Data Handling in OpenMP

Size: px
Start display at page:

Download "Data Handling in OpenMP"

Transcription

1 Data Handling in OpenMP Manipulate data by threads By private: a thread initializes and uses a variable alone Keep local copies, such as loop indices By firstprivate: a thread repeatedly reads a variable that has been initialized earlier in the program Make a copy and inherit the value at the time of thread creation When a thread is scheduled on the processor, the data can reside at the same processor (in its cache) No interprocessor communication By reduction: multiple threads manipulate a single piece of data Break manipulations into local operations followed by a global operation Counting, summation 1

2 Data Handling in OpenMP (cont d) Localization: If multiple threads manipulate different parts of a large data structure, the programmer should break it into smaller data structures and make them private to the threads By shared: after all the above techniques have been explored The threadprivate directive Some objects persist through parallel and serial blocks The number of threads remains the same Avoid copying into the master thread s data space and reinitializing at the next parallel block Initialized once before they are accessed in a parallel region The copyin(variable_list) directive Assign the same value to threadprivate variables across all threads in a parallel region 2

3 Data Handling in OpenMP (cont d) Data in threadprivate objects is guaranteed to persist only if the dynamic threads mechanism is "turned off" and the number of threads in different parallel regions remains constant The default setting of dynamic threads is undefined. 3

4 Clauses/Directives Summary The following OpenMP directives do NOT accept clauses master, critical, barrier, atomic, flush, ordered, and threadprivate 4

5 Controlling Number of Threads and Processors 5

6 Controlling Number of Threads and Processors omp_set_num_threads: set the default number of threads Outside the scope of a parallel region Dynamic adjustment of threads must be enabled By OMP_DYNAMIC or omp_set_dynamic() omp_get_num_threads: return the number of threads Bind to the closest parallel directive omp_get_max_threads: return the maximum number of thread that could be created by a parallel directive omp_get_thread_num: return a unique thread i.d. From 0 to omp_get_num_threads()-1 omp_get_num_procs: return the number of processors that are available to execute the threaded program omp_in_parallel: in parallel region or not 6

7 Controlling and Monitoring Thread Creation omp_set_dynamic: allow the programmer to dynamically alter the number of threads To disable: the value dynamic_threads is set to 0 Called outside the parallel regions omp_get_dynamic: determine dynamic adjustment is enable or not omp_set_nested: enable nested parallelism if the nested is non-zero If disabled, any nested parallel regions are serialized omp_get_nested: return the state of nested parallelism 7

8 Mutual Exclusion Omp_init_lock: initialize a lock before using it Omp_destroy_lock: discard a lock Omp_set_lock: acquire a lock Omp_unset_lock: unlock the lock The result of a thread attempting to unlock a lock owned by another thread is undefined Omp_test_lock: non-blocking lock Non-zero: successfully set the lock 8

9 Mutual Exclusion (cont d) Nestable locks: can be locked multiple times by the same thread Similar to recursive mutexes in Pthreads 9

10 Environment Variables in OpenMP OMP_NUM_THREADS: the default number of threads Changed by the omp_set_num_threads function or the num_threads clause Requirement: the variable OMP_SET_DYNAMIC is set to TRUE or if the function omp_set_dynamic has been called with a non-zero argument Example (on bash): export OMP_NUM_THREADS=8 OMP_DYNAMIC: allow the number of threads to be controlled at runtime Disabled: call omp_set_dynamic function with a zero argument OMP_NESTED: enable or disable nested parallelism 10

11 Environment Variables in OpenMP (cont d) OMP_SCHEDULE: control the assignment of iteration spaces associated with for directives (runtime scheduling) Support static, dynamic, and guided with optional chunk size Examples: export OMP_SCHEDULE=static,4 export OMP_SCHEDULE=dynamic The default chunk size is 1 export OMP_SCHEDULE=guided The default chunk size is 1 11

12 Explicit Threads versus OpenMP Based Programming OpenMP: a layer on top of native threads Avoid tasks of initializing attributes objects, setting up arguments to threads, partitioning iteration spaces, etc Convenient for static and regular problems The overheads is minimal Explicit threads: Data exchange is more apparent Alleviate overheads from data movement, false sharing, and contention Richer APIs in the form of condition waits, locks of different types, and increased flexibility for building composite synchronization operations Better tools and support Used more widely than OpenMP 12

