->h_len -= clicks; /* ditto */ /* Delete the hole if used up completely. */ if (hp->h_len == 0) del_slot(prev_ptr, hp); /* Return the start address of the acquired block. */ return(old_base); hp = hp->h_next; Search a suitable hole for the process size. #define swap_out() (0) 7

8 PROCESS MEMORY DEALLOCATION A process termination is notified by Exit system call. This information is kept by do_pm_exit which calls pm_exit. /servers/pm/forkexit.c PUBLIC void pm_exit(rmp, exit_status) register struct mproc *rmp; /* pointer to the process to be terminated */ { /* Release the memory occupied by the child. */ if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) { free_mem(rmp->mp_seg[t].mem_phys, rmp->mp_seg[t].mem_len); /* Free the data and stack segments. */ free_mem(rmp->mp_seg[d].mem_phys, rmp->mp_seg[s].mem_vir + rmp->mp_seg[s].mem_len - rmp->mp_seg[d].mem_vir); 8

9 MEMORY INITIALIZATION When MINIX 3 is installed on Hard-disk is needed to load it in the central memory. Each hard-disk can be divided in partition. The first sector of the hard-disk, called master boot record, contains a program called boot loader and the partition table, which records information on the various disc s partitions. The boot loader reads the partition table to find the active partition. The first sector of the active partition, called boot block, contains the bootstrap program, a very small program container in only one sector, which load a program called boot. This one loads the operating system itself: it search the boot image to load servers and drivers in specified memory areas. /kernel/table.c PUBLIC struct boot_image image[] = { /* process nr, pc, flags, qs, queue, stack, traps, ipcto, call, name */ { IDLE, idle_task, IDL_F, 8, IDLE_Q, IDL_S, 0, 0, 0, "IDLE", { CLOCK, clock_task, TSK_F, 64, TASK_Q,TSK_S, TSK_T, 0, 0, "CLOCK", { SYSTEM, sys_task, TSK_F, 64, TASK_Q,TSK_S, TSK_T, 0, 0, "SYSTEM", { HARDWARE, 0, TSK_F, 64, TASK_Q,HRD_S, 0, 0, 0, "KERNEL", { PM_PROC_NR, 0, SRV_F, 32, 3, 0, SRV_T, SRV_M, PM_C, "pm", { FS_PROC_NR, 0, SRV_F, 32, 4, 0, SRV_T, SRV_M, FS_C, "fs", { RS_PROC_NR, 0, SRV_F, 4, 3, 0, SRV_T, SYS_M, RS_C, "rs", { TTY_PROC_NR, 0, SRV_F, 4, 1, 0, SRV_T, SYS_M, DRV_C, "tty", { MEM_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, DRV_M, MEM_C, "memory", { LOG_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C, "log", { DRVR_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C, "driver", { INIT_PROC_NR, 0, USR_F, 8, USER_Q, 0, USR_T, USR_M, 0, "init", ; 9

10 When the start-up phase is finished, memory has this layout. EXTENDED MEMORY HMA UMA BASE MEMORY 10

11 SOME IMPORTANT AREAS The first section of the Base Memory is called BIOS memory. The former 1024 bytes contain the table of the interrupt vectors. The latter 256 bytes contain informations used by driver to know hardware s details. /kernel/ibm/memory.h #define BIOS_MEM_BEGIN 0x00000 /* all BIOS memory */ #define BIOS_MEM_END 0x004FF #define BIOS_IVT_BEGIN 0x00000 /* BIOS interrupt vectors */ #define BIOS_IVT_END 0x003FF #define BIOS_DATA_BEGIN 0x00400 /* BIOS data area */ #define BIOS_DATA_END 0x004FF UMA area is divided in three sectors of 128 Kbytes. The first one is called VIDEO RAM and the display s driver write datas directly in this part of memory. Then asks to monitor to show them on the screen. #define UMA_VIDEO_RAM_BEGIN 0xA0000 /* video RAM */ #define UMA_VIDEO_RAM_END 0xBFFFF #define UMA_GRAPHICS_RAM_BEGIN 0xA0000 /* graphics RAM */ #define UMA_GRAPHICS_RAM_END 0xAFFFF #define UMA_MONO_TEXT_BEGIN 0xB0000 /* monochrome text */ #define UMA_MONO_TEXT_END 0xB7FFF #define UMA_COLOR_TEXT_BEGIN 0xB8000 /* color text */ #define UMA_COLOR_TEXT_END 0xBFFFF 11