Parallel and Distributed Programming. OpenMP

Parallel and Distributed Programming. OpenMP Parallel and Distributed Programming OpenMP OpenMP Portability of software SPMD model Detailed versions (bindings) for different programming languages Components: directives for compiler library functions

More information

OPENMP OPEN MULTI-PROCESSING

OPENMP OPEN MULTI-PROCESSING OPENMP OPEN MULTI-PROCESSING OpenMP OpenMP is a portable directive-based API that can be used with FORTRAN, C, and C++ for programming shared address space machines. OpenMP provides the programmer with

More information

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele Advanced C Programming Winter Term 2008/09 Guest Lecture by Markus Thiele Lecture 14: Parallel Programming with OpenMP Motivation: Why parallelize? The free lunch is over. Herb

More information

Introduction to. Slides prepared by : Farzana Rahman 1

Introduction to. Slides prepared by : Farzana Rahman 1 Introduction to OpenMP Slides prepared by : Farzana Rahman 1 Definition of OpenMP Application Program Interface (API) for Shared Memory Parallel Programming Directive based approach with library support

More information

OpenMP Application Program Interface

OpenMP Application Program Interface OpenMP Application Program Interface Version.0 - RC - March 01 Public Review Release Candidate Copyright 1-01 OpenMP Architecture Review Board. Permission to copy without fee all or part of this material

More information

OpenMP Application Program Interface

OpenMP Application Program Interface OpenMP Application Program Interface DRAFT Version.1.0-00a THIS IS A DRAFT AND NOT FOR PUBLICATION Copyright 1-0 OpenMP Architecture Review Board. Permission to copy without fee all or part of this material

More information

OpenMP C and C++ Application Program Interface Version 1.0 October Document Number

OpenMP C and C++ Application Program Interface Version 1.0 October Document Number OpenMP C and C++ Application Program Interface Version 1.0 October 1998 Document Number 004 2229 001 Contents Page v Introduction [1] 1 Scope............................. 1 Definition of Terms.........................

More information

OpenMP+F90 p OpenMP+F90

OpenMP+F90 p OpenMP+F90 OpenMP+F90 hmli@ustc.edu.cn - http://hpcjl.ustc.edu.cn OpenMP+F90 p. 1 OpenMP+F90 p. 2 OpenMP ccnuma Cache-Coherent Non-Uniform Memory Access SMP Symmetric MultiProcessing MPI MPP Massively Parallel Processing

More information

PC to HPC. Xiaoge Wang ICER Jan 27, 2016

PC to HPC. Xiaoge Wang ICER Jan 27, 2016 PC to HPC Xiaoge Wang ICER Jan 27, 2016 About This Series Format: talk + discussion Focus: fundamentals of parallel compucng (i) parcconing: data parccon and task parccon; (ii) communicacon: data sharing

More information

Introduction [1] 1. Directives [2] 7

Introduction [1] 1. Directives [2] 7 OpenMP Fortran Application Program Interface Version 2.0, November 2000 Contents Introduction [1] 1 Scope............................. 1 Glossary............................ 1 Execution Model.........................

More information

Programming with Shared Memory PART II. HPC Fall 2012 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Fall 2012 Prof. Robert van Engelen Programming with Shared Memory PART II HPC Fall 2012 Prof. Robert van Engelen Overview Sequential consistency Parallel programming constructs Dependence analysis OpenMP Autoparallelization Further reading

More information

Programming with Shared Memory PART II. HPC Fall 2007 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Fall 2007 Prof. Robert van Engelen Programming with Shared Memory PART II HPC Fall 2007 Prof. Robert van Engelen Overview Parallel programming constructs Dependence analysis OpenMP Autoparallelization Further reading HPC Fall 2007 2 Parallel

More information

CSL 860: Modern Parallel

CSL 860: Modern Parallel CSL 860: Modern Parallel Computation Hello OpenMP #pragma omp parallel { // I am now thread iof n switch(omp_get_thread_num()) { case 0 : blah1.. case 1: blah2.. // Back to normal Parallel Construct Extremely

More information

Programming Shared-memory Platforms with OpenMP. Xu Liu

Programming Shared-memory Platforms with OpenMP. Xu Liu Programming Shared-memory Platforms with OpenMP Xu Liu Introduction to OpenMP OpenMP directives concurrency directives parallel regions loops, sections, tasks Topics for Today synchronization directives

More information

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell. Specifications maintained by OpenMP Architecture Review Board (ARB)

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell. Specifications maintained by OpenMP Architecture Review Board (ARB) COMP4300/8300: The OpenMP Programming Model Alistair Rendell See: www.openmp.org Introduction to High Performance Computing for Scientists and Engineers, Hager and Wellein, Chapter 6 & 7 High Performance

More information

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell

COMP4300/8300: The OpenMP Programming Model. Alistair Rendell COMP4300/8300: The OpenMP Programming Model Alistair Rendell See: www.openmp.org Introduction to High Performance Computing for Scientists and Engineers, Hager and Wellein, Chapter 6 & 7 High Performance

More information

Introduction to OpenMP

Introduction to OpenMP Presentation Introduction to OpenMP Martin Cuma Center for High Performance Computing University of Utah mcuma@chpc.utah.edu September 9, 2004 http://www.chpc.utah.edu 4/13/2006 http://www.chpc.utah.edu

More information

Review. Tasking. 34a.cpp. Lecture 14. Work Tasking 5/31/2011. Structured block. Parallel construct. Working-Sharing contructs.

Review. Tasking. 34a.cpp. Lecture 14. Work Tasking 5/31/2011. Structured block. Parallel construct. Working-Sharing contructs. Review Lecture 14 Structured block Parallel construct clauses Working-Sharing contructs for, single, section for construct with different scheduling strategies 1 2 Tasking Work Tasking New feature in OpenMP

More information

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah Introduction to OpenMP Martin Čuma Center for High Performance Computing University of Utah mcuma@chpc.utah.edu Overview Quick introduction. Parallel loops. Parallel loop directives. Parallel sections.

More information

OpenMP Library Functions and Environmental Variables. Most of the library functions are used for querying or managing the threading environment

OpenMP Library Functions and Environmental Variables. Most of the library functions are used for querying or managing the threading environment OpenMP Library Functions and Environmental Variables Most of the library functions are used for querying or managing the threading environment The environment variables are used for setting runtime parameters

More information

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah Introduction to OpenMP Martin Čuma Center for High Performance Computing University of Utah mcuma@chpc.utah.edu Overview Quick introduction. Parallel loops. Parallel loop directives. Parallel sections.

More information

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP)

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) V. Akishina, I. Kisel, G. Kozlov, I. Kulakov, M. Pugach, M. Zyzak Goethe University of Frankfurt am Main 2015 Task Parallelism Parallelization

More information

HPCSE - I. «OpenMP Programming Model - Part I» Panos Hadjidoukas

HPCSE - I. «OpenMP Programming Model - Part I» Panos Hadjidoukas HPCSE - I «OpenMP Programming Model - Part I» Panos Hadjidoukas 1 Schedule and Goals 13.10.2017: OpenMP - part 1 study the basic features of OpenMP able to understand and write OpenMP programs 20.10.2017:

More information

OpenMP Technical Report 3 on OpenMP 4.0 enhancements

OpenMP Technical Report 3 on OpenMP 4.0 enhancements OPENMP ARB OpenMP Technical Report on OpenMP.0 enhancements This Technical Report specifies OpenMP.0 enhancements that are candidates for a future OpenMP.1: (e.g. for asynchronous execution on and data

More information

Introduction to OpenMP. Rogelio Long CS 5334/4390 Spring 2014 February 25 Class

Introduction to OpenMP. Rogelio Long CS 5334/4390 Spring 2014 February 25 Class Introduction to OpenMP Rogelio Long CS 5334/4390 Spring 2014 February 25 Class Acknowledgment These slides are adapted from the Lawrence Livermore OpenMP Tutorial by Blaise Barney at https://computing.llnl.gov/tutorials/openmp/