Operating Systems Design and Implementation

Operating Systems Design and Implementation Operating Systems Design and Implementation Chapter 4 (version January 3, 28) Melanie Rieback Vrije Universiteit Amsterdam, Faculty of Sciences Dept. Computer Science Room R4.23. Tel: (2) 598 7874 E-mail:

More information

PROCESS SWAPPING IN MINIX JOHN HOMER

PROCESS SWAPPING IN MINIX JOHN HOMER PROCESS SWAPPING IN MINIX by JOHN HOMER B. S., Harding University, 2002 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Computing and Information

More information

Paging, and segmentation

Paging, and segmentation Paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 Big Picture

More information

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. To do. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management To do q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not

More information

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not an option

More information

CS 322 Operating Systems Practice Midterm Questions

CS 322 Operating Systems Practice Midterm Questions ! CS 322 Operating Systems 1. Processes go through the following states in their lifetime. time slice ends Consider the following events and answer the questions that follow. Assume there are 5 processes,

More information

Process. Discussion session 3 1/30/2016

Process. Discussion session 3 1/30/2016 Process Discussion session 3 1/30/2016 A program in execution What is the process? An instance of a program running on a computer The entity can be assigned to and executed on a processor A unit of activity

More information

by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha

by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha CS 111 Scribe Notes for 4/11/05 by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha Processes What is a process? A process is a running instance of a program. The Web browser you're using to

More information

COMP26120: Linked List in C (2018/19) Lucas Cordeiro

COMP26120: Linked List in C (2018/19) Lucas Cordeiro COMP26120: Linked List in C (2018/19) Lucas Cordeiro lucas.cordeiro@manchester.ac.uk Linked List Lucas Cordeiro (Formal Methods Group) lucas.cordeiro@manchester.ac.uk Office: 2.28 Office hours: 10-11 Tuesday,

More information

CMSC 313 Spring 2010 Exam 3 May 17, 2010

CMSC 313 Spring 2010 Exam 3 May 17, 2010 CMSC 313 Spring 2010 Exam 3 May 17, 2010 Name Score UMBC Username Notes: a. Please write clearly. Unreadable answers receive no credit. b. There are no intentional syntax errors in any code provided with

More information

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU BCA-3 rd Semester 030010304-Fundamentals Of Operating Systems Unit: 1 Introduction Short Answer Questions : 1. State two ways of process communication. 2. State any two uses of operating system according

More information

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017 ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 The Operating System (OS) Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke)

More information

CIS Operating Systems Non-contiguous Memory Allocation. Professor Qiang Zeng Spring 2018

CIS Operating Systems Non-contiguous Memory Allocation. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Non-contiguous Memory Allocation Professor Qiang Zeng Spring 2018 Big picture Fixed partitions Dynamic partitions Buddy system Contiguous allocation: Each process occupies

More information

Course: Operating Systems Instructor: M Umair. M Umair

Course: Operating Systems Instructor: M Umair. M Umair Course: Operating Systems Instructor: M Umair Memory Management Introduction { Ref: Operating System Concepts 8th Edition Abraham Silberschatz, Greg Gagne, Peter B. Galvin } Address Binding Addresses in

More information

PROCESS STATES AND TRANSITIONS:

PROCESS STATES AND TRANSITIONS: The kernel contains a process table with an entry that describes the state of every active process in the system. The u area contains additional information that controls the operation of a process. The

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

Processes. Process Management Chapter 3. When does a process gets created? When does a process gets terminated?