More information

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah

Introduction to OpenMP. Martin Čuma Center for High Performance Computing University of Utah Introduction to OpenMP Martin Čuma Center for High Performance Computing University of Utah m.cuma@utah.edu Overview Quick introduction. Parallel loops. Parallel loop directives. Parallel sections. Some

More information

Shared Memory Parallelism - OpenMP

Shared Memory Parallelism - OpenMP Shared Memory Parallelism - OpenMP Sathish Vadhiyar Credits/Sources: OpenMP C/C++ standard (openmp.org) OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openmp/#introduction) OpenMP sc99 tutorial

More information

Programming Shared Address Space Platforms

Programming Shared Address Space Platforms Programming Shared Address Space Platforms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003. Topic Overview

More information

Parallel Programming/OpenMP

Parallel Programming/OpenMP Parallel Programming/OpenMP 1. Motivating Parallelism: Developing parallel software is considered time and effort intensive. This is largely because of inherent complexity in specifying and coordinating

More information

A Source-to-Source OpenMP Compiler MARIO SOUKUP

A Source-to-Source OpenMP Compiler MARIO SOUKUP A Source-to-Source OpenMP Compiler by MARIO SOUKUP A Thesis submitted to fulfil the equivalent of three half courses of the requirements for the degree of Master of Engineering in the Department of Electrical

More information

A brief introduction to OpenMP

A brief introduction to OpenMP A brief introduction to OpenMP Alejandro Duran Barcelona Supercomputing Center Outline 1 Introduction 2 Writing OpenMP programs 3 Data-sharing attributes 4 Synchronization 5 Worksharings 6 Task parallelism

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

OpenMP Language Features

OpenMP Language Features OpenMP Language Features 1 Agenda The parallel construct Work-sharing Data-sharing Synchronization Interaction with the execution environment More OpenMP clauses Advanced OpenMP constructs 2 The fork/join

More information

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables Review Lecture 3 Compiler Directives Conditional compilation Parallel construct Work-sharing constructs for, section, single Work-tasking Synchronization Library Functions Environment Variables 2 35a.cpp

More information

An Introduction to OpenMP

An Introduction to OpenMP An Introduction to OpenMP U N C L A S S I F I E D Slide 1 What Is OpenMP? OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism

More information

CSL 730: Parallel Programming. OpenMP

CSL 730: Parallel Programming. OpenMP CSL 730: Parallel Programming OpenMP int sum2d(int data[n][n]) { int i,j; #pragma omp parallel for for (i=0; i

More information

CS 470 Spring Mike Lam, Professor. Advanced OpenMP

CS 470 Spring Mike Lam, Professor. Advanced OpenMP CS 470 Spring 2018 Mike Lam, Professor Advanced OpenMP Atomics OpenMP provides access to highly-efficient hardware synchronization mechanisms Use the atomic pragma to annotate a single statement Statement

More information

by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by using function call

by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by using function call OpenMP Syntax The OpenMP Programming Model Number of threads are determined by system default usually a thread per CPU or core using the environment variable OMP_NUM_THREADS from within the program by

More information

OpenMP 2. CSCI 4850/5850 High-Performance Computing Spring 2018

OpenMP 2. CSCI 4850/5850 High-Performance Computing Spring 2018 OpenMP 2 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

CS 470 Spring Mike Lam, Professor. Advanced OpenMP

CS 470 Spring Mike Lam, Professor. Advanced OpenMP CS 470 Spring 2017 Mike Lam, Professor Advanced OpenMP Atomics OpenMP provides access to highly-efficient hardware synchronization mechanisms Use the atomic pragma to annotate a single statement Statement

More information

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP*

Compiling and running OpenMP programs. C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp. Programming with OpenMP* Advanced OpenMP Compiling and running OpenMP programs C/C++: cc fopenmp o prog prog.c -lomp CC fopenmp o prog prog.c -lomp 2 1 Running Standard environment variable determines the number of threads: tcsh

More information

Programming Shared Address Space Platforms using OpenMP

Programming Shared Address Space Platforms using OpenMP Programming Shared Address Space Platforms using OpenMP Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Topic Overview Introduction to OpenMP OpenMP