Processes. Process Management Chapter 3. When does a process gets created? When does a process gets terminated? Processes Process Management Chapter 3 1 A process is a program in a state of execution (created but not terminated) Program is a passive entity one on your disk (survivor.class, kelly.out, ) Process is

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

Project 2 Overview: Part A: User space memory allocation

Project 2 Overview: Part A: User space memory allocation Project 2 Overview: Once again, this project will have 2 parts. In the first part, you will get to implement your own user space memory allocator. You will learn the complexities and details of memory

More information

User Programs. Computer Systems Laboratory Sungkyunkwan University

User Programs. Computer Systems Laboratory Sungkyunkwan University Project 2: User Programs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Supporting User Programs What should be done to run user programs? 1. Provide

More information

12: Memory Management

12: Memory Management 12: Memory Management Mark Handley Address Binding Program goes through multiple steps from compilation to execution. At some stage, addresses in the program must be bound to physical memory addresses:

More information

Templates what and why? Beware copying classes! Templates. A simple example:

Templates what and why? Beware copying classes! Templates. A simple example: Beware copying classes! Templates what and why? class A { private: int data1,data2[5]; float fdata; public: // methods etc. } A a1,a2; //some work initializes a1... a2=a1; //will copy all data of a2 into

More information

COSC345 Software Engineering. The Heap And Dynamic Memory Allocation

COSC345 Software Engineering. The Heap And Dynamic Memory Allocation COSC345 Software Engineering The Heap And Dynamic Memory Allocation Outline Revision The programmer s view of memory Simple array-based memory allocation C memory allocation routines Virtual memory Swapping

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Fall 2015 COMP Operating Systems. Lab #3

Fall 2015 COMP Operating Systems. Lab #3 Fall 2015 COMP 3511 Operating Systems Lab #3 Outline n Operating System Debugging, Generation and System Boot n Review Questions n Process Control n UNIX fork() and Examples on fork() n exec family: execute

More information

Cpt S 122 Data Structures. Data Structures

Cpt S 122 Data Structures. Data Structures Cpt S 122 Data Structures Data Structures Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Topics Introduction Self Referential Structures Dynamic Memory Allocation

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Main Memory: The Big Picture kernel memory proc struct kernel stack/u area Stack kernel stack/u area Stack kernel stack/u area Stack Data Text (shared)

More information

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University Main Memory CISC3595, Spring 2015 X. Zhang Fordham University 1 Memory Management! Background!! Contiguous Memory Allocation!! Paging!! Structure of the Page Table!! Segmentation!! Example: The Intel Pentium

More information

Processes. Sanzheng Qiao. December, Department of Computing and Software

Processes. Sanzheng Qiao. December, Department of Computing and Software Processes Sanzheng Qiao Department of Computing and Software December, 2012 What is a process? The notion of process is an abstraction. It has been given many definitions. Program in execution is the most

More information

Memory Management. COMP755 Advanced Operating Systems

Memory Management. COMP755 Advanced Operating Systems Memory Management COMP755 Advanced Operating Systems Purpose of Memory Manager Find a place in RAM for programs and data. OS Memory Manager allocates RAM to programs and OS tasks and data. User level memory

More information

Part-A QUESTION BANK UNIT-III 1. Define Dynamic Loading. To obtain better memory-space utilization dynamic loading is used. With dynamic loading, a routine is not loaded until it is called. All routines

More information

Operating Systems. IV. Memory Management

Operating Systems. IV. Memory Management Operating Systems IV. Memory Management Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ @OS Eurecom Outline Basics of Memory Management Hardware Architecture

More information

Logical disks. Bach 2.2.1

Logical disks. Bach 2.2.1 Logical disks Bach 2.2.1 Physical disk is divided into partitions or logical disks Logical disk linear sequence of fixed size, randomly accessible, blocks disk device driver maps underlying physical storage

More information

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) !

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) ! Memory Questions? CSCI [4 6]730 Operating Systems Main Memory! What is main memory?! How does multiple processes share memory space?» Key is how do they refer to memory addresses?! What is static and dynamic

More information

CSCI 237 Sample Final Exam

CSCI 237 Sample Final Exam Problem 1. (12 points): Multiple choice. Write the correct answer for each question in the following table: 1. What kind of process can be reaped? (a) Exited (b) Running (c) Stopped (d) Both (a) and (c)

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Operating Systems. Lecture 05

Operating Systems. Lecture 05 Operating Systems Lecture 05 http://web.uettaxila.edu.pk/cms/sp2013/seosbs/ February 25, 2013 Process Scheduling, System Calls Execution (Fork,Wait,Exit,Exec), Inter- Process Communication Schedulers Long

More information

Preview. Memory Management

Preview. Memory Management Preview Memory Management With Mono-Process With Multi-Processes Multi-process with Fixed Partitions Modeling Multiprogramming Swapping Memory Management with Bitmaps Memory Management with Free-List Virtual

More information

Process. Heechul Yun. Disclaimer: some slides are adopted from the book authors slides with permission

Process. Heechul Yun. Disclaimer: some slides are adopted from the book authors slides with permission Process Heechul Yun Disclaimer: some slides are adopted from the book authors slides with permission 1 Recap OS services Resource (CPU, memory) allocation, filesystem, communication, protection, security,

More information

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9: Memory Management Background Swapping Contiguous Memory Allocation Segmentation

More information

Process a program in execution; process execution must progress in sequential fashion. Operating Systems

Process a program in execution; process execution must progress in sequential fashion. Operating Systems Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks 1 Textbook uses the terms job and process almost interchangeably Process

More information

Physical memory vs. Logical memory Process address space Addresses assignment to processes Operating system tasks Hardware support CONCEPTS 3.

Physical memory vs. Logical memory Process address space Addresses assignment to processes Operating system tasks Hardware support CONCEPTS 3. T3-Memory Index Memory management concepts Basic Services Program loading in memory Dynamic memory HW support To memory assignment To address translation Services to optimize physical memory usage COW

More information

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 15-410...The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 Dave Eckhardt Bruce Maggs 1 L16_VM2 Wean Synchronization Watch for exam e-mail Please answer promptly Computer Club demo night Thursday (2/22)

More information

Mon Sep 17, 2007 Lecture 3: Process Management

Mon Sep 17, 2007 Lecture 3: Process Management Mon Sep 17, 2007 Lecture 3: Process Management September 19, 2007 1 Review OS mediates between hardware and user software QUIZ: Q: Name three layers of a computer system where the OS is one of these layers.

More information

Memory Management. Memory Management. G53OPS: Operating Systems. Memory Management Monoprogramming 11/27/2008. Graham Kendall.

Memory Management. Memory Management. G53OPS: Operating Systems. Memory Management Monoprogramming 11/27/2008. Graham Kendall. Memory Management Memory Management Introduction Graham Kendall Memory Management consists of many tasks, including Being aware of what parts of the memory are in use and which parts are not Allocating

More information

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory

Memory Management. Today. Next Time. Basic memory management Swapping Kernel memory allocation. Virtual memory Memory Management Today Basic memory management Swapping Kernel memory allocation Next Time Virtual memory Midterm results Average 68.9705882 Median 70.5 Std dev 13.9576965 12 10 8 6 4 2 0 [0,10) [10,20)

More information

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory Multi-Process Systems: Memory (2) What we will learn A detailed description of various ways of organizing memory Discuss various memory-management techniques, including paging and segmentation To provide

More information

Operating Systems (2INC0) 2017/18

Operating Systems (2INC0) 2017/18 Operating Systems (2INC0) 2017/18 Memory Management (09) Dr. Courtesy of Dr. I. Radovanovic, Dr. R. Mak (figures from Bic & Shaw) System Architecture and Networking Group Agenda Reminder: OS & resources

More information

In multiprogramming systems, processes share a common store. Processes need space for:

In multiprogramming systems, processes share a common store. Processes need space for: Memory Management In multiprogramming systems, processes share a common store. Processes need space for: code (instructions) static data (compiler initialized variables, strings, etc.) global data (global

More information

Segmentation with Paging. Review. Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Segmentation with Page (MULTICS)

Segmentation with Paging. Review. Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Review Segmentation Segmentation Implementation Advantage of Segmentation Protection Sharing Segmentation with Paging Segmentation with Paging Segmentation with Paging Reason for the segmentation with