More information

Shared Memory Programming Models I

Shared Memory Programming Models I Shared Memory Programming Models I Peter Bastian / Stefan Lang Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg INF 368, Room 532 D-69120 Heidelberg phone: 06221/54-8264

More information

Programming Shared-memory Platforms with OpenMP

Programming Shared-memory Platforms with OpenMP Programming Shared-memory Platforms with OpenMP John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 7 31 February 2017 Introduction to OpenMP OpenMP

More information

Parallel Computing Parallel Programming Languages Hwansoo Han

Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Computing Parallel Programming Languages Hwansoo Han Parallel Programming Practice Current Start with a parallel algorithm Implement, keeping in mind Data races Synchronization Threading syntax

More information

Data Environment: Default storage attributes

Data Environment: Default storage attributes COSC 6374 Parallel Computation Introduction to OpenMP(II) Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) Edgar Gabriel Fall 2014 Data Environment: Default storage attributes

More information

OpenMP Lab on Nested Parallelism and Tasks

OpenMP Lab on Nested Parallelism and Tasks OpenMP Lab on Nested Parallelism and Tasks Nested Parallelism 2 Nested Parallelism Some OpenMP implementations support nested parallelism A thread within a team of threads may fork spawning a child team

More information

Practical in Numerical Astronomy, SS 2012 LECTURE 12

Practical in Numerical Astronomy, SS 2012 LECTURE 12 Practical in Numerical Astronomy, SS 2012 LECTURE 12 Parallelization II. Open Multiprocessing (OpenMP) Lecturer Eduard Vorobyov. Email: eduard.vorobiev@univie.ac.at, raum 006.6 1 OpenMP is a shared memory

More information

OpenMP. Table of Contents

OpenMP. Table of Contents OpenMP Table of Contents 1. Introduction 1. What is OpenMP? 2. History 3. Goals of OpenMP 2. OpenMP Programming Model 3. OpenMP Directives 1. Directive Format 2. Directive Format 3. Directive Scoping 4.

More information

Shared Memory Parallelism using OpenMP

Shared Memory Parallelism using OpenMP Indian Institute of Science Bangalore, India भ रत य व ज ञ न स स थ न ब गल र, भ रत SE 292: High Performance Computing [3:0][Aug:2014] Shared Memory Parallelism using OpenMP Yogesh Simmhan Adapted from: o

More information

Mango DSP Top manufacturer of multiprocessing video & imaging solutions.

Mango DSP Top manufacturer of multiprocessing video & imaging solutions. 1 of 11 3/3/2005 10:50 AM Linux Magazine February 2004 C++ Parallel Increase application performance without changing your source code. Mango DSP Top manufacturer of multiprocessing video & imaging solutions.

More information

OpenMP. OpenMP. Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum API for Fortran and C/C++

OpenMP. OpenMP. Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum API for Fortran and C/C++ OpenMP OpenMP Portable programming of shared memory systems. It is a quasi-standard. OpenMP-Forum 1997-2002 API for Fortran and C/C++ directives runtime routines environment variables www.openmp.org 1

More information

Multithreading in C with OpenMP

Multithreading in C with OpenMP Multithreading in C with OpenMP ICS432 - Spring 2017 Concurrent and High-Performance Programming Henri Casanova (henric@hawaii.edu) Pthreads are good and bad! Multi-threaded programming in C with Pthreads

More information

EPL372 Lab Exercise 5: Introduction to OpenMP

EPL372 Lab Exercise 5: Introduction to OpenMP EPL372 Lab Exercise 5: Introduction to OpenMP References: https://computing.llnl.gov/tutorials/openmp/ http://openmp.org/wp/openmp-specifications/ http://openmp.org/mp-documents/openmp-4.0-c.pdf http://openmp.org/mp-documents/openmp4.0.0.examples.pdf

More information

DPHPC: Introduction to OpenMP Recitation session

DPHPC: Introduction to OpenMP Recitation session SALVATORE DI GIROLAMO DPHPC: Introduction to OpenMP Recitation session Based on http://openmp.org/mp-documents/intro_to_openmp_mattson.pdf OpenMP An Introduction What is it? A set

More information

An Introduction to OpenMP

An Introduction to OpenMP Dipartimento di Ingegneria Industriale e dell'informazione University of Pavia December 4, 2017 Recap Parallel machines are everywhere Many architectures, many programming model. Among them: multithreading.