More information

Background. Contiguous Memory Allocation

Background. Contiguous Memory Allocation Operating System Lecture 8 2017.5.9 Chapter 8 (Main Memory) Background Swapping Contiguous Memory Allocation Segmentation - Paging Memory Management Selection of a memory-management method for a specific

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4 C Memory Management 2007-06-28 Scott Beamer, Instructor iphone Comes out Tomorrow CS61C L4 C Memory Management (1) www.apple.com/iphone

More information

Processes. Dr. Yingwu Zhu

Processes. Dr. Yingwu Zhu Processes Dr. Yingwu Zhu Process Growing Memory Stack expands automatically Data area (heap) can grow via a system call that requests more memory - malloc() in c/c++ Entering the kernel (mode) Hardware

More information

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition Chapter 8: Memory Management 8.1 Silberschatz, Galvin and Gagne 2009 Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are

More information

Chapter 9 Memory Management

Chapter 9 Memory Management Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar

Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Processes in Unix, Linux, and Windows Unix pre-empted

More information

UNIT III MEMORY MANAGEMENT

UNIT III MEMORY MANAGEMENT UNIT III MEMORY MANAGEMENT TOPICS TO BE COVERED 3.1 Memory management 3.2 Contiguous allocation i Partitioned memory allocation ii Fixed & variable partitioning iii Swapping iv Relocation v Protection

More information

Memory Management - Demand Paging and Multi-level Page Tables

Memory Management - Demand Paging and Multi-level Page Tables Memory Management - Demand Paging and Multi-level Page Tables CS 416: Operating Systems Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Topics

More information

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 1 Solution Due 3:15 PM, Wednesday, 2/1/17

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 1 Solution Due 3:15 PM, Wednesday, 2/1/17 Spring 2017 Homework 1 Solution Due 3:15 PM, Wednesday, 2/1/17 1. (10 points) a. (3 points) Briefly describe the characteristics of zombie and orphan processes. Solution: A zombie process is a process

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Chapter 7 1 Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory as possible 2 1 Memory

More information

Final exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Dec 20, Student's name: Student ID:

Final exam. Scores. Fall term 2012 KAIST EE209 Programming Structures for EE. Thursday Dec 20, Student's name: Student ID: Fall term 2012 KAIST EE209 Programming Structures for EE Final exam Thursday Dec 20, 2012 Student's name: Student ID: The exam is closed book and notes. Read the questions carefully and focus your answers

More information

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5.

Lecture Topics. Announcements. Today: Threads (Stallings, chapter , 4.6) Next: Concurrency (Stallings, chapter , 5. Lecture Topics Today: Threads (Stallings, chapter 4.1-4.3, 4.6) Next: Concurrency (Stallings, chapter 5.1-5.4, 5.7) 1 Announcements Make tutorial Self-Study Exercise #4 Project #2 (due 9/20) Project #3

More information

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance Administrivia Project discussion? Last time Wrapped up deadlock Today: Start memory management SUNY-BINGHAMTON CS35 SPRING 8 LEC. #13 1 Handling Deadlock Deadlock Prevention Techniques Prevent hold and

More information

ECE 598 Advanced Operating Systems Lecture 10

ECE 598 Advanced Operating Systems Lecture 10 ECE 598 Advanced Operating Systems Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 22 February 2018 Announcements Homework #5 will be posted 1 Blocking vs Nonblocking

More information

CIS Operating Systems Memory Management. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Professor Qiang Zeng Fall 2017 Previous class Uniprocessor policies FCFS, Shortest Job First Round Robin Multilevel Feedback Queue Multiprocessor policies

More information

UNIX Processes. by Armin R. Mikler. 1: Introduction

UNIX Processes. by Armin R. Mikler. 1: Introduction UNIX Processes by Armin R. Mikler Overview The UNIX Process What is a Process Representing a process States of a process Creating and managing processes fork() wait() getpid() exit() etc. Files in UNIX

More information

CSCE Operating Systems Non-contiguous Memory Allocation. Qiang Zeng, Ph.D. Fall 2018

CSCE Operating Systems Non-contiguous Memory Allocation. Qiang Zeng, Ph.D. Fall 2018 CSCE 311 - Operating Systems Non-contiguous Memory Allocation Qiang Zeng, Ph.D. Fall 2018 Big picture Fixed partitions Dynamic partitions Buddy system Contiguous allocation: Each process occupies a contiguous

More information

Section 2: Processes

Section 2: Processes September 7, 2016 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Forks................................................ 3 3.2 Stack Allocation.........................................