More information

Parallel Programming with OpenMP. CS240A, T. Yang

Parallel Programming with OpenMP. CS240A, T. Yang Parallel Programming with OpenMP CS240A, T. Yang 1 A Programmer s View of OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for defining multi-threaded shared-memory programs

More information

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means High Performance Computing: Concepts, Methods & Means OpenMP Programming Prof. Thomas Sterling Department of Computer Science Louisiana State University February 8 th, 2007 Topics Introduction Overview

More information

Parallel programming using OpenMP

Parallel programming using OpenMP Parallel programming using OpenMP Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department

More information

OpenMP threading: parallel regions. Paolo Burgio

OpenMP threading: parallel regions. Paolo Burgio OpenMP threading: parallel regions Paolo Burgio paolo.burgio@unimore.it Outline Expressing parallelism Understanding parallel threads Memory Data management Data clauses Synchronization Barriers, locks,

More information

More Advanced OpenMP. Saturday, January 30, 16

More Advanced OpenMP. Saturday, January 30, 16 More Advanced OpenMP This is an abbreviated form of Tim Mattson s and Larry Meadow s (both at Intel) SC 08 tutorial located at http:// openmp.org/mp-documents/omp-hands-on-sc08.pdf All errors are my responsibility

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 OpenMP Multithreaded Programming 2 Parallel Programming using OpenMP OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard to perform shared-memory multithreading

More information

Session 4: Parallel Programming with OpenMP

Session 4: Parallel Programming with OpenMP Session 4: Parallel Programming with OpenMP Xavier Martorell Barcelona Supercomputing Center Agenda Agenda 10:00-11:00 OpenMP fundamentals, parallel regions 11:00-11:30 Worksharing constructs 11:30-12:00

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 Parallel Programming using OpenMP Mike Bailey mjb@cs.oregonstate.edu openmp.pptx OpenMP Multithreaded Programming 2 OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard

More information

Standard promoted by main manufacturers Fortran. Structure: Directives, clauses and run time calls

Standard promoted by main manufacturers   Fortran. Structure: Directives, clauses and run time calls OpenMP Introducción Directivas Regiones paralelas Worksharing sincronizaciones Visibilidad datos Implementación OpenMP: introduction Standard promoted by main manufacturers http://www.openmp.org, http://www.compunity.org

More information

Alfio Lazzaro: Introduction to OpenMP

Alfio Lazzaro: Introduction to OpenMP First INFN International School on Architectures, tools and methodologies for developing efficient large scale scientific computing applications Ce.U.B. Bertinoro Italy, 12 17 October 2009 Alfio Lazzaro:

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 A little about me! PhD Computer Engineering Texas A&M University Computer Science

More information

Lecture 4: OpenMP Open Multi-Processing

Lecture 4: OpenMP Open Multi-Processing CS 4230: Parallel Programming Lecture 4: OpenMP Open Multi-Processing January 23, 2017 01/23/2017 CS4230 1 Outline OpenMP another approach for thread parallel programming Fork-Join execution model OpenMP

More information

Standard promoted by main manufacturers Fortran

Standard promoted by main manufacturers  Fortran OpenMP Introducción Directivas Regiones paralelas Worksharing sincronizaciones Visibilidad datos Implementación OpenMP: introduction Standard promoted by main manufacturers http://www.openmp.org Fortran

More information

COL 730: Parallel Programming. OpenMP

COL 730: Parallel Programming. OpenMP COL 730: Parallel Programming OpenMP Parallel Programming Break computation into small pieces Schedule for each processors(i) for all jobs j DO Job(i, j) Issues: Granularity Communication Synchronization

More information

CS691/SC791: Parallel & Distributed Computing

CS691/SC791: Parallel & Distributed Computing CS691/SC791: Parallel & Distributed Computing Introduction to OpenMP Part 2 1 OPENMP: SORTING 1 Bubble Sort Serial Odd-Even Transposition Sort 2 Serial Odd-Even Transposition Sort First OpenMP Odd-Even

More information

Shared Memory Programming : OpenMP

Shared Memory Programming : OpenMP Multicore & GPU Programming : An Integrated Approach Shared Memory Programming : OpenMP By G. Barlas Objectives Learn how to use OpenMP compiler directives to introduce concurrency in a sequential program.