More information

The UtePC/Yalnix Memory System

The UtePC/Yalnix Memory System The UtePC/Yalnix Memory System This document describes the UtePC memory management hardware subsystem and the operations that your Yalnix kernel must perform to control it. Please refer to Handout 3 for

More information

Part II Processes and Threads Process Basics

Part II Processes and Threads Process Basics Part II Processes and Threads Process Basics Fall 2017 Program testing can be used to show the presence of bugs, but never to show their absence 1 Edsger W. Dijkstra From Compilation to Execution A compiler

More information

Chapter 3 - Memory Management

Chapter 3 - Memory Management Chapter 3 - Memory Management Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Memory Management 1 / 222 1 A Memory Abstraction: Address Spaces The Notion of an Address Space Swapping

More information

Pebbles Kernel Specification September 26, 2004

Pebbles Kernel Specification September 26, 2004 15-410, Operating System Design & Implementation Pebbles Kernel Specification September 26, 2004 Contents 1 Introduction 2 1.1 Overview...................................... 2 2 User Execution Environment

More information

My malloc: mylloc and mhysa. Johan Montelius HT2016

My malloc: mylloc and mhysa. Johan Montelius HT2016 1 Introduction My malloc: mylloc and mhysa Johan Montelius HT2016 So this is an experiment where we will implement our own malloc. We will not implement the world s fastest allocator, but it will work

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed Process Management CS 537 Lecture 3: Processes Michael Swift This lecture begins a series of topics on processes, threads, and synchronization Today: processes and process management what are the OS units

More information

Requirements, Partitioning, paging, and segmentation

Requirements, Partitioning, paging, and segmentation Requirements, Partitioning, paging, and segmentation Memory Management Subdividing memory to accommodate multiple processes Memory needs to be allocated efficiently to pack as many processes into memory

More information

Processes and Tasks What comprises the state of a running program (a process or task)?

Processes and Tasks What comprises the state of a running program (a process or task)? Processes and Tasks What comprises the state of a running program (a process or task)? Microprocessor Address bus Control DRAM OS code and data special caches code/data cache EAXEBP EIP DS EBXESP EFlags

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 9: Memory Management - Part 1 Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 9, 2017 In This Module...

More information

Review! Lecture 5 C Memory Management !

Review! Lecture 5 C Memory Management ! CS61C L05 C Memory Management (1)! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 C Memory Management 2010-06-28!!! Instructor Paul Pearce! Symmetric multiprocessor! MIPS support for

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 C Memory Management 2010-06-28!!! Instructor Paul Pearce! Symmetric multiprocessor! MIPS support for Android MIPS Technologies (founded

More information

Main Memory (Part I)

Main Memory (Part I) Main Memory (Part I) Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/5 1 / 47 Motivation and Background Amir

More information

Process. Heechul Yun. Disclaimer: some slides are adopted from the book authors slides with permission 1

Process. Heechul Yun. Disclaimer: some slides are adopted from the book authors slides with permission 1 Process Heechul Yun Disclaimer: some slides are adopted from the book authors slides with permission 1 Recap OS services Resource (CPU, memory) allocation, filesystem, communication, protection, security,

More information

This is an open book, open notes exam. But no online or in-class chatting.