More information

Parallel Programming with OpenMP. CS240A, T. Yang, 2013 Modified from Demmel/Yelick s and Mary Hall s Slides

Parallel Programming with OpenMP. CS240A, T. Yang, 2013 Modified from Demmel/Yelick s and Mary Hall s Slides Parallel Programming with OpenMP CS240A, T. Yang, 203 Modified from Demmel/Yelick s and Mary Hall s Slides Introduction to OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Le Yan Scientific computing consultant User services group High Performance Computing @ LSU Goals Acquaint users with the concept of shared memory parallelism Acquaint users with

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

COSC 6374 Parallel Computation. Introduction to OpenMP. Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel)

COSC 6374 Parallel Computation. Introduction to OpenMP. Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) COSC 6374 Parallel Computation Introduction to OpenMP Some slides based on material by Barbara Chapman (UH) and Tim Mattson (Intel) Edgar Gabriel Fall 2015 OpenMP Provides thread programming model at a

More information

Introduction to Programming with OpenMP

Introduction to Programming with OpenMP Introduction to Programming with OpenMP Kent Milfeld; Lars Koesterke Yaakoub El Khamra (presenting) milfeld lars yye00@tacc.utexas.edu October 2012, TACC Outline What is OpenMP? How does OpenMP work? Architecture

More information

https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG https://www.youtube.com/playlist?list=pllx- Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG OpenMP Basic Defs: Solution Stack HW System layer Prog. User layer Layer Directives, Compiler End User Application OpenMP library

More information

OpenMP on Ranger and Stampede (with Labs)

OpenMP on Ranger and Stampede (with Labs) OpenMP on Ranger and Stampede (with Labs) Steve Lantz Senior Research Associate Cornell CAC Parallel Computing at TACC: Ranger to Stampede Transition November 6, 2012 Based on materials developed by Kent

More information

<Insert Picture Here> OpenMP on Solaris

<Insert Picture Here> OpenMP on Solaris 1 OpenMP on Solaris Wenlong Zhang Senior Sales Consultant Agenda What s OpenMP Why OpenMP OpenMP on Solaris 3 What s OpenMP Why OpenMP OpenMP on Solaris

More information

Shared Memory Programming Model

Shared Memory Programming Model Shared Memory Programming Model Ahmed El-Mahdy and Waleed Lotfy What is a shared memory system? Activity! Consider the board as a shared memory Consider a sheet of paper in front of you as a local cache

More information

Practical stuff! ü OpenMP. Ways of actually get stuff done in HPC:

Practical stuff! ü OpenMP. Ways of actually get stuff done in HPC: Ways of actually get stuff done in HPC: Practical stuff! Ø Message Passing (send, receive, broadcast,...) Ø Shared memory (load, store, lock, unlock) ü MPI Ø Transparent (compiler works magic) Ø Directive-based

More information

How to use OpenMP within TiViPE

How to use OpenMP within TiViPE TiViPE Visual Programming How to use OpenMP within TiViPE Technical Report: Version 1.0.0 Copyright c TiViPE 2011. All rights reserved. Tino Lourens TiViPE Kanaaldijk ZW 11 5706 LD Helmond The Netherlands

More information

[Potentially] Your first parallel application

[Potentially] Your first parallel application [Potentially] Your first parallel application Compute the smallest element in an array as fast as possible small = array[0]; for( i = 0; i < N; i++) if( array[i] < small ) ) small = array[i] 64-bit Intel

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Parallel Computing using OpenMP [Part 2 of 2] April 5, 2011 Dan Negrut, 2011 ME964 UW-Madison The inside of a computer is as dumb as hell but

More information

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2.

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2. OpenMP Overview in 30 Minutes Christian Terboven 06.12.2010 / Aachen, Germany Stand: 03.12.2010 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda OpenMP: Parallel Regions,

More information

KeyStone Training. Keystone Device Tooling

KeyStone Training. Keystone Device Tooling KeyStone Training Keystone Device Tooling Agenda Code Composer Studio v4 Keystone Architecture Simulator Multicore Application Deployment OpenMP Initiative Code Composer Studio v4 Code Composer Studio

More information

<Insert Picture Here> An Introduction Into The OpenMP Programming Model

<Insert Picture Here> An Introduction Into The OpenMP Programming Model An Introduction Into The OpenMP Programming Model Ruud van der Pas Senior Staff Engineer Oracle Solaris Studio, Menlo Park, CA, USA Outline Getting Started with OpenMP Using OpenMP

More information

The GNU OpenMP Implementation

The GNU OpenMP Implementation The GNU OpenMP Implementation Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301, USA Copyright c 2006 Free Software Foundation, Inc. Permission is granted

More information

CS4961 Parallel Programming. Lecture 9: Task Parallelism in OpenMP 9/22/09. Administrative. Mary Hall September 22, 2009.

CS4961 Parallel Programming. Lecture 9: Task Parallelism in OpenMP 9/22/09. Administrative. Mary Hall September 22, 2009. Parallel Programming Lecture 9: Task Parallelism in OpenMP Administrative Programming assignment 1 is posted (after class) Due, Tuesday, September 22 before class - Use the handin program on the CADE machines

More information

In-Class Guerrilla Development of MPI Examples

In-Class Guerrilla Development of MPI Examples Week 5 Lecture Notes In-Class Guerrilla Development of MPI Examples www.cac.cornell.edu/~slantz 1 Guerrilla Development? guer ril la (n.) - A member of an irregular, usually indigenous military or paramilitary

More information

Parallel Software Engineering with OpenMP

Parallel Software Engineering with OpenMP Parallel Software Engineering with OpenMP NDL#NDLFRP KWWSZZZNDLFRP Outline Introduction What is Parallel Software Engineering Parallel Software Engineering Issues OpenMP KAP/Pro for OpenMP Conclusions

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Shirley Moore shirley@eecs.utk.edu CS594: Scientific Computing for Engineers March 9, 2011 What is OpenMP? An Application Program Interface (API) that may be used to explicitly direct

More information

Shared Memory Parallelism

Shared Memory Parallelism Introduction Shared Memory Parallelism Why shared memory parallelism is important Shared memory architectures POXIS threads vs OpenMP OpenMP history First steps into OpenMP Data parallel programs How to

More information

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato OpenMP Application Program Interface Introduction Shared-memory parallelism in C, C++ and Fortran compiler directives library routines environment variables Directives single program multiple data (SPMD)

More information

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013

OpenMP. António Abreu. Instituto Politécnico de Setúbal. 1 de Março de 2013 OpenMP António Abreu Instituto Politécnico de Setúbal 1 de Março de 2013 António Abreu (Instituto Politécnico de Setúbal) OpenMP 1 de Março de 2013 1 / 37 openmp what? It s an Application Program Interface

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Wrap-up, Parallel Computing with OpenMP CUDA, OpenMP, MPI Comparison May 01, 2012 Dan Negrut, 2012 ME964 UW-Madison If a program manipulates

More information

Multi-core Architecture and Programming

Multi-core Architecture and Programming Multi-core Architecture and Programming Yang Quansheng( 杨全胜 ) http://www.njyangqs.com School of Computer Science & Engineering 1 http://www.njyangqs.com Programming with OpenMP Content What is PpenMP Parallel

More information

OpenMP Fundamentals Fork-join model and data environment

OpenMP Fundamentals Fork-join model and data environment www.bsc.es OpenMP Fundamentals Fork-join model and data environment Xavier Teruel and Xavier Martorell Agenda: OpenMP Fundamentals OpenMP brief introduction The fork-join model Data environment OpenMP

More information

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing CS 590: High Performance Computing OpenMP Introduction Fengguang Song Department of Computer Science IUPUI OpenMP A standard for shared-memory parallel programming. MP = multiprocessing Designed for systems

More information