This is an open book, open notes exam. But no online or in-class chatting. Principles of Operating Systems Fall 2017 Final 12/13/2017 Time Limit: 8:00am - 10:00am Name (Print): Don t forget to write your name on this exam. This is an open book, open notes exam. But no online

More information

Memory: Overview. CS439: Principles of Computer Systems February 26, 2018

Memory: Overview. CS439: Principles of Computer Systems February 26, 2018 Memory: Overview CS439: Principles of Computer Systems February 26, 2018 Where We Are In the Course Just finished: Processes & Threads CPU Scheduling Synchronization Next: Memory Management Virtual Memory

More information

Noorul Islam College Of Engineering, Kumaracoil MCA Degree Model Examination (October 2007) 5 th Semester MC1642 UNIX Internals 2 mark Questions

Noorul Islam College Of Engineering, Kumaracoil MCA Degree Model Examination (October 2007) 5 th Semester MC1642 UNIX Internals 2 mark Questions Noorul Islam College Of Engineering, Kumaracoil MCA Degree Model Examination (October 2007) 5 th Semester MC1642 UNIX Internals 2 mark Questions 1. What are the different parts of UNIX system? i. Programs

More information

Chapter 4. File Systems. Part 1

Chapter 4. File Systems. Part 1 Chapter 4 File Systems Part 1 1 Reading Chapter 4: File Systems Chapter 10: Case Study 1: Linux (& Unix) 2 Long-Term Storage of Information Must store large amounts of data Information must survive the

More information

16 Sharing Main Memory Segmentation and Paging

16 Sharing Main Memory Segmentation and Paging Operating Systems 64 16 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

File Directories Associated with any file management system and collection of files is a file directories The directory contains information about

File Directories Associated with any file management system and collection of files is a file directories The directory contains information about 1 File Management 2 File Directories Associated with any file management system and collection of files is a file directories The directory contains information about the files, including attributes, location

More information

CS140 Project 3: Virtual Memory. TA: Diveesh Singh

CS140 Project 3: Virtual Memory. TA: Diveesh Singh CS140 Project 3: Virtual Memory TA: Diveesh Singh High level Project requirements High level goal: Remove current limitation that the number and size of programs running in Pintos is limited by main memory

More information

CS 390 Chapter 8 Homework Solutions

CS 390 Chapter 8 Homework Solutions CS 390 Chapter 8 Homework Solutions 8.3 Why are page sizes always... Page sizes that are a power of two make it computationally fast for the kernel to determine the page number and offset of a logical

More information

CROWDMARK. Examination Midterm. Spring 2017 CS 350. Closed Book. Page 1 of 30. University of Waterloo CS350 Midterm Examination.

CROWDMARK. Examination Midterm. Spring 2017 CS 350. Closed Book. Page 1 of 30. University of Waterloo CS350 Midterm Examination. Times: Thursday 2017-06-22 at 19:00 to 20:50 (7 to 8:50PM) Duration: 1 hour 50 minutes (110 minutes) Exam ID: 3520593 Please print in pen: Waterloo Student ID Number: WatIAM/Quest Login Userid: Sections:

More information

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition Chapter 7: Main Memory Operating System Concepts Essentials 8 th Edition Silberschatz, Galvin and Gagne 2011 Chapter 7: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure

More information

Chapter 8 Main Memory

Chapter 8 Main Memory COP 4610: Introduction to Operating Systems (Spring 2014) Chapter 8 Main Memory Zhi Wang Florida State University Contents Background Swapping Contiguous memory allocation Paging Segmentation OS examples

More information

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song CSCE 313 Introduction to Computer Systems Instructor: Dezhen Song Programs, Processes, and Threads Programs and Processes Threads Programs, Processes, and Threads Programs and Processes Threads Processes

More information

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium Main Memory Outlook Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2 Backgound Background So far we considered how to share

More information

File Management. Ezio Bartocci.

File Management. Ezio Bartocci. File Management Ezio Bartocci ezio.bartocci@tuwien.ac.at Cyber-Physical Systems Group Institute for Computer Engineering Faculty of Informatics, TU Wien Motivation A process can only contain a limited

More information

Project 2-1 User Programs

Project 2-1 User Programs Project 2-1 User Programs Prof. Jin-Soo Kim ( jinsookim@skku.edu) T.A. Sejun Kwon (sejun000@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Supporting User Programs

More information